T_{1} Extended Pseudo-Quasi-Semi Metric Spaces

Tesnim Meryem Baran* and Muammer Kula

(Communicated by Ishak ALTUN)

Abstract

In this paper, we characterize a T_{1} extended pseudo-quasi-semi metric space at p and a T_{1} extended pseudo-quasi-semi metric space and investigate the relationships between them. Finally, we compare each of T_{1} extended pseudo-quasi-semi metric spaces with the usual T_{1}.

Keywords: Topological category, T_{1} objects, discrete objects, pseudo-quasi-quasi-semi metric spaces.
AMS Subject Classification (2010): Primary: 54B30 ; Secondary: 54D10; 54A05; 54A20; 18B99; 18D15.
*Corresponding author

1. Introduction

When the classical conditions on a metric d on a set X are relaxed by omitting the requirement that $d(x, y)=0$ implies $x=y$, then d is called a pseudo-metric which is given in [7]. It is well-known that the category of metric spaces and non-expansive maps does not behave well with respect to the formation of infinite products and coproducts. In 1990, J. Adámek and J. Reiterman [2] defined extended pseudo-metric spaces (where an pseudo-metric is allowed to attain the value infinity) in order to solve this problem. In 1931, Wilson [15] introduced quasi-metric spaces (where the condition of symmetry is omitted) which are common in real life.
In 1991, Baran [3] introduced local T_{1} separation property in set-based topological categories and then, it is generalized to point free definition of T_{1} by using the generic element method of topos theory ([9], [12]). One of the uses of local T_{1} separation property is to define the notion of closed subobject of an object of a topological category which is used in the notions of completely regular [5], regular and normal objects in [6]. One of the other uses of T_{1} objects is to define completely regular [5], regular and normal objects in [6] in arbitrary topological categories.
In this paper, we characterize a T_{1} extended pseudo-quasi-semi metric space at p and a T_{1} extended pseudo-quasi-semi metric space and investigate the relationships between them. Finally, we compare each of T_{1} extended pseudo-quasi-semi metric spaces with the usual T_{1}.

2. Preliminaries

Recall, [8], [1] or [14] that a functor $U: \mathcal{E} \rightarrow \mathcal{B}$ is said to be topological or that \mathcal{E} is a topological category over \mathcal{B} if U is concrete (i.e., faithful and amnestic (i.e., if $U(f)=i d$ and f is an isomorphism, then $f=i d$)), has small (i.e., sets) fibers, and for which every U-source has an initial lift or, equivalently, for which each U-sink has a final lift. Note also that U has a right adjoint called the indiscrete functor. Recall, in [1] or [14], that an object $X \in \mathcal{E}$ is indiscrete if and only if every map $U(Y) \rightarrow U(X)$ lifts to a map $Y \rightarrow X$ for each object $Y \in \mathcal{E}$ and an object $X \in \mathcal{E}$ is discrete if and only if every map $U(X) \rightarrow U(Y)$ lifts to map $X \rightarrow Y$ for each object $Y \in \mathcal{E}$.

An extended pseudo-quasi-semi metric space is a pair (X, d), where X is a set $d: X \times X \rightarrow[0, \infty]$ is a function fulfills the following condition $d(x, x)=0$ for all $x \in X$ [10], [11] or [13] .

A map $f:(X, d) \rightarrow(Y, e)$ between extended pseudo-quasi-semi metric spaces is said to be a non-expansive if it fulfills the property $e(f(x), f(y)) \leq d(x, y)$ for all $x, y \in X$.
The construct of extended pseudo-quasi-semi metric spaces and non-expansive maps is denoted by pqsMet. Note that pqsMet is a topological category [10], [11] or [13].
2.1 A source $\left\{f_{i}:(X, d) \rightarrow\left(X_{i}, d_{i}\right), i \in I\right\}$ in pqsMet is an initial lift if and only if $d=\sup _{i \in I}\left(d_{i} \circ\left(f_{i} \times f_{i}\right)\right)$, i.e., for all $x, y \in X$,

$$
d(x, y)=\sup _{i \in I}\left(d_{i}\left(f_{i}(x), f_{i}(y)\right)\right)
$$

[10] or [13].
2.2 The discrete extended pseudo-quasi-semi metric structure $d_{d i s}$ on X is given by for all $a, b \in X$

$$
d_{d i s}(a, b)= \begin{cases}0 & \text { if } a=b \\ \infty & \text { if } a \neq b\end{cases}
$$

[10].

3. T_{1} Extended Pseudo-Quasi-Semi Metric Spaces

Let B be a set and $p \in B$. Let $B \vee_{p} B$ be the wedge at p [3], i.e., two disjoint copies of B identified at p . A point $x \in B \vee_{p} B$ will be denoted by $x_{1}\left(x_{2}\right)$ if x is in the first (resp. the second) component of $B \vee_{p} B$. Note that $p_{1}=p_{2}$. The Skewed p-axis map $S_{p}: B \vee_{p} B \rightarrow B^{2}$ is given by $S_{p}\left(x_{1}\right)=(x, x)$ and $S_{p}\left(x_{2}\right)=(p, x)$. The fold map at p, $\nabla_{p}: B \vee_{p} B \rightarrow B$ is given by $\nabla_{p}\left(x_{i}\right)=x$ for $i=1,2$ [3].
Let $M=\Delta \subset B^{2}$ be the diagonal and $B^{2} \bigvee_{\Delta} B^{2}$, the wedge at Δ, i.e., two distinct copies of B^{2} identified along the diagonal, i.e., the result of pushing out Δ along itself [3]. A point (x, y) in $B^{2} \vee_{\Delta} B^{2}$ will be denoted by $(x, y)_{1}$ $\left((x, y)_{2}\right)$ if (x, y) is in the first (resp. second) component of $B^{2} \vee_{\Delta} B^{2}$. Clearly $(x, y)_{1}=(x, y)_{2}$ if and only if $x=y$ [3]. The skewed axis map $S: B^{2} \vee_{\Delta} B^{2} \rightarrow B^{3}$ is given by $S(x, y)_{1}=(x, y, y)$ and $S(x, y)_{2}=(x, x, y)$ and the fold map, $\nabla: B^{2} \vee_{\Delta} B^{2} \rightarrow B^{2}$ is given by $\nabla(x, y)_{i}=(x, y)$ for $i=1,2$ [3].

Definition 3.1. Let (X, τ) be a topological space and $p \in X$. If for each point x distinct from p, there exists a neighborhood of p missing x and there exists a neighborhood of $x \operatorname{missing} p$, then (X, τ) is called T_{1} at p [3], [4].

Theorem 3.1. (1) A topological space (X, τ) is called T_{1} at p if and only if the initial topology induced from $S_{p}: X \vee_{p} X \rightarrow$ $\left(X^{2}, \tau_{*}\right)$ and $\nabla_{p}: X \vee_{p} X \rightarrow(X, P(X))$ is discrete, where , τ_{*} and $P(X)$ is the product topology on X^{2} and the discrete topology on X, respectively [4].
(2) A topological space $[X, \tau)$ is called T_{1} if and only if the initial topology induced from $S: X^{2} \vee_{\Delta} X^{2} \rightarrow\left(X^{3}, \tau_{*}\right)$ and $\nabla: X^{2} \vee_{\Delta} X^{2} \rightarrow\left(X^{2}, P\left(X^{2}\right)\right)$ is discrete, where,τ_{*} and $P\left(X^{2}\right)$ is the product topology on X^{3} and the discrete topology on X^{2}, respectively [4].

Definition 3.2. (cf. [3]) Let $U: \mathcal{E} \rightarrow$ SET be topological, X an object in \mathcal{E} and $p \in U(X)=B$.
(1) X is called T_{1} at p if the initial lift of the U-source $\left\{S_{p}: B \vee_{p} B \rightarrow U(X)=B\right.$ and $\left.\nabla_{p}: B \vee_{p} B \rightarrow U(D(B))=B\right\}$ is discrete, where D is the discrete functor which is a left adjoint to U.
(2) X is called T_{1} if the initial lift of the U-source $\left\{S: B^{2} \vee_{\Delta} B^{2} \rightarrow U\left(X^{3}\right)=B^{3}\right.$ and $\left.\nabla: B^{2} \vee_{\Delta} B^{2} \rightarrow U\left(D\left(B^{2}\right)\right)=B^{2}\right\}$ is discrete.

Theorem 3.2. An extended pseudo-quasi-semi metric space (X, d) is T_{1} at p if and only if for all $x \in X$ with $x \neq p$, $d(x, p)=\infty=d(p, x)$.

Proof. Suppose that (X, d) is T_{1} at p and for $x \in X$ with $x \neq p$. Let $\pi_{i}: X^{2} \rightarrow X, i=1,2$ be the projection maps and $d_{d i s}$ be the discrete extended pseudo-quasi-semi metric structure on X. Since (X, d) is T_{1} at p and $x_{1} \neq x_{2}$, by 2.1, 2.2, and Definition 3.2,

$$
d_{d i s}\left(\nabla_{p}\left(x_{1}\right), \nabla_{p}\left(x_{2}\right)\right)=d_{d i s}(x, x)=0
$$

$$
\begin{aligned}
& \quad d\left(\pi_{1} S_{p}\left(x_{1}\right), \pi_{1} S_{p}\left(x_{2}\right)\right)=d(x, p) \\
& d\left(\pi_{2} S_{p}\left(x_{1}\right), \pi_{2} S_{p}\left(x_{2}\right)\right)=d(x, x)=0 \\
& \infty=\sup \left\{d_{d i s}\left(\nabla_{p}\left(x_{1}\right), \nabla_{p}\left(x_{2}\right)\right), d\left(\pi_{1} S_{p}\left(x_{1}\right), \pi_{1} S_{p}\left(x_{2}\right)\right), d\left(\pi_{2} S_{p}\left(x_{1}\right), \pi_{2} S_{p}\left(x_{2}\right)\right)\right\} \\
& =\sup \{d(x, p), 0\} \\
& =d(x, p)
\end{aligned}
$$

and consequently, $d(x, p)=\infty$. Similarly,

$$
\begin{gathered}
\quad d_{d i s}\left(\nabla_{p}\left(x_{2}\right), \nabla_{p}\left(x_{1}\right)\right)=0 \\
d\left(\pi_{1} S_{p}\left(x_{2}\right), \pi_{1} S_{p}\left(x_{1}\right)\right)=d(p, x) \\
d\left(\pi_{2} S_{p}\left(x_{2}\right), \pi_{2} S_{p}\left(x_{1}\right)\right)=d(x, x)=0 \\
\infty=\sup \left\{d_{d i s}\left(\nabla_{p}\left(x_{1}\right), \nabla_{p}\left(x_{2}\right)\right), d\left(\pi_{1} S_{p}\left(x_{1}\right), \pi_{1} S_{p}\left(x_{2}\right)\right), d\left(\pi_{2} S_{p}\left(x_{1}\right), \pi_{2} S_{p}\left(x_{2}\right)\right)\right\} \\
=\sup \{d(p, x), 0\} \\
=d(p, x)
\end{gathered}
$$

and thus, $d(p, x)=\infty$.
Conversely, suppose that for $x \in X$ with $x \neq p, d(x, p)=\infty=d(p, x)=\infty$. We need to show that (X, d) is T_{1} at p. Let \bar{d} be the extended pseudo-quasi-semi metric structure on $X \vee_{p} X$ induced by $S_{p}: X \vee_{p} X \rightarrow\left(X^{2}, d^{2}\right)$ and $\nabla_{p}: X \vee_{p} X \rightarrow\left(X, d_{d i s}\right)$, where d^{2} and $d_{d i s}$ are the product extended pseudo-quasi-semi metric structure on X^{2} and the discrete extended pseudo-quasi-semi metric structure on X, respectively.
Let u and v be any points in $X \vee_{p} X$. If $u=v$, then $\bar{d}(u, v)=0$.
Suppose that $u \neq v$. If $\nabla_{p}(u) \neq \nabla_{p}(v)$, then, by 2.2, $d_{d i s}\left(\nabla_{p}(u), \nabla_{p}(v)\right)=\infty$, and consequently, by 2.1,

$$
\bar{d}(u, v)=\sup \left\{d_{d i s}\left(\nabla_{p}(u), \nabla_{p}(v)\right)=\infty, d\left(\pi_{1} S_{p}(u), \pi_{1} S_{p}(v)\right), d\left(\pi_{2} S_{p}(u), \pi_{2} S_{p}(v)\right)\right\}=\infty
$$

Suppose that $u \neq v$ and $\nabla_{p}(u)=x=\nabla_{p}(v)$ for some $x \in X$ with $x \neq p$. It follows that $u=x_{1}$ and $v=x_{2}$ or $u=x_{2}$ and $v=x_{1}$. If $u=x_{1}$ and $v=x_{2}$, then, by 2.1,

$$
\begin{gathered}
d\left(\pi_{1} S_{p}(u), \pi_{1} S_{p}(v)\right)=d(x, p), \\
d\left(\pi_{2} S_{p}(u), \pi_{2} S_{p}(v)\right)=d(x, x)=0 \\
d_{d i s}\left(\nabla_{p}(u), \nabla_{p}(v)\right)=d_{d i s}(x, x)=0 \\
\bar{d}(u, v)=\sup \left\{d\left(\pi_{1} S_{p}(u), \pi_{1} S_{p}(v)\right), d\left(\pi_{2} S_{p}(u), \pi_{2} S_{p}(v)\right), d_{d i s}\left(\nabla_{p}(u), \nabla_{p}(v)\right)\right\} \\
=\sup \{0, d(x, p)\}=d(x, p)=\infty
\end{gathered}
$$

by the assumption.
If $u=x_{2}$ and $v=x_{1}$, then, by 2.1,

$$
\begin{gathered}
d\left(\pi_{1} S_{p}(u), \pi_{1} S_{p}(v)\right)=d(p, x), \\
d\left(\pi_{2} S_{p}(u), \pi_{2} S_{p}(v)\right)=d(x, x)=0 \\
d_{d i s}\left(\nabla_{p}(u), \nabla_{p}(v)\right)=d_{d i s}(x, x)=0 \\
\bar{d}(u, v)=\sup \left\{d\left(\pi_{1} S_{p}(u), \pi_{1} S_{p}(v)\right), d\left(\pi_{2} S_{p}(u), \pi_{2} S_{p}(v)\right), d_{d i s}\left(\nabla_{p}(u), \nabla_{p}(v)\right)\right\} \\
=\sup \{d(p, x), 0\}=d(p, x)=\infty
\end{gathered}
$$

since $x \neq p$ and $d(p, x)=\infty$.
Hence, for any points u and v in $X \vee_{p} X$

$$
\bar{d}(u, v)= \begin{cases}0 & \text { if } u=v \\ \infty & \text { if } u \neq v\end{cases}
$$

and consequently, by 2.1, 2.2, and Definition $3.2,(X, d)$ is T_{1} at p.

Theorem 3.3. An extended pseudo-quasi-semi metric space (X, d) is T_{1} if and only if (X, d) is a discrete extended pseudo-quasi-semi metric space.
Proof. Suppose that (X, d) is T_{1} and for every distinct pair x and y in $X, u=(x, y)_{1}, v=(x, y)_{2}$. Note that $u=(x, y)_{1}$ and $v=(x, y)_{2}$ are points in the wedge $X^{2} \vee_{\Delta} X^{2}$ and

$$
\begin{gathered}
d\left(\pi_{1} S(u), \pi_{1} S(v)\right)=d(x, x)=0=d_{d i s}((x, y),(x, y))=d_{d i s}(\nabla(u), \nabla(v)) \\
d\left(\pi_{2} S(u), \pi_{2} S(v)\right)=d(y, x), d\left(\pi_{3} S(u), \pi_{3} S(v)\right)=d(y, y)=0
\end{gathered}
$$

Since (X, d) is T_{1} and $u \neq v$, by 2.1, 2.2, and Definition 3.2,

$$
\infty=\bar{d}(u, v)=\sup \left\{d_{d i s}(\nabla(u), \nabla(v)), d\left(\pi_{i} S(u), \pi_{i} S(v)\right), i=1,2,3\right\}=d(y, x)
$$

If $u=(x, y)_{2}, v=(x, y)_{1}$, then

$$
\begin{gathered}
d\left(\pi_{1} S(u), \pi_{1} S(v)\right)=d(x, x)=0=d_{d i s}((x, y),(x, y))=d_{d i s}(\nabla(u), \nabla(v)) \\
d\left(\pi_{2} S(u), \pi_{2} S(v)\right)=d(x, y), d\left(\pi_{3} S(u), \pi_{3} S(v)\right)=d(y, y)=0
\end{gathered}
$$

Since (X, d) is T_{1} and $u \neq v$, by 2.1, 2.2, and Definition 3.2,

$$
\infty=\bar{d}(u, v)=\sup \left\{d_{d i s}(\nabla(u), \nabla(v)), d\left(\pi_{i} S(u), \pi_{i} S(v)\right), i=1,2,3\right\}=d(x, y)
$$

Thus, for every distinct pair x and y in X, we have $d(x, y)=\infty=d(y, x)$ and by $2.2,(X, d)$ is a discrete extended pseudo-quasi-semi metric space.
Conversely, suppose that (X, d) is a discrete extended pseudo-quasi-semi metric space. Let \bar{d} be the initial extended pseudo-quasi-semi metric structure on $X^{2} \vee_{\Delta} X^{2}$ induced by $S: X^{2} \vee_{\Delta} X^{2} \rightarrow U\left(\left(X^{3}, d^{3}\right)\right)=X^{3}$ and ∇ : $X^{2} \vee_{\Delta} X^{2} \longrightarrow U\left(\left(X^{2}, d_{d i s}\right)\right)=X^{2}$, where d^{3} and $d_{d i s}$ are the product extended pseudo-quasi-semi metric structure on X^{3} and the discrete extended pseudo-quasi-semi metric structure on X^{2}, respectively. We need to show that (X, d) is T_{1}, i.e., by $2.1,2.2$, and Definition 3.2 , we must show that the extended pseudo-quasi-semi metric structure \bar{d} is discrete.
Let u and v be any points in the wedge $X^{2} \vee_{\Delta} X^{2}$. If $u=v$, then $\bar{d}(u, v)=0$. Suppose that $u \neq v$. If $\nabla(u) \neq \nabla(v)$, then, by 2.2, $d_{d i s}(\nabla(u), \nabla(v))=\infty$, and consequently, $\bar{d}(u, v)=\infty$. Suppose that $u \neq v$ and $\nabla(u)=(x, y)=\nabla(v)$ for some $(x, y) \in X^{2}$ with $x \neq y$. Since $u \neq v$, we must have $u=(x, y)_{1}, v=(x, y)_{2}$ or $u=(x, y)_{2}, v=(x, y)_{1}$. If $u=(x, y)_{1}$ and $v=(x, y)_{2}$, then, by 2.1,

$$
\begin{gathered}
d\left(\pi_{1} S(u), \pi_{1} S(v)\right)=d(x, x)=0=d_{d i s}(\nabla(u), \nabla(v)) \\
d\left(\pi_{2} S(u), \pi_{2} S(v)\right)=d(y, x) \\
d\left(\pi_{3} S(u), \pi_{3} S(v)\right)=d(y, y)=0 \\
\bar{d}(u, v)=\sup \left\{d\left(\pi_{1} S(u), \pi_{1} S(v)\right), d\left(\pi_{2} S(u), \pi_{2} S(v)\right), d\left(\pi_{3} S(u), \pi_{3} S(v)\right)\right\}=d(y, x)=\infty
\end{gathered}
$$

since $x \neq y$ and d is discrete.
If $u=(x, y)_{2}, v=(x, y)_{1}$, then then, by 2.1,

$$
\begin{gathered}
d\left(\pi_{1} S(u), \pi_{1} S(v)\right)=d(x, x)=0=d_{d i s}(\nabla(u), \nabla(v)) \\
d\left(\pi_{2} S(u), \pi_{2} S(v)\right)=d(x, y) \\
d\left(\pi_{3} S(u), \pi_{3} S(v)\right)=d(y, y)=0 \\
\bar{d}(u, v)=\sup \left\{d\left(\pi_{1} S(u), \pi_{1} S(v)\right), d\left(\pi_{2} S(u), \pi_{2} S(v)\right), d\left(\pi_{3} S(u), \pi_{3} S(v)\right)\right\}=d(x, y)=\infty
\end{gathered}
$$

since $x \neq y$ and d is discrete.
Hence, for any points u and v in $X^{2} \vee_{\Delta} X^{2}$

$$
\bar{d}(u, v)= \begin{cases}0 & \text { if } u=v \\ \infty & \text { if } u \neq v\end{cases}
$$

and consequently, by 2.1, 2.2 and Definition $3.2,(X, d)$ is T_{1}.

Note that every extended pseudo-quasi-semi metric space (X, d) defines a topology denoted by τ_{d} as in the usual metric space case. Let $x \in X$ and $r>0$. The set $S(x, r)=\{y \in X: d(x, y)<r\}$ is called a ball in X. Recall that (X, d) is T_{1} if and only if the topological space $\left(X, \tau_{d}\right)$ is \mathbf{T}_{1} (we will refer to it as the usual one).

Theorem 3.4. An extended pseudo-quasisemi metric space (X, d) is \mathbf{T}_{1} if and only iffor each pair of distinct points x and y in $X, d(x, y)>0$.

Proof. If $d(x, y)>0$ for all $x \neq y$, then y does not belong to the ball $S(x, d(x, y))$. Since also $d(y, x)>0$, we get x does not belong to the ball $S(y, d(y, x))$. Hence, a topological space $\left(X, \tau_{d}\right)$ is T_{1}.

If a topological space $\left(X, \tau_{d}\right)$ is \mathbf{T}_{1}, then it follows easily that $d(x, y)>0$ for all $x \neq y$ in X.

Remark 3.1. (1) Let (X, τ) be a topological space and $p \in X$. By Theorem 3.1, a topological space (X, τ) is T_{1} at p if and only if (X, τ) is T_{1}.
(2) Let (X, d) be an extended pseudo-quasi-semi metric space.
(i) By Theorem 3.3 and Theorem $3.4,(X, d)$ is T_{1} (in our sense) implies (X, d) is \mathbf{T}_{1} (in the usual sense) but the reverse of implication is not true. Let $X=\{x, y\}$ with $x \neq y$ and $d(x, y)=1, d(y, x)=3, d(x, x)=0=d(y, y)$. Then, by Theorem 3.3 and Theorem 3.4, (X, d) is \mathbf{T}_{1} (in the usual sense) but (X, d) is not T_{1} (in our sense).

4. Conclusions

In this paper, we gave characterization of each of local T_{1} extended pseudo-quasi-semi metric space, T_{1} extended pseudo-quasi-semi metric space, and the usual \mathbf{T}_{1} extended pseudo-quasi-semi metric space. Moreover, by Theorem 3.3, 3.4, and Remark 3.1, T_{1} extended pseudo-quasi-semi metric space implies \mathbf{T}_{1} extended pseudo-quasi-semi metric space but the converse implication is not true, in general.

Acknowledgment

This research was supported by the Scientific and Technological Research Council of Turkey (TÜBITAK) under Grant No: 114F299 and by the Erciyes University Research Center (BAP) under Grant No:7175.

References

[1] Adámek, J., Herrlich, H., Strecker, G. E., Abstract and Concrete Categories, Wiley, New York, (1990).
[2] Adámek, J., Reiterman, J., Cartesian Closed Hull for Metric Spaces. Comment. Math. Univ. Carolinae. 31 (1990), 1-6.
[3] Baran, M., Separation Properties, Indian J. Pure Appl. Math. 23 (5) (1991), 333-341.
[4] Baran, M., Separation Properties in Topological Categories, Math. Balkanica. 10 (1996), 39-48.
[5] Baran, M., Completely Regular Objects and Normal Objects in Topological Categories, Acta Math. Hungar. 80 (1998), 211-224.
[6] Baran, M., T_{3} and T_{4}-Objects in Topological Categories, Indian J.Pure Appl. Math. 29 (1998), 59-69.
[7] Fréchet, M.,Sur quelques points du calcul fonctionnel, Rend. Palermo. 22 (1906), 1-74.
[8] Herrlich, H., Topological Functors, Gen. Topology Appl. 4 (1974), 125-142.
[9] Johnstone, P. T., Topos Theory, L.M.S Mathematics Monograph: No. 10. Academic, New York, (1977).
[10] Lowen, R., Approach Spaces: The Missing Link in the Topology-Uniformity-Metric Triad, Oxford Mathematical Monographs, Oxford University Press., (1997).
[11] Lowen, R., Approach Spaces: a Common Supercategory of TOP and MET, Math. Nachr. 141 (1989), 183-226.
[12] MacLane, S., Moerdijk, I., Sheaves in Geometry and Logic. Springer, New York, (1992).
[13] Nauwelaerts, M., Cartesian Closed Hull for (Quasi-) Metric Spaces, Comment. Math. Univ. Carolinae. 41 (2000), 559-573.
[14] Preuss, G., Theory of Topological Structures, An Approach to topological Categories, D. Reidel Publ. Co., Dordrecht, (1988).
[15] Wilson, W. A., On Quasi-Metric Spaces, Amer.J. Math. 53 (1931), 675-684.

Affiliations

Tesnim Meryem Baran
Address: Department of Mathematics, Faculty of Sciences, Erciyes University, Kayseri, Turkey.
E-MAIL: mor.takunya@gmail.com

MUAMMER KULA
Address: Department of Mathematics, Faculty of Sciences, Erciyes University, Kayseri, Turkey
E-MAIL: kulam@erciyes.edu.tr

