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Abstract
We provide a method in order to determine a Bézier curve with a minimal jerk energy by means of
associated matrices. By way of an application, we show that the unknown control points of the Bézier
curve having a minimal jerk energy can be written as a linear combination of the known control points.
Furthermore, for such a Bézier curve we obtain a general form of its matrix represention.

Keywords: Bézier curve; minimal jerk energy; , control points.

AMS Subject Classification (2010): Primary: 53A04; 65D17.

*Corresponding author

1. Introduction
The notion of a Bézier curve was introduced by Pierre Bézier in 1960 in order to design a car body. Since then

Bézier curves be come a common tool used in Computer Aided Geometric Design which were the subject of many
works in the literature [5, 6, 8, 11, 12]. The most comprehensive information about Bézier curves and their geometry
is available in the book by Farin [5], entitled "curves and surfaces for CAGD".

Geometric construction of curves with a minimal energy is one of the most important subject of Computer
Aided Design, and it has been studied in many papers [1–3, 14, 17, 18]. In particular, Bézier curves with a minimal
energy constitute a very interesting area of research. For instance, in Xu et al. [16] derive a necessary and sufficient
condition on the control points for Bézier curves to have a minimal internal energy including stretch energy, strain
energy and jerk energy. They propose geometric constructions of three kinds of Bézier curves with minimal internal
energy, and then compare the corresponding three kinds of energy-minimizing Bézier curves. Eberly [4], obtains a
relationship between the minimum bending energy and the degree elevation for Bézier curves, and finds unknowns
of a cubic Bézier curve with the minimum bending energy by the aid of associated matrices. Following these works,
we obtain that unknown control points of a Bézier curve with degree n having a minimal jerk energy can written as
a linear combination of known control points.

Most fundamental descriptions and properties on Bézier curves needed throughout the sequel are stated in
Section 2, where we also provide the definition of the jerk energy functional. The characterization of unknown
control point of a Bézier curve with a minimal jerk energy in cubic case given in Section 3. By the help of associated
matrices, we carry over such a characterization to the quartic case. Finally, we complete our characterization of
unknown control points of any Bézier curve with degree n which has a minimal jerk energy following a similar
methodology.
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2. Preliminaries
A Bézier curve of degree n is a parametric curve with control points P0, P1, ..., Pn, and it is expressed in terms of

Bernstein polynomials given by

Bn
i (t) =

(
n
i

)
(1− t)n−iti,

where the binomial coefficients are (
n
i

)
=

{ n!
i!(n−i)! if 0 ≤ i ≤ n

0 else.

Therefore, a Bézier curve of degree n is explicitly defined by

γ(t) =

n∑
i=0

Bn
i (t)Pi, t ∈ [0, 1]. (2.1)

(see [5, 7]). In order to characterize any Bézier curve in terms of control points, it is necessary that the points P0 and
Pn must be initially determined; that is, the endpoints of the curve must be known in advance. By considering the
energy as a function of the control points, we derive the necessary and sufficient condition on the control points for
Bézier curves having a minimal jerk energy.

The curvature variation energy is given by

Ecv(P ) =

∫̀
0

[κ′(s)]
2
dt,

where s is the arc parameter, ` is the arc length of γ(t), and κ(s) is the curvature of γ(t). The previous nonlinear
energy functional can be approximated by the jerk energy, where the jerk energy of a Bézier curve is defined as

Ejerk(γ) =

1∫
0

∣∣∣∣∣∣γ′′′
(t)
∣∣∣∣∣∣2 dt (2.2)

(see [9, 10, 16]).

3. Bézier Curve with a Minimal Jerk Energy

In this section, we give the necessary condition satisfied by control points of cubic Bézier curve with a minimal
jerk energy. From the equation (2.1) we obtain a cubic Bézier curve as follows

γ(t) = (1− t)3P0 + 3(1− t)2tP1 + 3(1− t)t2P2 + t3P3,

where P0, P2, P3 are known control points, and P1 is the unknown control point which will be determined in order
that the corresponding cubic Bézier curve to have a minimal jerk energy. For that purpose we next state some
derivatives of the Bézier curve;

γ′(t) = −3(1− t)2P0 + 3(1− t)(1− 3t)P1 + 3t(2− 3t)P2 + 3t2P3,

γ′′(t) = 6((1− t)P0 + (3t− 2)P1 + (1− 3t)P2 + tP3)

and
γ′′′(t) = 6(−P0 + 3P1 − 3P2 + P3).

By using the third derivative of the Bézier curve we obtain the jerk energy functional (2.2) in the following form

Ejerk(γ) = 36 ||−P0 + 3P1 − 3P2 + P3||2 .

It follows that such a Bézier curve to have a minimal jerk energy, the control points should satisfy the equation

−P0 + 3P1 − 3P2 + P3 = 0,

from which we conclude the following proposition.
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Proposition 3.1. Let P0, P2 and P3 be the known control points of a cubic Bézier curve. The unknown control point P1 can
be constructed in the form

P1 =
3P2 + P0 − P3

3
.

Therefore the corresponding cubic Bézier curve has a minimal jerk energy, and the curve reduces to a quadratic Bézier curve.

Example 3.1. If the known control points of a Bézier curve are P0 = (0, 0), P2 = (2, 3) and P3 = (4, 5), then the
unknown control point P1 of the Bézier curve with a minimal jerk energy is obtained as

P1 =

(
2

3
,
4

3

)
.

Figure 1. The Bézier curve with a minimal jerk energy corresponding Example 3.1.

Now we consider a quartic Bézier curve given by

γ(t) = (1− t)4P0 + 4(1− t)3tP1 + 6(1− t)2t2P2 + 4(1− t)t3P3 + t4P4,

where P0, P3 and P4 are known control points, P1 and P2 are the unknown control points which will be determined
in order that the corresponding quartic Bézier curve to have a minimal jerk energy. The first, second and third
derivatives of the Bézier curve are obtained as follows

γ′(t) = −4(1− t)3P0 + 4(1− t)2(1− 4t)P1 + 12(1− t)(1− 2t)tP2 + 4t2(−4t+ 3)P3 + 4t3P4,

γ′′(t) = 12((1− t)2P0 + 2(1− t)(2t− 1)P1 + (6t2 − 6t+ 1)P2 + 2t(1− 2t)P3 + t2P4)

and
γ′′′(t) = 24((t− 1)P0 + (3− 4t)P1 + (6t− 3)P2 + (1− 4t)P3 + tP4),

respectively. Then the integrand of the jerk energy functional can be expressed with the help of a matrix;

‖γ′′′(t)‖2 = 576PT


t− 1
3− 4t
6t− 3
1− 4t
t

 [ t− 1 3− 4t 6t− 3 1− 4t t
]
P,

where P is the matrix with 5 columns and 1 row given by

P =


P0

P1

P2

P3

P4

 .
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By integrating of the matrix terms, we obtain the jerk energy

Ejerk(γ) = 96PTMP,

where M is the following symmetric matrix

M =


2 −5 3 1 −1
−5 14 −12 2 1
3 −12 18 −12 3
1 2 −12 14 −5
−1 1 3 −5 2

 .
Obviously the eigenvalues of M with multiplicity 3 are 35, 15 and 0. For the eigenvalue 35, the correspond-
ing eigenspace is 1−dimensional, and it is spanned by the unit-length eigenvector V0 = (1,−4, 6,−4, 1)/

√
70.

On the other hand, for the eigenvalue 15, the eigenspace is again 1−dimensional, and it is spanned by the
unit-length eigenvector V1 = (−1, 2, 0,−2, 1)/

√
10. Finally for the eigenvalue 0, the resulting eigenspace is

3−dimensional, and it is spanned by the unit-length eigenvectors V2 = (3, 1, 0, 0, 1)/
√
11, V3 = (−2, 6, 9, 7, 0)/

√
170

and V4 = (24, 30, 11,−33,−102)/
√
13090. Therefore {V0, V1, V2, V3, V4} is the orthonormal set and we can write the

eigenvectors as a rotation matrix
R =

[
V0 V1 V2 V3 V4

]
. (3.1)

By using the diagonal matrix D = diag(35, 15, 0, 0, 0), the symmetric matrix M can be written as M = RDRT . On
the other hand, we may define

Q0

Q1

Q2

Q3

Q4

 = Q = RTP =
1

130900


1 −4 6 −4 1
−1 2 0 −2 1
3 1 0 0 1
6 3 1 0 0
−8 −3 0 1 0



P0

P1

P2

P3

P4


by means of (3.1). Thus we compute the jerk energy of the curve as

Ejerk(γ) = 96PTMP = 96PTRDRTP = 96QTDQ (3.2)

= 3350 ‖Q0‖2 + 1440 ‖Q1‖2 .

When Q0 and Q1 are equal to zero, the jerk energy (3.2) will be minimal which in turn forces

P0 − 4P1 + 6P2 − 4P3 + P4 = 0

−P0 + 2P1 − 2P3 + P4 = 0,

from which we deduced the following proposition.

Proposition 3.2. Let P0, P3 and P4 are the known control points of a Bézier curve. The unknown control points P1 and P2

can be constructed as
P1 =

P0 + 2P3 − P4

2
and P2 =

P0 + 8P3 − 3P4

6
.

Therefore the corresponding quartic Bézier curve has a minimal jerk energy, and the curve reduces to quadratic Bézier curve.

Example 3.2. Assume that P0 = (2, 1), P3 = (3, 7) and P4 = (9, 5) are the known control points of a Bézier curve.
Then the unknown control points P1 and P2 can be computed as P1 =

(
− 1

2 , 5
)

and P2 =
(
− 1

6 , 7
)

respectively. Thus,
the Bézier curve has a minimal jerk energy.

4. Determination of unknown control points in degree n

In this final section, we generalize our results in cubic and quartic cases to Bézier curves of degree n. In order to
achieve that we employ permutation matrices into our calculations that allows us to rearrange the positions of the
unknown control points.
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Figure 2. The Bézier curve with a minimal jerk energy corresponding Example 3.2.

Now, we assume that P0, P2, P3 and P4 are the known control points of a quartic Bézier curve. Then, we will
find unknown control point P1 such that the Bézier curve has a minimal jerk energy. Using the matrix P and the
permutation matrix J given by

J =


0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,
we define the matrix P̂ for which its first row is the unknown control point P1. So,

P̂ = JP =


0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



P0

P1

P2

P3

P4

 =


P1

P0

P2

P3

P4

 .

Moreover, if we set M̂ = JMJT , then the jerk energy functional can be expressed by

1

4
Ejerk(γ) = P̂T M̂P̂ = P̂T

[
A B
BT C

]
P̂ , (4.1)

where A is the 1× 1−matrix, B is the 1× 4−matrix and C is the 4× 4−matrix. Let U be the first row of the matrix P̂
and K be the remaining last three rows of P̂ . As a result of algebraic operations on these matrices, we may reduce
the equation (4.1) to

1

4
Ejerk(γ) = UTAU + 2KTBTU +KTCK.

When the gradient of the jerk energy Ejerk(γ), which is a function of U , is zero, i.e,

AU +BK = 0, (4.2)

then the jerk energy Ejerk(γ) becomes minimal. Since A is invertible, we can solve the linear system (4.2) to obtain
the unknown control point P1. Indeed, from M and J , we get

M̂ =


14 −5 −12 2 1
−5 2 3 1 −1
−12 3 18 −12 3
2 1 −12 14 −5
1 −1 3 −5 2

 .
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By using the equation (4.2), we find the unknown control point in the following from

P1 =
1

14
(5P0 + 12P2 − 2P3 − P4) . (4.3)

Example 4.1. Let P0 = (1, 4), P2 = (2,−2), P3 = (4, 3) and P4 = (7, 1) be the known control points of a Bézier curve.
From the equation (4.3), we can find

P1 =

(
1,−11

14

)
as the unknown control point of the Bézier curve with a minimal jerk energy.

Figure 3. The Bézier curve with a minimal jerk energy corresponding Example 4.1.

In the case where there are two unknown control points, we consider a similar approach. So suppose that
P0, P3, P4 are the known control points of a quartic Bézier curve in which P1 and P2 are unknown control points.
Then the corresponding Bézier curve has the jerk energy functional given by

1

4
Ejerk(γ) = P̂T M̂P̂ = P̂T

[
A B
BT C

]
P̂ , (4.4)

where A is the 2× 2−matrix, B is the 2× 3−matrix and C is the 3× 3−matrix. Once again, let U be the first two
rows of P̂ and K be the remaining last three rows of P̂ . From the equation (4.4), we have that

1

4
Ejerk(γ) = UTAU + 2KTBTU +KTCK.

When the gradient of the jerk energy Ejerk(γ) is zero, that is,

AU +BK = 0, (4.5)

the Bézier curve has a minimal jerk energy. The solution of the equation (4.5) is obvious, since A is invertible. When
we employ the permutation matrix

J =


0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

 ,
we deduce that

P̂ =


P1

P2

P0

P3

P4

 , U =

[
P1

P2

]
, K =

 P0

P3

P4


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and

M̂ =


14 −12 −5 2 1
−12 18 3 −12 3
−5 3 2 1 −1
2 −12 1 14 −5
1 3 −1 −5 2

 .
By using the equation (4.5), we have

[
0
0

]
=

[
14 −12
−12 18

] [
P1

P2

]
+

[
−5 2 1
3 −12 3

] P0

P3

P4

 .
It then follows that the equations

P1 − 12P2 − 5P0 + 2P3 + P4 = 0

−12P1 + 18P2 + 3P0 − 12P3 + 3P4 = 0

must hold. Therefore, we conclude that

P1 =
P0 + 2P3 − P4

2
and P2 =

P0 + 8P3 − 3P4

6
,

as in the case of Proposition 3.2.

Example 4.2. Let P0 = (3, 5), P3 = (4, 11) and P4 = (9, 3) be the known control points of a Bézier curve. Then, the
unknowns control point of the Bézier curve with a minimal jerk energy are

P1 = (1, 12) and P2 =

(
4

3
,
42

3

)
.

Figure 4. The Bézier curve with a minimal jerk energy corresponding Example 4.2.

Now, we reach the general characterization of unknown control points of a Bézier curve with degree n which
has a minimal jerk energy.

Theorem 4.1. Let γ(t) be a Bézier curve with degree n. If p and q are the number of the unknown control points and the
known control points respectively, then the unknown control points of the Bézier curve with a minimal jerk energy are the
solutions of the equation system

AU +BK = 0,

such that

J =

(
L O
OT I

)
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and

M̂ =

(
A B
BT C

)
= JMJT ,

where

L = (`ij) =

 1, i+ 1 = j
1, i = p+ 1 and j = 1
0, the other case

, 1 ≤ i, j ≤ p+ 1,

is the (p+1)×(p+1)−matrix,O is a zero matrix with (p+1)−columns and (q−1)−rows, I is the unit matrix (q−1)×(q−1),
A is the p× p−matrix, B is the p× q−matrix, C is the q × q−matrix, U is the p× 1−matrix of the unknown control points
and K is the q × 1−matrix of the known control points. In addition, for n ≥ 3 and 0 ≤ i, j ≤ n, the entry m(i+1)(j+1) of the
matrix M is

m(i+1)(j+1) =
(n!)2

(2n− 5)!

3∑
k,l=0

(−1)k+l
(
3
k

)(
3
l

)
(2n− i− j − k − l)!(i+ j + k + l − 6)!

(i+ k − 3)!(j + l − 3)!(n− i− k)!(n− j − l)!
.

Proof. Let

P =


P0

P1

...
Pn


be the matrix of control points of a Bézier curve with degree n. In order to locate the unknown control points in to
initial rows of the matrix P , we define the matrix J in a way that

P̂ =



P1

...
Pp

P0

...
Pn


=

(
L O
OT I

)
P0

P1

...
Pn

 = JP.

If we define the matrix M̂ = JMJT , the jerk energy functional is given by

1

4
Ejerk(γ) = P̂T M̂P̂ = P̂T

[
A B
BT C

]
P̂ ,

where A is the p × p−matrix, B is the p × q−matrix, C is the q × q−matrix, and the matrix P̂ consists of the
p× 1−matrix U of the unknown control points and the q × 1−matrix K of the known control points. By using the
some algebraic calculus, we obtain that

1

4
Ejerk(γ) = UTAU + 2KTBTU +KTCK. (4.6)

When the gradient of the jerk energy functional (4.6) is zero, i.e.,

AU +BK = 0,

then the jerk energy is minimal. Thus, there is only one solution of the linear equation system depending on U , if A
is an invertible matrix. If A is not an invertible matrix, then there are infinite solutions of this linear equation system.
So, we have the unknown control points of a Bézier curve with degree n which has a minimal jerk energy.

For instance, if P0, P4, P5 are the known control points and P1, P2, P3 are the unknown control points of a Bézier
curve with degree 5, we may obtain unknown control points by using the above construction so that the Bézier
curve has a minimal jerk energy. Since

M =


6 −15 0 0 0 −1
−15 40 −30 0 5 0
0 −30 30 −10 0 0
0 0 −10 30 30 10
0 5 0 30 40 −15
−1 0 0 10 −15 6


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and

J =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1


for the Bézier curve with degree 5, we get

M̂ =


40 −30 0 −15 5 0
−30 30 −10 0 0 0
0 −10 30 0 30 10
−15 0 0 6 0 −1
5 0 30 0 40 −15
0 0 10 −1 −15 6

 .

So,

A =

 40 −30 0
−30 30 −10
0 −10 30

 , B =

 −15 5 0
0 0 0
0 30 10

 ,

from which we obtain the unknown control points as

P1 =
96P0 − 40P4 + 24P5

40
, P2 =

−27P0 + 33P4 + 8P5

10
and P3 =

−9P0 + 21P4 + 6P5

10
.

Example 4.3. If the known control points of a Bézier curve are P0 = (−1, 2), P4 = (8, 2) and P5 = (11, 17), then the
unknowns control point of the Bézier curve with a minimal jerk energy can be given

P1 =

(
−19

5
, 13

)
, P2 =

(
379

10
,
74

5

)
and P3 =

(
243

10
,
63

5

)
.

Figure 5. The Bézier curve with a minimal jerk energy corresponding to Example 4.3.
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