*T*¹ Extended Pseudo-Quasi-Semi Metric Spaces

Tesnim Meryem Baran* and Muammer Kula

(Communicated by Ishak ALTUN)

Abstract

In this paper, we characterize a T_1 extended pseudo-quasi-semi metric space at p and a T_1 extended pseudo-quasi-semi metric space and investigate the relationships between them. Finally, we compare each of T_1 extended pseudo-quasi-semi metric spaces with the usual T_1 .

Keywords: Topological category, T₁ objects, discrete objects, pseudo-quasi-quasi-semi metric spaces.

AMS Subject Classification (2010): Primary: 54B30 ; Secondary: 54D10; 54A05; 54A20; 18B99; 18D15.

*Corresponding author

1. Introduction

When the classical conditions on a metric d on a set X are relaxed by omitting the requirement that d(x, y) = 0implies x = y, then d is called a pseudo-metric which is given in [7]. It is well-known that the category of metric spaces and non-expansive maps does not behave well with respect to the formation of infinite products and coproducts. In 1990, J. Adámek and J. Reiterman [2] defined extended pseudo-metric spaces (where an pseudo-metric is allowed to attain the value infinity) in order to solve this problem. In 1931, Wilson [15] introduced quasi-metric spaces (where the condition of symmetry is omitted) which are common in real life.

In 1991, Baran [3] introduced local T_1 separation property in set-based topological categories and then, it is generalized to point free definition of T_1 by using the generic element method of topos theory ([9], [12]). One of the uses of local T_1 separation property is to define the notion of closed subobject of an object of a topological category which is used in the notions of completely regular [5], regular and normal objects in [6]. One of the other uses of T_1 objects is to define completely regular [5], regular and normal objects in [6] in arbitrary topological categories.

In this paper, we characterize a T_1 extended pseudo-quasi-semi metric space at p and a T_1 extended pseudoquasi-semi metric space and investigate the relationships between them. Finally, we compare each of T_1 extended pseudo-quasi-semi metric spaces with the usual T_1 .

2. Preliminaries

Recall, [8], [1] or [14] that a functor $U : \mathcal{E} \to \mathcal{B}$ is said to be topological or that \mathcal{E} is a topological category over \mathcal{B} if U is concrete (i.e., faithful and amnestic (i.e., if U(f) = id and f is an isomorphism, then f = id)), has small (i.e., sets) fibers, and for which every U-source has an initial lift or, equivalently, for which each U-sink has a final lift. Note also that U has a right adjoint called the indiscrete functor. Recall, in [1] or [14], that an object $X \in \mathcal{E}$ is indiscrete if and only if every map $U(Y) \to U(X)$ lifts to a map $Y \to X$ for each object $Y \in \mathcal{E}$ and an object $X \in \mathcal{E}$ is discrete if and only if every map $U(X) \to U(Y)$ lifts to map $X \to Y$ for each object $Y \in \mathcal{E}$.

An extended pseudo-quasi-semi metric space is a pair (X, d), where X is a set $d : X \times X \to [0, \infty]$ is a function fulfills the following condition d(x, x) = 0 for all $x \in X$ [10], [11] or [13].

A map $f : (X, d) \to (Y, e)$ between extended pseudo-quasi-semi metric spaces is said to be a non-expansive if it fulfills the property $e(f(x), f(y)) \le d(x, y)$ for all $x, y \in X$. The construct of extended pseudo-quasi-semi metric spaces and non-expansive maps is denoted by pqsMet. Note

that **pqsMet** is a topological category [10], [11] or [13].

2.1 A source $\{f_i : (X, d) \to (X_i, d_i), i \in I\}$ in **pqsMet** is an initial lift if and only if $d = \sup_{i \in I} (d_i \circ (f_i \times f_i))$, i.e., for all $x, y \in X$,

$$d(x,y) = \sup_{i \in I} (d_i(f_i(x), f_i(y)))$$

[10] or [13].

2.2 The discrete extended pseudo-quasi-semi metric structure d_{dis} on X is given by for all $a, b \in X$

$$d_{dis}(a,b) = \begin{cases} 0 & \text{if } a = b \\ \infty & \text{if } a \neq b \end{cases}$$

[10].

3. *T*₁ Extended Pseudo-Quasi-Semi Metric Spaces

Let *B* be a set and $p \in B$. Let $B \vee_p B$ be the wedge at p [3], i.e., two disjoint copies of B identified at p. A point $x \in B \vee_p B$ will be denoted by $x_1(x_2)$ if x is in the first (resp. the second) component of $B \vee_p B$. Note that $p_1 = p_2$. . The Skewed p-axis map $S_p : B \vee_p B \to B^2$ is given by $S_p(x_1) = (x, x)$ and $S_p(x_2) = (p, x)$. The fold map at p, $\nabla_p : B \vee_p B \to B$ is given by $\nabla_p(x_i) = x$ for i = 1, 2 [3].

Let $M = \Delta \subset B^2$ be the diagonal and $B^2 \bigvee_{\Delta} B^2$, the wedge at Δ , i.e., two distinct copies of B^2 identified along the diagonal, i.e., the result of pushing out Δ along itself [3]. A point (x, y) in $B^2 \lor_{\Delta} B^2$ will be denoted by $(x, y)_1$ $((x, y)_2)$ if (x, y) is in the first (resp. second) component of $B^2 \lor_{\Delta} B^2$. Clearly $(x, y)_1 = (x, y)_2$ if and only if x = y [3]. The skewed axis map $S : B^2 \lor_{\Delta} B^2 \to B^3$ is given by $S(x, y)_1 = (x, y, y)$ and $S(x, y)_2 = (x, x, y)$ and the fold map, $\nabla : B^2 \lor_{\Delta} B^2 \to B^2$ is given by $\nabla(x, y)_i = (x, y)$ for i = 1, 2 [3].

Definition 3.1. Let (X, τ) be a topological space and $p \in X$. If for each point x distinct from p, there exists a neighborhood of p missing x and there exists a neighborhood of x missing p, then (X, τ) is called T_1 at p [3], [4].

Theorem 3.1. (1) A topological space (X, τ) is called T_1 at p if and only if the initial topology induced from $S_p : X \vee_p X \to (X^2, \tau_*)$ and $\nabla_p : X \vee_p X \to (X, P(X))$ is discrete, where τ_* and P(X) is the product topology on X^2 and the discrete topology on X, respectively [4].

(2) A topological space $[X, \tau)$ is called T_1 if and only if the initial topology induced from $S : X^2 \vee_{\Delta} X^2 \to (X^3, \tau_*)$ and $\nabla : X^2 \vee_{\Delta} X^2 \to (X^2, P(X^2))$ is discrete, where τ_* and $P(X^2)$ is the product topology on X^3 and the discrete topology on X^2 , respectively [4].

Definition 3.2. (cf. [3]) Let $U : \mathcal{E} \to SET$ be topological, X an object in \mathcal{E} and $p \in U(X) = B$. (1) X is called T_1 at p if the initial lift of the U-source $\{S_p : B \lor_p B \to U(X) = B \text{ and } \nabla_p : B \lor_p B \to U(D(B)) = B\}$ is discrete, where D is the discrete functor which is a left adjoint to U. (2) X is called T_1 if the initial lift of the U-source $\{S : B^2 \lor_\Delta B^2 \to U(X^3) = B^3 \text{ and } \nabla : B^2 \lor_\Delta B^2 \to U(D(B^2)) = B^2\}$ is discrete.

Theorem 3.2. An extended pseudo-quasi-semi metric space (X, d) is T_1 at p if and only if for all $x \in X$ with $x \neq p$, $d(x, p) = \infty = d(p, x)$.

Proof. Suppose that (X, d) is T_1 at p and for $x \in X$ with $x \neq p$. Let $\pi_i : X^2 \to X$, i = 1, 2 be the projection maps and d_{dis} be the discrete extended pseudo-quasi-semi metric structure on X. Since (X, d) is T_1 at p and $x_1 \neq x_2$, by 2.1, 2.2, and Definition 3.2,

$$d_{dis}(\nabla_p(x_1), \nabla_p(x_2)) = d_{dis}(x, x) = 0,$$

$$d(\pi_1 S_p(x_1), \pi_1 S_p(x_2)) = d(x, p),$$

$$d(\pi_2 S_p(x_1), \pi_2 S_p(x_2)) = d(x, x) = 0$$

$$\infty = \sup\{d_{dis}(\nabla_p(x_1), \nabla_p(x_2)), d(\pi_1 S_p(x_1), \pi_1 S_p(x_2)), d(\pi_2 S_p(x_1), \pi_2 S_p(x_2))\}$$

= $\sup\{d(x, p), 0\}$
= $d(x, p)$

and consequently, $d(x, p) = \infty$. Similarly,

and thus, $d(p, x) = \infty$.

Conversely, suppose that for $x \in X$ with $x \neq p$, $d(x,p) = \infty = d(p,x) = \infty$. We need to show that (X,d) is T_1 at p. Let \overline{d} be the extended pseudo-quasi-semi metric structure on $X \lor_p X$ induced by $S_p : X \lor_p X \to (X^2, d^2)$ and $\nabla_p : X \lor_p X \to (X, d_{dis})$, where d^2 and d_{dis} are the product extended pseudo-quasi-semi metric structure on X^2 and the discrete extended pseudo-quasi-semi metric structure on X, respectively.

Let *u* and *v* be any points in $X \vee_p X$. If u = v, then $\overline{d}(u, v) = 0$.

Suppose that $u \neq v$. If $\nabla_p(u) \neq \nabla_p(v)$, then, by 2.2, $d_{dis}(\nabla_p(u), \nabla_p(v)) = \infty$, and consequently, by 2.1,

$$\bar{d}(u,v) = \sup\{d_{dis}(\nabla_p(u), \nabla_p(v)) = \infty, d(\pi_1 S_p(u), \pi_1 S_p(v)), d(\pi_2 S_p(u), \pi_2 S_p(v))\} = \infty.$$

Suppose that $u \neq v$ and $\nabla_p(u) = x = \nabla_p(v)$ for some $x \in X$ with $x \neq p$. It follows that $u = x_1$ and $v = x_2$ or $u = x_2$ and $v = x_1$. If $u = x_1$ and $v = x_2$, then, by 2.1,

$$\begin{aligned} d(\pi_1 S_p(u), \pi_1 S_p(v)) &= d(x, p), \\ d(\pi_2 S_p(u), \pi_2 S_p(v)) &= d(x, x) = 0, \\ d_{dis}(\nabla_p(u), \nabla_p(v)) &= d_{dis}(x, x) = 0 \end{aligned}$$

$$\bar{d}(u, v) = \sup\{d(\pi_1 S_p(u), \pi_1 S_p(v)), d(\pi_2 S_p(u), \pi_2 S_p(v)), d_{dis}(\nabla_p(u), \nabla_p(v))\} \\ &= \sup\{0, d(x, p)\} = d(x, p) = \infty \end{aligned}$$

by the assumption.

If $u = x_2$ and $v = x_1$, then, by 2.1,

$$\begin{split} &d(\pi_1 S_p(u), \pi_1 S_p(v)) = d(p, x), \\ &d(\pi_2 S_p(u), \pi_2 S_p(v)) = d(x, x) = 0, \\ &d_{dis}(\nabla_p(u), \nabla_p(v)) = d_{dis}(x, x) = 0 \end{split}$$

$$\bar{d}(u,v) = \sup\{d(\pi_1 S_p(u), \pi_1 S_p(v)), d(\pi_2 S_p(u), \pi_2 S_p(v)), d_{dis}(\nabla_p(u), \nabla_p(v))\}$$

= sup{d(p, x), 0} = d(p, x) = \infty

since $x \neq p$ and $d(p, x) = \infty$.

Hence, for any points u and v in $X \vee_p X$

$$\bar{d}(u,v) = \begin{cases} 0 & \text{if } u = v \\ \infty & \text{if } u \neq v \end{cases}$$

and consequently, by 2.1, 2.2, and Definition 3.2, (X, d) is T_1 at p.

Theorem 3.3. An extended pseudo-quasi-semi metric space (X, d) is T_1 if and only if (X, d) is a discrete extended pseudoquasi-semi metric space.

Proof. Suppose that (X,d) is T_1 and for every distinct pair x and y in X, $u = (x,y)_1$, $v = (x,y)_2$. Note that $u = (x,y)_1$ and $v = (x,y)_2$ are points in the wedge $X^2 \vee_{\Delta} X^2$ and

$$d(\pi_1 S(u), \pi_1 S(v)) = d(x, x) = 0 = d_{dis}((x, y), (x, y)) = d_{dis}(\bigtriangledown(u), \bigtriangledown(v)),$$

$$d(\pi_2 S(u), \pi_2 S(v)) = d(y, x), d(\pi_3 S(u), \pi_3 S(v)) = d(y, y) = 0.$$

Since (X, d) is T_1 and $u \neq v$, by 2.1, 2.2, and Definition 3.2,

$$\infty = \bar{d}(u, v) = \sup\{d_{dis}(\bigtriangledown(u), \bigtriangledown(v)), d(\pi_i S(u), \pi_i S(v)), i = 1, 2, 3\} = d(y, x).$$

If $u = (x, y)_2, v = (x, y)_1$, then

$$d(\pi_1 S(u), \pi_1 S(v)) = d(x, x) = 0 = d_{dis}((x, y), (x, y)) = d_{dis}(\bigtriangledown(u), \bigtriangledown(v)),$$

$$d(\pi_2 S(u), \pi_2 S(v)) = d(x, y), d(\pi_3 S(u), \pi_3 S(v)) = d(y, y) = 0.$$

Since (X, d) is T_1 and $u \neq v$, by 2.1, 2.2, and Definition 3.2,

$$\infty = \bar{d}(u, v) = \sup\{d_{dis}(\nabla(u), \nabla(v)), d(\pi_i S(u), \pi_i S(v)), i = 1, 2, 3\} = d(x, y).$$

Thus, for every distinct pair x and y in X, we have $d(x, y) = \infty = d(y, x)$ and by 2.2, (X, d) is a discrete extended pseudo-quasi-semi metric space.

Conversely, suppose that (X, d) is a discrete extended pseudo-quasi-semi metric space. Let \overline{d} be the initial extended pseudo-quasi-semi metric structure on $X^2 \vee_{\Delta} X^2$ induced by $S : X^2 \vee_{\Delta} X^2 \rightarrow U((X^3, d^3)) = X^3$ and $\nabla : X^2 \vee_{\Delta} X^2 \longrightarrow U((X^2, d_{dis})) = X^2$, where d^3 and d_{dis} are the product extended pseudo-quasi-semi metric structure on X^3 and the discrete extended pseudo-quasi-semi metric structure on X^2 , respectively. We need to show that (X, d) is T_1 , i.e., by 2.1, 2.2, and Definition 3.2, we must show that the extended pseudo-quasi-semi metric structure \overline{d} is discrete.

Let u and v be any points in the wedge $X^2 \vee_{\Delta} X^2$. If u = v, then $\overline{d}(u, v) = 0$. Suppose that $u \neq v$. If $\nabla(u) \neq \nabla(v)$, then, by 2.2, $d_{dis}(\nabla(u), \nabla(v)) = \infty$, and consequently, $\overline{d}(u, v) = \infty$. Suppose that $u \neq v$ and $\nabla(u) = (x, y) = \nabla(v)$ for some $(x, y) \in X^2$ with $x \neq y$. Since $u \neq v$, we must have $u = (x, y)_1, v = (x, y)_2$ or $u = (x, y)_2, v = (x, y)_1$. If $u = (x, y)_1$ and $v = (x, y)_2$, then, by 2.1,

$$\begin{aligned} d(\pi_1 S(u), \pi_1 S(v)) &= d(x, x) = 0 = d_{dis}(\bigtriangledown(u), \bigtriangledown(v)) \\ d(\pi_2 S(u), \pi_2 S(v)) &= d(y, x) \\ d(\pi_3 S(u), \pi_3 S(v)) &= d(y, y) = 0 \\ \bar{d}(u, v) &= \sup\{d(\pi_1 S(u), \pi_1 S(v)), d(\pi_2 S(u), \pi_2 S(v)), d(\pi_3 S(u), \pi_3 S(v))\} = d(y, x) = \infty \end{aligned}$$

since $x \neq y$ and d is discrete.

If $u = (x, y)_2, v = (x, y)_1$, then then, by 2.1,

$$\begin{split} d(\pi_1 S(u), \pi_1 S(v)) &= d(x, x) = 0 = d_{dis}(\bigtriangledown(u), \bigtriangledown(v)), \\ d(\pi_2 S(u), \pi_2 S(v)) &= d(x, y), \\ d(\pi_3 S(u), \pi_3 S(v)) &= d(y, y) = 0 \\ \bar{d}(u, v) &= \sup\{d(\pi_1 S(u), \pi_1 S(v)), d(\pi_2 S(u), \pi_2 S(v)), d(\pi_3 S(u), \pi_3 S(v))\} = d(x, y) = \infty \end{split}$$

since $x \neq y$ and *d* is discrete.

Hence, for any points u and v in $X^2 \vee_{\Delta} X^2$

$$\bar{d}(u,v) = \begin{cases} 0 & \text{if } u = v \\ \infty & \text{if } u \neq v \end{cases}$$

and consequently, by 2.1, 2.2 and Definition 3.2, (X, d) is T_1 .

Note that every extended pseudo-quasi-semi metric space (X, d) defines a topology denoted by τ_d as in the usual metric space case. Let $x \in X$ and r > 0. The set $S(x, r) = \{y \in X : d(x, y) < r\}$ is called a ball in X. Recall that (X, d) is T_1 if and only if the topological space (X, τ_d) is \mathbf{T}_1 (we will refer to it as the usual one).

Theorem 3.4. An extended pseudo-quasisemi metric space (X, d) is \mathbf{T}_1 if and only if for each pair of distinct points x and y in X, d(x, y) > 0.

Proof. If d(x, y) > 0 for all $x \neq y$, then y does not belong to the ball S(x, d(x, y)). Since also d(y, x) > 0, we get x does not belong to the ball S(y, d(y, x)). Hence, a topological space (X, τ_d) is T_1 .

If a topological space (X, τ_d) is \mathbf{T}_1 , then it follows easily that d(x, y) > 0 for all $x \neq y$ in X.

Remark 3.1. (1) Let (X, τ) be a topological space and $p \in X$. By Theorem 3.1, a topological space (X, τ) is T_1 at p if and only if (X, τ) is T_1 .

(2) Let (X, d) be an extended pseudo-quasi-semi metric space.

(i) By Theorem 3.3 and Theorem 3.4, (X, d) is T_1 (in our sense) implies (X, d) is \mathbf{T}_1 (in the usual sense) but the reverse of implication is not true. Let $X = \{x, y\}$ with $x \neq y$ and d(x, y) = 1, d(y, x) = 3, d(x, x) = 0 = d(y, y). Then, by Theorem 3.3 and Theorem 3.4, (X, d) is \mathbf{T}_1 (in the usual sense) but (X, d) is not T_1 (in our sense).

4. Conclusions

In this paper, we gave characterization of each of local T_1 extended pseudo-quasi-semi metric space, T_1 extended pseudo-quasi-semi metric space. Moreover, by Theorem 3.3, 3.4, and Remark 3.1, T_1 extended pseudo-quasi-semi metric space implies T_1 extended pseudo-quasi-semi metric space but the converse implication is not true, in general.

Acknowledgment

This research was supported by the Scientific and Technological Research Council of Turkey (TÜBITAK) under Grant No: 114F299 and by the Erciyes University Research Center (BAP) under Grant No:7175.

References

- [1] Adámek, J., Herrlich, H., Strecker, G. E., Abstract and Concrete Categories, Wiley, New York, (1990).
- [2] Adámek, J., Reiterman, J., Cartesian Closed Hull for Metric Spaces. Comment. Math. Univ. Carolinae. 31 (1990), 1-6.
- [3] Baran, M., Separation Properties, Indian J. Pure Appl. Math. 23 (5) (1991), 333-341.
- [4] Baran, M., Separation Properties in Topological Categories, Math. Balkanica. 10 (1996), 39-48.
- [5] Baran, M., Completely Regular Objects and Normal Objects in Topological Categories, *Acta Math. Hungar.* 80 (1998), 211-224.
- [6] Baran, M., T₃ and T₄-Objects in Topological Categories, Indian J.Pure Appl. Math. 29 (1998), 59-69.
- [7] Fréchet, M., Sur quelques points du calcul fonctionnel, Rend. Palermo. 22 (1906), 1-74.
- [8] Herrlich, H., Topological Functors, Gen. Topology Appl. 4 (1974), 125-142.
- [9] Johnstone, P. T., Topos Theory, L.M.S Mathematics Monograph: No. 10. Academic, New York, (1977).
- [10] Lowen, R., Approach Spaces: The Missing Link in the Topology-Uniformity-Metric Triad, Oxford Mathematical Monographs, Oxford University Press., (1997).
- [11] Lowen, R., Approach Spaces: a Common Supercategory of TOP and MET, Math. Nachr. 141 (1989), 183-226.
- [12] MacLane, S., Moerdijk, I., Sheaves in Geometry and Logic. Springer, New York, (1992).

- [13] Nauwelaerts, M., Cartesian Closed Hull for (Quasi-) Metric Spaces, *Comment. Math. Univ. Carolinae.* 41 (2000), 559-573.
- [14] Preuss, G., Theory of Topological Structures, An Approach to topological Categories, D. Reidel Publ. Co., Dordrecht, (1988).
- [15] Wilson, W. A., On Quasi-Metric Spaces, Amer.J. Math. 53 (1931), 675-684.

Affiliations

TESNIM MERYEM BARAN

ADDRESS: Department of Mathematics, Faculty of Sciences, Erciyes University, Kayseri, Turkey. **E-MAIL:** mor.takunya@gmail.com

MUAMMER KULA

ADDRESS: Department of Mathematics, Faculty of Sciences, Erciyes University, Kayseri, Turkey E-MAIL: kulam@erciyes.edu.tr