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MATHEMATICAL ANALYSIS AND NUMERICAL SIMULATIONS
FOR THE CANCER TISSUE INVASION MODEL

GÜLNIHAL MERAL AND İBRAHIM ÇAĞATAY YAMANLAR

Abstract. Cancer cell invasion is one of the most important stages of metas-
tasis. In this paper, the local existence and uniqueness of the cancer cell
invasion model is proved using an iterative procedure. Moreover the numerical
simulations are performed using a combination of a nonstandard finite differ-
ence scheme and backward and forward Euler methods. It is seen that the
results agree well with the expected behaviour of the invasion.

1. Introduction

Cancer is a multi-step disease which starts with the abnormal proliferation
of a single cell due to a DNA mutation. The successive rounds of mutation of
these abnormal cells result with a mass which is called a tumor. The tumors
are categorized in two categories: benign and malignant. Both types grow in an
uncontrolled way. But unlike the benign tumors, the malignant tumors invade the
surrounding tissue and reach to the other parts of the body by blood or lymph
system and form a secondary tumor there. This process is called metastasis. The
reason of cancer deaths is often the metastasis.
The cancer cells have two kinds of directed movements: chemotaxis and hap-

totaxis. Chemotaxis is the movement of the cells from the direction of the higher
concentration of a substance (chemoattractant) to the direction where the concen-
tration is lower. On the other hand, the cells have to adhere to extracellular matrix
(ECM) fibres in order to move and their migration is directed from the regions hav-
ing higher concentration of an existing adhesive molecule on the ECM to the regions
with lower concentration. This type of movement is called haptotaxis. Moreover,
the contact with the surrounding tissue stimulates the production of the proteolytic
matrix degrading enzymes(MDEs) for the degradation of the tissue fibres.
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The mathematical modelling of cancer invasion, their analysis and simulations
provide an understanding on the behavior of the modelling systems and the studies
in this area gain importance in recent years. The models can be grouped as the
ordinary differential equation (ODE) models, partial differential equation (PDE)
models and stochastic models. The ODE models are usually used for the cell migra-
tion controlling models starting at the cell level [1, 2] and for the therapy approach
models [3, 4]. The disadvantage of the ODE models is that they consider only the
temporal change and do not give information about the spatial effects. Since cancer
invasion and metastasis have spatial dependence, the models considering the varia-
tions in space are more realistic for this phenomena and are described by using the
PDEs. In these PDE models the different factors on cancer invasion are analyzed.
For instance, the effect of environmental pH has been analyzed initially by Gatenby
et. al. [5] and the well posedness of an extended model, which has been developed
to include the crowding effects in the growth of normal cells, has been shown in
[6]. Then the model has been extended to include the intracellular dynamics and
it has been shown that the new multiscale model has a global unique solution [7].
Another approach analyzing the effect of chemotaxis and haptotaxis has been made
in [8]. On the other hand, in some cases models may contain stochastic effects like
the ones in the studies [9, 10, 11] considering the stochasticity in pH dynamics.
In this study we consider the haptotaxis-chemotaxis model [8]. Because of the

highly nonlinear character of the model system, the analysis of the system, finding
the analytical solution or the numerical solution are not easy tasks. In this paper,
using an iterative procedure [6] the local existence of a unique weak solution is
shown. Moreover, the numerical simulations are performed using a finite differ-
ence scheme which includes a nonstandard FDM and backward and forward Euler
methods. The results of the simulations show the expected behavior of the model
system.

2. Mathematical Model

In this section, the mathematical model given in [8] is considered. The model
describes the interaction between the cancer cells (c), the normal cells(n) and the
MDE (m) and is given by

∂c

∂t
= Dc∇2c︸ ︷︷ ︸

dispersion

−∇ · (χcc∇m)︸ ︷︷ ︸
chemotaxis

−∇ · (ξcc∇n)︸ ︷︷ ︸
haptotaxis

+ µ1c

(
1− c

Kc
− n

Kn

)
︸ ︷︷ ︸

proliferation

,

∂n

∂t
= −δmn︸ ︷︷ ︸

degredation

+ µ2n

(
1− c

Kc
− n

Kn

)
︸ ︷︷ ︸

re-establishment

,

∂m

∂t
= Dm∇2m︸ ︷︷ ︸

dispersion

+ αc︸︷︷︸
production

− βm︸︷︷︸
decay

(2.1)
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with the parameters and their explanations given in Table 1.

Parameter Explanation Parameter Explanation
Dc Diffusion coeffi cient Kc Carrying capacity

for cancer cells for cancer cells
Dm Diffusion coeffi cient Kn Carrying capacity

for MDE for normal cells
χc Chemotaxis coeffi cient δ Degradation rate

for normal cells
ξc Haptotaxis coeffi cient α Production rate

for MDE
µ1 Proliferation rate β Decay rate

for cancer cells for MDE
µ2 Re-establisment rate

for normal cells
Table 1. Problem Parameters

2.1. Boundary and Initial Conditions. According to the in vitro experimental
protocol the invasion takes place in an isolated system and this gives the no flux
boundary conditions for the cancer cells and MDEs across the boundary of the
domain Ω ⊆ Rd, (d = 1, 2, 3) and thus the boundary conditions (BCs) are given by

∂m

∂υ
=
∂c

∂υ
= 0, on ∂Ω (2.2)

where υ denotes the outward unit normal to the boundary ∂Ω of the smooth enough
domain Ω. The initial conditions (ICs) are given by

c(0, x) = c0(x),
n(0, x) = n0(x), x ∈ Ω
m(0, x) = m0(x),

(2.3)

where c0, n0 and m0 are nonnegative functions and c0 and m0 satisfy the boundary
conditions(2.2).

3. Mathematical Analysis of the Model

In this section the proof for the existence and uniqueness of the solutions for the
system (2.1) with the boundary and initial conditions (2.2) and (2.3) is given. To
this end, an iterative technique [6] is used for the proof. To this end, the function
spaces

X := L∞
(
0, T ;H1(Ω)

)
, (3.1)

Y :=
{
m ∈ L2

(
0, T ;H2(Ω)

)
,mt ∈ L2

(
0, T ;H2(Ω)

) }
, (3.2)

Z := L∞(0, T ;L2(Ω)), (3.3)
are considered. Here Ω ⊆ Rd, (d = 1, 2, 3) is an open bounded domain.
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Definition 1. The weak solution of the initial and boundary value problem (2.1)-
(2.3) is defined as the triple (m,n, c) ∈ X × Y × Z satisfying the following three
equations:∫

Ω

µ1c

(
1− c

Kc
− n

Kn

)
φdx =

∫
Ω

∂c

∂t
φdx+

∫
Ω

Dc∇c∇φdx (3.4)

−χc
∫

Ω

∇m∇φcdx− ξc
∫

Ω

∇n∇φcdx,∫
Ω

µ2n

(
1− c

Kc
− n

Kn

)
φdx =

∫
Ω

∂n

∂t
φdx+

∫
Ω

δmnφdx, (3.5)

∫
Ω

αcφdx =

∫
Ω

∂m

∂t
φdx+

∫
Ω

Dm∇m∇φdx (3.6)

+

∫
Ω

βmφdx,

for every φ ∈ H1(Ω).

Definition 2. For k ∈ N and (mk, ck) ∈ (X × X) ∩ (Y × Y ) and nk ∈ Z, the
sequence (mk, ck, nk) is defined as follows:
For k = 0, (m0, c0) ∈ (X × X) ∩ (Y × Y ) and n0 ∈ Z is defined as the weak

solution of the homogeneous system

∂m0

∂t
−Dm∇2m0 + βm0 = 0, (3.7)

∂n0

∂t
+ δm0n0 = 0, (3.8)

∂c0

∂t
−Dc∇2c0 +∇ · (χcc0∇m0) +∇ · (ξcc0∇n0) = 0, (3.9)

and for k > 0, (mk, ck) ∈ (X × X) ∩ (Y × Y ) and nk ∈ Z is defined as the weak
solution of

∂mk+1

∂t
−Dm∇2mk+1 + βmk+1 = αck, (3.10)

∂nk+1

∂t
+ δmk+1nk+1 = µ2n

k

(
1− ck

Kc
− nk

Kn

)
, (3.11)

∂ck+1

∂t
−Dc∇2ck+1 +∇ · (χcck+1∇mk+1) +∇ · (ξcck+1∇nk+1)

= µ1n
k

(
1− ck

Kc
− nk

Kn

)
.

(3.12)
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Lemma 1. Assume that

m0 ∈ H1(Ω) ∩ C(Ω), n0 ∈ L∞(Ω) ∩H1(Ω), c0 ∈ H1(Ω) (3.13)

m0 ≥ CH > 0, 0 < n0 <
Kn

2
, 0 < c0 < Kc (3.14)

for T > 0. Then
(i) the systems (3.7)-(3.9) and (3.10)-(3.12) with the BCs (2.2) and ICs (2.3)

have a unique weak solution with

nk,
∂nk

∂t
∈ L∞((0, T ]× Ω) (3.15)

mk, ck ∈ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1(Ω)) (3.16)

∂mk

∂t
,
∂ck

∂t
∈ L2(0, T ;L2(Ω)) (3.17)

(ii)The functions mk, ck, nk are positive and they satisfy

mk(t, x) ≥ CHe−βt, nk(t, x) ≤ Kv

2
and ck(t, x) ≤ Kc (3.18)

for a.e. x ∈ Ω and t ∈ [0, T ]
(iii) The functions mk, ck, nk satisfy∥∥mk

∥∥
X

+
∥∥mk

∥∥
L2(0,T ;H2(Ω))

≤ C(Ω, t)(‖c0‖H1(Ω) + ‖m0‖H1(Ω)) (3.19)∥∥nk∥∥2

X
≤ C(Ω, t) ‖n0‖2H1(Ω) (3.20)∥∥ck∥∥

X
+
∥∥ck∥∥

L2(0,T ;H2(Ω))
≤ 2C(Ω, t) ‖c0‖H1(Ω) (3.21)

with the appropriate embedding constants C(Ω, T ).

Remark 1. i) One can conclude from (3.15) that

nk ∈ L∞((0, T ];L2(Ω)) (3.22)

ii) T is going to be defined as

T :=

6∏
i=1

Ti (3.23)

in the proof.

Proof. The proof will be done by using induction.
Basis Step (k=0): The proof is done for each of the equations (3.7)-(3.12) sepa-

rately.
a) The substitution m0 = m̃e−βt transforms equation (3.7) to the heat equation:

∂m̃

∂t
−Dm∇2m̃ = 0 (3.24)
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and by the linear PDE theory [12] with the hypothesis m0 ∈ H1(Ω) we conclude
that equation (3.7) has a unique solution such that

m0 ∈ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1(Ω))
m0
t ∈ L2(0, T ;L2(Ω))

satisfying ∥∥m0
∥∥
X

+
∥∥m0

∥∥
L2(0,T ;H2(Ω))

≤ C(Ω, T )
∥∥m0

∥∥
H1(Ω)

b) Equation (3.8) is a linear ODE and has a positive solution depending onm0(t, x)
which is given by

n0(t, x) = n0e
−
∫ t
0
δm0(s,x)ds > 0 (3.25)

and since∥∥n0
∥∥2

L∞(0,T ;H1(Ω))
=
∥∥∥n0e

−
∫ t
0
δm0(s,x)ds

∥∥∥2

L∞(0,T ;H1(Ω))
≤ ‖n0‖2H1(Ω) (3.26)

the inequality (3.20) is satisfied for n = 0. Moreover, for t ≥ η > 0∥∥n0
∥∥
L∞((0,T ]×Ω)

(3.25)
=

∥∥∥n0e
−
∫ t
0
δm0(s,x)ds

∥∥∥
L∞((0,T ]×Ω)

≤ ‖n0‖L∞(Ω) <∞ (3.27)

is obtained. It is known that as t→ 0 solution of equation (3.24) satisfies [12]

lim
(t,x)→(0,x0)

m̃0 (t, x) eDmt = m0

(
x0
)

(3.28)

and this gives

lim
(t,x)→(0,x0)

m0 (t, x) = lim
(t,x)→(0,x0)

m̃0 (t, x) eDmt = m0

(
x0
)

(3.29)

which shows the inequalities in (3.14) are satisfied.
c) To complete the proofs for (3.16), (3.17) and (3.21) one starts with equation

(3.9) and the proof procedure depends on Theorem 7.1.5 in [12]. To apply the
Galerkin Method, the function

cn(t) :=

n∑
i=1

din(t)wi(x) (3.30)

and the symmetric bilinear form

A[cn, cn] =

∫
Ω

Dc(∇cn)2dx (3.31)

are defined with {wi(x)}∞i=1 being the orthogonal bases for H
1(Ω) and orthonormal

bases for L2(Ω). If the ideas in [12] are used with a(t, x) = Dc then one has∥∥∥∥∂c0n∂t
∥∥∥∥2

L2(Ω)

+
d

dt

(
1

2
A[c0n, c

0
n]

)
≤ C

4ε

∥∥c0n∥∥2

H1
0 (Ω)

+ ε

∥∥∥∥∂c0n∂t
∥∥∥∥2

L2(Ω)
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Therefore with c0 ∈ H1(Ω) the unique weak solution of (3.9) is obtained and it
satisfies the following properties:

c0 ∈ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1(Ω)),

∂c0

∂t
∈ L2

(
0, T ;L2 (Ω)

)
(3.32)∥∥c0∥∥

X
+
∥∥c0∥∥

L2(0,T ;H2(Ω))
≤ C(Ω, T ) ‖c0‖H1(Ω)

Moreover, since c0 > 0 the weak maximum principle leads to c0(t, x) > 0, i.e., the
positivity of c0(t, x).
Induction Hypothesis Assume that for an arbitrary k ∈ N the claims in Lemma

1 are satisfied.
Induction Step In this step, the proof is done separately for each of the three equa-

tions given in (3.10-3.12) For the appropriate embedding constant c1 := c1(Ω, T )
[13] together with the induction hypothesis it is found that

T∫
0

∥∥ck∥∥2

L2(Ω)
dt ≤ c1

T∫
0

∥∥ck∥∥2

H1(Ω)
dt (3.33)

≤ 4c1C
2(Ω, T )T ‖c0‖2H1(Ω) <∞ (3.34)

and thus it is found that ck ∈ L2(0, T ;L2(Ω)). Together with the linear parabolic
differential equation theory this leads to the existence of the unique weak solution
of the initial and boundary value problem (2.2),(2.3) and (3.10) and this solution
satisfies

mk+1 ∈ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1(Ω)) (3.35)

∂mk+1

∂t
∈ L2(0, T ;L2(Ω))

and∥∥mk+1
∥∥
X

+
∥∥mk+1

∥∥
L2(0,T ;H2(Ω))

≤ C1(Ω, T )
(

2αC(Ω, T )
√
c1T ‖c0‖H1(Ω)

+ ‖m0‖H1(Ω)

)
≤ C(Ω, T )

(
‖c0‖H1(Ω) + ‖m0‖H1(Ω)

)
(3.36)

for C(Ω, T ) = max
{
C1(Ω, T ), C1(Ω, T )2αC(Ω, T )

√
c1T

}
.

In order to determine the lower bound for mk+1 an auxiliary function

ϕk+1(t, x) := mk+1(t, x)− CHe−βt (3.37)

is defined and by using (3.10) it can be easily seen that〈
ϕk+1
t (t), φ

〉
+Dm

∫
Ω

∇ϕk+1∇φdx+ β

∫
Ω

ϕk+1φdx =
〈
αck, φ

〉
(3.38)
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is satisfied. In equation (3.38) 〈, 〉 denotes the L2 inner product. For all nonnegative
φ ∈ H1(Ω) the right hand side of (3.37) is positive. On the other hand, by definition
φk+1(0, x) ≥ 0. Therefore by the weak maximum principle, it is found that φ(0, x) ≥
0 and this results with mk+1(t, x) ≥ CHe−βt.
Solution of the nonhomogeneous linear differential equation (3.11) is given by

nk+1(t, x) = e−γ1t

n0(x) +

t∫
0

γ2(s, x)eγ1(s,x)ds

 (3.39)

where

γ1(t, x) =

t∫
0

δmn+1(v, x)dv

and

γ2(s, x) = µ2n
k(s, x)

(
1− nk(s, x)

Kn
− ck(s, x)

Kc

)
The first claim in (3.15) is trivial by the induction hypothesis. To prove the sec-
ond claim on the time derivative, Equation (3.11) is made use of which gives the
inequality∥∥∥∥∂nk+1

∂t

∥∥∥∥
L∞((0,T ]×Ω)

≤ µ2

∥∥nk∥∥
L∞((0,T ]×Ω)

∥∥∥∥1− nk

Kn
− cn

Kc

∥∥∥∥
L∞((0,T ]×Ω)

+δ
∥∥nk+1

∥∥
L∞((0,T ]×Ω)

∥∥mk+1
∥∥
L∞((0,T ]×Ω)

.

(3.40)
The induction hypothesis, the smoothness of the initial data and the properties of
the heat equation lead to the result that the right hand side of the equation (3.40)
is finite.
In order to show that nk+1 is bounded by the half of the carrying capacity, the

induction hypothesis and the inequality mk+1(t, x) ≥ CH for x ∈ Ω, t ∈ [0, T ] with
CH positive are used:

nk+1(t, x) ≤ Kn

2
e−γ1(t,x) +

t∫
0

γ2(s, x)e−(γ1(t,x)−γ1(s,x))ds

≤ Kn

2
e−γ1(t,x) + µ2

Kn

2

t∫
0

e−(γ1(t,x)−γ1(s,x))ds

≤ Kn

2
e−δC̃Ht + µ2

Kn

2

1

δC̃H

(
1− e−δC̃Ht

)
≤ vc

2

((
1− µ2

δC̃H

)
e−δC̃Ht +

µ2

δC̃H

)
≤ Kn

2
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and this gives the positivity of nk+1 together with (3.39).
Next, inequality (3.20) is obtained by using equation (3.39) and the induction

hypothesis:

∥∥nk+1(t)
∥∥2

H1(Ω)
=

∥∥∥∥∥∥e−γ1(t)n0 + e−γ1(t)

t∫
0

γ2e
α(s)ds

∥∥∥∥∥∥
2

H1(Ω)

≤

∥∥∥∥∥∥n0 +

t∫
0

(
µ2n

k(s)− µ2

(nk(s))2

Kn
− µ2

nk(s)− ck(s)

Kc

)∥∥∥∥∥∥
2

H1(Ω)

≤ 2 ‖n0‖2H1(Ω) + 2µ2
2

∥∥∥∥∥∥
t∫

0

nk(s)

(
1− nk(s)

Kn
− ck(s)

Kc

)
ds

∥∥∥∥∥∥
2

H1(Ω)

≤ 2 ‖n0‖2H1(Ω) + 2µ2
2

∥∥∥∥∥∥
t∫

0

nk(s)

(
1− nk(s)

Kn

)
ds

∥∥∥∥∥∥
2

H1(Ω)

≤ 2 ‖n0‖2H1(Ω) + 4µ2
2


∥∥∥∥∥∥

t∫
0

nk(s)ds

∥∥∥∥∥∥
2

H1(Ω)

+
1

K2
n

∥∥∥∥∥∥
t∫

0

(nk(s))2ds

∥∥∥∥∥∥
2

H1(Ω)


≤ 2 ‖n0‖2H1(Ω)

[
2 + 4µ2

2C(Ω, T )T 2
]
≤ Θ(Ω, T ) ‖n0‖2H1(Ω)

In order to complete the proof for (3.15) and (3.17) the term on the right hand
side of Equation (3.12) is considered. By using the induction hypothesis and the
property of the initial condition c0(x) ∈ H1(Ω) it can be bounded as

T∫
0

∥∥∥∥ck (1− ck

Kc
− nk

Kn

)∥∥∥∥2

L2(Ω)

dt ≤
T∫

0

∥∥∥∥ck (1− ck

Kc

)∥∥∥∥2

L2(Ω)

dt

≤ 2

T∫
0

∥∥ck∥∥2

L2(Ω)
dt+ 2

T∫
0

∥∥∥∥∥
(
ck
)2

Kc

∥∥∥∥∥
2

L2(Ω)

dt

≤ 2c21

T∫
0

∥∥ck∥∥2

H1(Ω)
dt+ 2

c42
K2
c

T∫
0

∥∥ck∥∥4

H1(Ω)
dt

≤ 8c21C
2(Ω, T ) ‖c0‖2H1(Ω) T1T2

+32
c42
K2
c

C4(Ω, T ) ‖c0‖4H1(Ω) T1T2 <∞
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with an appropriate embedding constant c2 := c2(Ω, T ). Therefore c
(

1− ck

Kc
−− n

k

Kn

)
∈

L2(0, T ;L2(Ω)) and thus by Theorem 7.1.5 in [12] one obtains the unique weak so-
lution with the properties

ck+1 ∈ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1(Ω))

∂ck+1

∂t
∈ L2(0, T ;L2(Ω)).

Choosing max
{
T1C

2(Ω, T ), T1C
4(Ω, T )

}
≤ 1 and

T2 := min

{
1

2
,

1

16µ2
2c

2
1 ‖k0‖

,
1

64µ2
2c

4
1 ‖c0‖

2

}
gives

T∫
0

∥∥∥∥µ2c
k

(
1− ck

Kc
− nk

Kn

)∥∥∥∥2

L2(Ω)

dt ≤ ‖c0‖H1(Ω)

thus one has ∥∥ck∥∥
X

+
∥∥ck∥∥

L2(0,T ;H2(Ω))
≤ 2C(Ω, T )

(
‖c0‖H1(Ω)

)
.

In order to prove that ck+1 is bounded above by the half of the carrying capacity
the auxiliary function

σk :=
ηt+Kc

2
− ck(t, x) (3.41)

is defined and induction is used. The proof for the basis step; i.e. for k = 0; is
identical with the proof in the induction step.
Induction Hypothesis: Assume that ck is bounded above by the half of the car-

rying capacity for an arbitrary k ∈ N.
Induction Step: If one uses the auxiliary function given in (3.41) with the equa-

tion (3.12) then

∂σk+1

∂t
−Dc∇2σk+1 −∇

(
χcc

k∇mk+1
)
−∇

(
ξcc

k∇nk+1
)

=
η

2
− µ1c

k

(
1− ck

Kc
− nk

Kn

)
(3.42)

is obtained. By using the induction hypothesis one has

ck
(

1− ck

Kc
− nk

Kn

)
≤ Kc

2

and thus the inequality

η

2
− µ1c

k

(
1− ck

Kc
− nk

Kn

)
≥ µ1

(
Kc

2
−
(

1− ck

Kc
− nk

Kn

))
≥ 0
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is obtained for the right hand side of the inequality in (3.42) where

η =
Kc

T3
and T3 ≤

1

µ1

.

Since ck < Kc and σn+1(0, x) ≥ 0 by its definition, the weak maximum principle

for T ≤ 1

µ1

leads to

σk :=
ηt+Kc

2
− ck(t, x) = σk+1 ≥ 0

which gives the positivity of ck+1 with the positivity of the initial condition. �

Theorem 1. (The Local Existence of the Solution) There exists a unique weak
solution (m, c) ∈ (X ×X) ∩ (Y × Y ) and n ∈ Z of the boundary and initial value
problem (IBVP) (2.1)-(2.3) for T > 0 satisfying the conditions (3.13) and (3.14).

Proof. To prove the existence of the unique weak solution of the IBVP (2.1) - (2.3),
the sequence (nk, ck,mk)k∈Z+ is going to be shown to be a Cauchy sequence, which
leads to the convergence to the limit function (n, c,m) with the completeness of the
function spaces we work on. Throughout the proof, the results obtained in Lemma
1 are going to be used.
For the ease of notation, we define the differences

mk+1 −mk = M1 mk −mk−1 = M2

ck+1 − ck = C1 ck − ck−1 = C2

nk+1 − nk = N1 nk − nk−1 = N2

(3.43)

Let k ∈ Z+ be arbitrary. Since mk, mk+1 ∈ H1(Ω) and ck, ck+1 ∈ L2
(
0, T ;L2(Ω)

)
mk+1 −mk ∈ H1(Ω)

and
ck+1 − ck ∈ L2(0, T ;L2(Ω))

are obtained. In the next step, one can write [12]∥∥mk+1 −mk
∥∥2

X
≤ C (Ω, T )

∫ T

0

∥∥αck − αck−1
∥∥2

L2(Ω)
dt.

and ∥∥mk+1 −mk
∥∥2

X
≤ C (Ω, T )α2c23

∫ T

0

∥∥ck − ck−1
∥∥2

H1(Ω)
dt

≤ C (Ω, T )α2c23T4

∥∥ck − ck−1
∥∥2

X

≤ 1

4

∥∥ck − ck−1
∥∥2

X
(3.44)

for the embedding constant c3 := c3(Ω, T ) and T4 = min

{
1

4
,

1

4C (Ω, T )α2c23

}
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For the sequence (ck)k∈N, if one substitutes nk and nk+1 in equation (3.11)

∂
(
nk+1 − nk

)
∂t

+ δ
(
mk+1nk+1 −mknk

)
= µ2

(
nk
(

1− ck

Kc
− nk

Kn

)
− nk−1

(
1− ck−1

Kc
− nk−1

Kn

))
. (3.45)

When both sides of Equation (3.45) is multiplied by N1 = nk+1 − nk and is inte-
grated over Ω

1

2

∫
Ω

∂

∂t
(N1)

2
dx+ δ

∫
Ω

(N1)
2
mk+1dx =

∫
Ω

[
h
(
nk, nk−1

)
− δnk (M1)

]
(N1) dx

where

h
(
nk, nk−1

)
:= µ2

(
nk
(

1− ck

Kc
− nk

Kn

)
− nk−1

(
1− ck−1

Kc
− nk−1

Kn

))
which leads to

d

dt
‖N1‖2L2(Ω) ≤ 2µ2

∫
Ω

|
(
nk
(

1− ck

Kc
− nk

Kn

)

−nk−1

(
1− ck−1

Kc
− nk−1

Kn

))
(N1) |dx

+2δ

∫
Ω

∣∣nk (M1) (N1)
∣∣ dx

≤ 2µ2

∥∥∥∥nk (1− ck

Kc
− nk

Kn

)

−nk−1

(
1− ck−1

Kc
− nk−1

Kn

)∥∥∥∥
L2(Ω)

+2δ
∥∥nk(M1)

∥∥
L2(Ω)

‖N1‖L2(Ω)

(3.46)

and∥∥∥∥∥2µ2n
k − nk−1 −

(
nk
)2

Kn
+

(
nk − 1

)2
Kn

− nkck

Kc
+
nk−1ck−1

Kc

∥∥∥∥∥
≤ 2µ2 ‖N2‖L2(Ω) +

4µ2Mmax

Kn
‖N2‖L2(Ω) + 2

µ2Kn

Kc
‖C2‖L2(Ω) + 2µ2 ‖N2‖L2(Ω)

≤ Cñ ‖N2‖L2(Ω) + Cc̃ ‖C2‖L2(Ω)



MATHEMATICAL ANALYSIS AND NUMERICAL SIMULATIONS FOR CANCER... 383

with the embedding constant c4 := c4(Ω, T ) and

Mmax :=
{
Mmk :=

∥∥nk∥∥
L∞((0,T ]×Ω)

, Nnk−1 :=
∥∥nk−1

∥∥
L∞((0,T ]×Ω)

}
Cñ := 4µ2

(
1 +

Mmax

vc

)
andCc̃ :=

2µ2vc
kc

For the second term on the right hand side of the inequality (3.46) one has

2δ
∥∥nk (M1)

∥∥
L2(Ω)

≤ Cm̃ ‖M1‖H1(Ω)

where Cm̃ := δKnC4. Therefore for the inequality (3.46)

d

dt
‖N1‖2L2(Ω) ≤ C2

ñ ‖N2‖2L2(Ω) + C2
c̃ ‖C2‖2L2(Ω)

+C2
m̃ ‖M1‖2H1(Ω) +

1

2
‖N1‖2L2(Ω)

is obtained. This inequality can be written as

‖N1‖2L2(Ω) ≤ e
t/2

∫ t

0

(
C2
ñ ‖N2‖2L2(Ω) + C2

c̃ ‖C2‖2L2(Ω) + C2
m̃ ‖M1‖2H1(Ω)

)
ds

by using Gronwall’s inequality which leads to

‖N1‖2L∞(0,T ;L2(Ω)) ≤ D (Ω, T )
(
‖N2‖2L∞(0,T ;L2(Ω))

+ ‖C2‖2L∞(0,T ;L2(Ω)) + ‖M1‖2X
)
T5

≤ 1

4

(
‖N2‖2L∞(0,T ;L2(Ω))

+ ‖C2‖2L∞(0,T ;L2(Ω)) + ‖M1‖2X
)

≤ 1

4

(
‖N2‖2L∞(0,T ;L2(Ω)) +

5

4
‖C2‖2X

)
(3.47)

where D (Ω, T ) = et/2 max
{
C2
ṽ , C

2
k̃
, C2

ũ

}
T5, D (Ω, T )T5 ≤

1

4
.

On the other hand, since

ck, ck+1 ∈ H1(Ω)andck(1− ck

Kc
− nk

Kn
), ck+1(1− ck+1

Kc
− nk+1

Kn
) ∈ L2(0, T ;L2(Ω))

one obtains

ck+1 − ck ∈ H1(Ω)

and [
µ1c

k+1

(
1− ck+1

Kc
− nk+1

Kn

)
− µ1c

k

(
1− ck

Kc
− nk

Kn

)]
∈ L2

(
0, T ;L2 (Ω)

)
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If one once more applies Theorem 7.1.5 in [12] to the difference ck+1 − ck, the two
inequalities

‖C1‖2X ≤ C (Ω, T )

∫ T

0

∥∥∥∥µ1n
k

(
1− ck

Kc
− nk

Kn

)
−µ1n

k−1

(
1− ck−1

Kc
− nk−1

Kn

)∥∥∥∥ dt (3.48)

µ1

∥∥∥∥∥ck − ck−1 −
(
ck
)2

Kc

+

(
ck−1

)2
Kc

− cknk

Kn
+
ck−1nk−1

Kn

∥∥∥∥∥
L2(Ω)

≤ µ1 ‖C2‖L2(Ω)

+
2µ1Kmax

Kc
‖C2‖L2(Ω)

+
µ1Kc

Kn
‖N2‖L2(Ω)

(3.49)

are obtained with

Kmax := max
{
Cck :=

∥∥ck∥∥
L2(Ω)

, Nck−1 :=
∥∥ck−1

∥∥
L2(Ω)

}
.

The inequality (3.49) leads to

µ1 ‖C2‖L2(Ω)+
2µ1Kmax

Kc
‖C2‖L2(Ω)+

µ1Kc

Kn
‖N2‖L2(Ω) = cc̃ ‖C2‖L2(Ω)+cñ ‖N2‖L2(Ω)

and

‖C1‖2X ≤ C (Ω, T )

∫ T

0

(
cc̃ ‖C2‖L2(Ω) + cñ ‖N2‖L2(Ω)

)2

dt

≤ C (Ω, T )

[
c2c̃

∫ T

0

‖C2‖2L2(Ω) dt+ c2ñ

∫ T

0

‖N2‖2L2(Ω) dt

]

≤ C (Ω, T )

[
c2c̃c

2
6

∫ T

0

‖C2‖2H1(Ω) dt+ c2ñc
2
7

∫ T

0

‖N2‖2H1(Ω) dt

]
≤ C (Ω, T ) c2c̃c

2
6T6 ‖C2‖2X + C (Ω, T ) c2ñc

2
7T7 ‖N2‖2X

≤ 1

4
‖C2‖2X +

1

4
‖N2‖2X (3.50)

where

T6 = min

{
1

4
,

1

4C (Ω, T ) c2c̃c
2
6

}
, T7 = min

{
1

4
,

1

4C (Ω, T ) c2ñc
2
7

}
and

cc̃ := µ1

(
1 +

2Kmax

Kc

)
, cñ :=

µ1Kc

Kv
.
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The inequalities (3.45), (3.47) and (3.50) results with

‖C1‖2X + ‖N1‖2Z
+ ‖M1‖2X ≤ 1

4
‖C2‖2X +

1

4
‖N2‖2X

+
1

4

(
‖N2‖2L∞(0,T ;L2(Ω)) +

5

4
‖C2‖2X

)
+

1

4
‖C2‖2X

≤ 1

16

[
13 ‖C2‖2X + 8 ‖N2‖2L∞(0,T ;L2(Ω))

]
(3.51)

Therefore (mk, nk, ck) is a Cauchy sequence in X×Z×X which gives the existence
of the weak solution.
For uniqueness one may assume that (c1, n1,m1) and (c2, n2,m2) are two solu-

tions for the model problem. Then using previous estimates one may obtain

‖c1 − c2‖2X ≤ 1

4
‖c1 − c2‖2X +

1

4
‖n1 − n2‖2X

‖m1 −m2‖2X ≤ 1

4
‖c1 − c2‖2X

‖n1 − n2‖2X ≤ 1

4
‖c1 − c2‖2X +

1

4
‖n1 − n2‖2X

which gives c1 = c2, n1 = n2, m1 = m2 and completes the proof for uniqueness. �

4. Numerical Simulations

In this section, the behavior of the solution for the model system is analyzed.
To this end, the nondimensionalized form of the (2.1) [8] is considered

∂c

∂t
= ∇ · (Dc∇c)︸ ︷︷ ︸

dispersion

−∇ · (χcc∇m)︸ ︷︷ ︸
chemotaxis

−∇ · (ξcc∇n)︸ ︷︷ ︸
haptotaxis

+ µ1c (1− c− n)︸ ︷︷ ︸
proliferation

,

∂n

∂t
= −δmn︸ ︷︷ ︸

degredation

+ µ2n (1− c− n)︸ ︷︷ ︸
re-establishment

,

∂m

∂t
= Dm∇2m︸ ︷︷ ︸

dispersion

+ αc︸︷︷︸
production

− βm︸︷︷︸
decay

(4.1)

with the boundary conditions (2.2).
Initially we assume that cancer cells penetrated a short distance and the rest of

the space is occupied by the normal cells. Moreover the MDEs are secreted by the
cancer cells and thus the initial level for the MDE concentration is proportional to
the initial cancer cell density. By using these assumptions the initial data is chosen
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as

c (x, 0) = exp

(
−x2

ε

)
, x ∈ [0, 1] and ε > 0

n (x, 0) = 1− 1

2
exp

(
−x2

ε

)
, x ∈ [0, 1] and ε > 0 (4.2)

m (x, 0) =
1

2
exp

(
−x2

ε

)
, x ∈ [0, 1] and ε > 0

In order to discretize the model the finite difference method is made use of. The
domain [0, 1] is divided into l equal width subinterval with l + 1 nodes.
For the discretization of the space derivatives seen on the right hand side of

the equation describing the time evolution of the MDE concentration the central
difference is used. For the time discretization a combination of the forward and
backward Euler methods is used which discretizes the decay term implicitly and
the production term explicitly giving the final discretized form

mk+1
i −mk

i

∆t
= Dm

(
mk+1
i−1 − 2mk+1

i +mk+1
i+1

∆x2

)
− αck+1

i − βmk+1
i (4.3)

with i = 1, 2, · · · , l. In equation (4.3), k denotes the time level and ∆t, ∆x denote
the time and space increments, respectively. The discretized equations seen in
Equation (4.3) can be written in matrix-vector form as

Amm
k+1 = mk + α∆tck (4.4)

where Am is the (l + 1) × (l + 1) tridiagonal matrix coming from finite difference
discretization, c and m are the vectors of dimension l + 1 containing the values of
c and m at the discretization points. In order to solve the corresponding equations
for 1 and l the boundary conditions are made use of.
For the discretization of the equation for the normal cell density in (4.1), the

forward Euler method is used with the updatedm values at the discretization points
and the final discretized form is obtained as

nk+1
i =

nki
(
1 +

(
µ2∆t− µ2∆tcki − µ2∆tnki

))
1 + δ∆tmk+1

i

(4.5)

Because of the nonlinearity in the chemotaxis and haptotaxis terms on the right
hand side of the equation for the cancer cell density in the model (4.1), the dis-
cretization has some diffi culties and in order to overcome these diffi culties, a non-
standard finite difference technique [14] is used for these terms giving

∇ (χcc∇m)|xi =
1

2∆x2

∑
j∈Ni

(
mk+1
j ckj +mk+1

i cki
) (
mk+1
j −mk+1

i

)
(4.6)

∇ (ξcc∇n)|xi =
1

2∆x2

∑
j∈Ni

(
nk+1
j ckj + nk+1

i cki
) (
nk+1
j − nk+1

i

)
(4.7)
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where the index set of neighbor nodes of the node xi is Ni =
{
i − 1, i + 1

}
and

i = 1, 2, · · · , l. Then the discretized matrix-vector equations are obtained after
using central difference for the Laplacian term and a combination of forward and
backward Euler methods:

Acc
k+1 = ck + ck̃c (4.8)

In equation (4.8), Ac is the (l + 1) × (l + 1) tridiagonal matrix containing the
information coming from chemotaxis, haptotaxis and diffusion terms, ck and ck̃ are
the vectors of dimension l + 1 containing the values of c and µ1(1− ck − nk+1) at
the discretization points, respectively.
For the numerical simulations the ranges for the parameter values [8] are given

in Table 2

Parameter Value Range
Dc 10−3 − 10−5

Dm 0.001− 1
χc 0.001− 1
ξc 0.001− 1
µ1 0.05− 2
α 0.05− 1
β 0.13− 0.95

â−−−ffiδ 1− 20
â−−−ffiµ2 0.15− 2.5

Table 2. Value Range of Parameters

Throughout our simulations we fix the following parameters Dc = 10−4, Dm =
10−2, δ = 10, α = 0.05, β = 0.3 and δ = 10.

First, we neglect the effect coming from chemotaxis and take χc = 0. In Figure
1, the time evolution of cancer and normal cell densities and MDE concentration
are shown in the absence of proliferation i.e. µ1 = µ2 = 0. At small times (e.g.
t = 1), it is seen that the cancer cells penetrate into a small region whereas at larger
times (e.g., t = 20) the cells migrate throughout the region. One also observes a
cluster of cells at the leading edge of the tumor which is the result of haptotactic
migration.
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Figure 1. Behavior of the model system in the obsence of chemo-
taxis with ξc = 0.02

In the next set of figures (Figure 2) the effect of chemotaxis on the model system
is analyzed. To this end, the chemotaxis coeffi cient χc is taken as 0.02 and the
rest of the parameters remain to be the same. It can be observed that the cancer
cells migrate slower which is the result of haptotactic migration which is the result
of the fact that gradients of chemotactic and haptotactic responses have opposite
directions. Moreover by the effect of chemotaxis another cluster of cancer cells is
seen near the left hand boundary due to chemotaxis mediated by MDE.
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Figure 2. Effect of chemotaxis

Finally, in the last set of figures (Figure 3), effect of proliferation is examined.
The proliferation parameters are taken as µ1 = 0.5 and µ2 = 1.25 and the rest of
the parameters are taken same as the ones in Figure 1. By the effect of proliferation
a larger cluster of cancer cells is formed at the leading edge of the tumor. As the
time evolves (by t = 20) the cells migrate throughout the domain and degradation
of ECM is much more visible.

5. Conclusion

In this study, the tissue invasion model given in [8] is considered. The local
existence, uniqueness and positivity of solutions are proved for the corresponding
model by using an iterative technique. Moreover, the numerical simulations are
performed by using a combination of nonstandard FDM, forward and backward
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Figure 3. Effect of proliferation

Euler methods. Effect of haptotaxis, chemotaxis and proliferation is analyzed by
the numerical simulations and the results validate the model behavior.
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