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Abstract: The conventional network has numerous challenges due to its strict rule-based configurations and dependen-
cies. Software-Defined Networking (SDN) responds by separating the control plane, which controls network decisions,
from the data plane, in the role of packet forwarding, therefore creating a paradigm change. This study proposes an SDN-
based traffic flow regulation framework utilizing Open vSwitch (OVS), the Ryu controller, and its associated RESTful APls.
Designed primarily to enforce Quality of Service (QoS) rules dynamically, the framework is flexible enough to meet the
changing needs of several application-layer protocols. The centralized control facilitated by the Ryu controller enables
the dynamic and flexible implementation of QoS rules and rapid response to changes in network conditions. Validation of
the proposed system is performed through extensive real-time traffic monitoring using packet analysis tools such as TCP-
Dump and Wireshark. Experimental results show that SDN-based design emphasizes its potential power as a practical
solution to conventional networking limitations since it greatly improves network performance and responsiveness.
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Test Ortamlari icin Ryu’nun REST API’leri ile SDN Uzerinde Protokol
Tabanh Trafik Akisi Dazenlemesi

Ozet: Geleneksel aglar, kati kural tabanli konfigiirasyonlari ve donanimsal bagimliliklar nedeniyle cok sayida zorluk
yasamaktadir. Bu kisitlamalar, esnekligi sinirlamakta ve ag cihazlarinin siki entegre edilmis karar verme mantigi sebe-
biyle degisen ag kosullarina hizli adaptasyonu engellemektedir. Yazilim Tanimli Aglar (SDN), ag kararlarini kontrol eden
kontrol diizlemini, paket iletimi goérevini lstlenen veri dizleminden ayirarak 6nemli bir paradigma degisimi saglar. Bu
ayrim sayesinde ag yoneticileri, programlanabilir ¢6zimleri dinamik bir bigimde uygulayabilir ve ag islemlerini merkezi
olarak kontrol edebilir. Bdylece, dlceklenebilirlik ve esneklik dnemli él¢ide artirihr. Bu ¢alisma, Open vSwitch (OVS),
Ryu kontrolcls( ve iligkili RESTful API'lerini kullanan SDN tabanli trafik akisi dizenleme sistemi sunmaktadir. Sistem,
farkli uygulama katmani protokollerinin degisen ihtiyaclarini karsilayacak bigimde tasarlanmis, Hizmet Kalitesi (QoS) ku-
rallarini dinamik olarak uygulama yetenegine sahiptir. Protokol bazli trafik yénetimi sayesinde bant genigligi etkin sekilde
tahsis edilir ve ag gecikmesi azalir. Ryu kontrolclsi tarafindan saglanan merkezi kontrol, QoS politikalarinin dinamik ve
esnek uygulanmasini kolaylastirmakta ve ag kosullarindaki degisikliklere hizli cevap verilmesini miimkan kilmaktadir.

Anahtar Kelimeler: Yazilim tanimli aglar, hizmet kalitesi, ag trafigi.
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1 INTRODUCTION

Due to tightly integrated decision-making logic and packet
forwarding systems, traditional networks are complicated,
challenging to operate, and essentially rigid. Management,
scalability, and the fast implementation of new network ser-
vices or policies are seriously challenged by this associa-
tion. Traditionally, network managers have been obliged to
configure every network device separately. Network man-
agement is a difficult task; in this way, a device-by-device
setup method is error-prone and ineffective. Further ag-
gravating these management challenges is the stiffness of
conventional network designs[1]. Usually based on closed,
proprietary systems, such networks depend on extensive
hardware changes, vendor clearances, or firmware updates
to introduce new features or improvements, causing signif-
icant delays in adjusting to technology advancements and
changing user expectations. The capacity of network op-
erators to rapidly adapt to shifting traffic patterns, security
concerns, or economic needs is much limited by this rigidity.

Emerging as a transforming answer to these long-
standing issues, software-defined networking (SDN) drasti-
cally changed the networking context. Fundamentally, SDN
separates the data plane, which handles packet forwarding,
from the control plane of the network, which governs logical
decision-making. From conventional IP network designs,
which usually combine these two planes inside individual
network devices, this separation of concerns marks a fun-
damental change. Separating the control and data planes
allows SDN to offer a centralized control architecture un-
der management by a software-based controller[2]. With
a complete, worldwide perspective of the network struc-
ture and state provided by this centralization, network man-
agers had previously uncommon control over network oper-
ations. Unlike conventional networks, where every device
makes forwarding decisions based on its local configura-
tion, SDN’s centralized controller handles these decisions
depending on the whole network perspective. Complicated
network chores such as policy enforcement, fault manage-
ment, traffic engineering, and security management are
much simplified by this approach.

Furthermore, routers, switches, and firewalls become
simple, programmable forwarding elements in SDN sys-
tems that run instructions from the centralized controller.
These gadgets greatly simplify and cut costs since they no
longer feature sophisticated decision-making software. In-
stead, they concentrate just on running commands and for-
warding packets depending on guidelines and instructions
provided by the SDN controller[3]. This change dramatically
lowers the administrative load of controlling unique device
configurations and removes obstacles to implementing ad-
ditional network capabilities.

The programming capabilities of SDN are one of its most
important advantages. Programmable APIs offered by the
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apps and services without changing hardware or depend-
ing on vendor-specific firmware upgrades. Through dy-
namic reconfiguration and efficient resource allocation, this
programmability allows quick response to changing net-
work needs such as unexpected traffic loads or the devel-
opment of new security concerns. Furthermore, flexibility
is SDN’s capacity to apply abstraction layers. High-level
rules and operational goals can be defined by network op-
erators without involving close interaction with the complex
hardware details. By enabling managers to better, more in-
tuitively govern and regulate network behavior, abstraction
greatly reduces operational complexity and the probability
of human mistakes.

Adoption of SDN also helps with simpler integration with
new technologies, such as cloud computing, Internet of
Things (loT), and 5G networks, which call for agile, respon-
sive network infrastructures able to sustain dynamic, high-
volume traffic. Because it can rapidly assign resources,
handle congestion, and react fast to network faults or se-
curity events, the centralized control paradigm that SDN of-
fers is intrinsically more suited for managing such dynamic
network settings.

SDN'’s flexibility is especially crucial for implementing
Quality of Service (QoS) requirements. To satisfy the sev-
eral needs of various application protocols, QoS guaran-
tees effective bandwidth allocation, prioritizes vital traffic,
and lowers latency. Unique performance criteria for proto-
cols such HTTP, FTP, SMTP, IMAP, and DNS can greatly
burden conventional network systems. Real-time applica-
tions, for example, call for quick and effective responses, a
capacity challenging with traditional network architectures.

All things considered, the complexity, rigidity, and man-
agement difficulties of conventional networks arise primar-
ily from their natural design, which firmly connects the con-
trol and data planes. According to these concerns, in
this paper, we propose a protocol-based traffic flow regu-
lation within an SDN framework and test-bed m using Open
vSwitch (OVS), the Ryu controller, and its RESTful APlIs.
The primary objective is to develop a comprehensive traffic
management system capable of enforcing QoS rules tai-
lored to application-specific requirements, thereby optimiz-
ing network performance and preventing congestion. The
proposed system leverages the programmability and cen-
tralized management capabilities intrinsic to SDN to effec-
tively address common network management challenges,
including bandwidth allocation, congestion control, proto-
col prioritization, and Differentiated Services Code Point
(DSCP) values for traffic differentiation.

Furthermore, we utilize virtual Open vSwitches and
Raspberry Pi 4B. The Raspberry Pi is specially chosen for
its small size, low cost, and capacity to replicate real-world

SDN controller let network operators add creative network 1 https:/github.com/wtrlili/Protocol-Based- Traffic-Flow-Regulation

52

S. Cogay, A. Tulum, G. Seginti


https://github.com/wtrlili/Protocol-Based-Traffic-Flow-Regulation

ITU Journal of Wireless Communications and Cybersecurity

network restrictions closely. Representing a different host
with each node set to replicate different application-layer
protocols, including HTTP, FTP, SMTP, ICMP, and DNS,
network namespaces (netns) are used to replicate isolated
network environments. These hosts are connected by sev-
eral virtual switches, therefore guaranteeing a dynamic and
realistic simulation environment. Uniform assignment of
static IP addresses helped to provide consistent testing and
experimentation. To sum up, our contributions in this study
are:

+ SDN-based traffic flow regulation framework and test-
bed using Open vSwitch, the Ryu controller, and its
RESTful APIs to enforce QoS policies dynamically.

+ Applying and validating QoS policies tailored to various
protocol demands, including HTTP, FTP, SMTP, DNS,
and ICMP.

» A comprehensive network monitoring through packet-
level analysis using tools such as TCPDump and Wire-
shark to ensure QoS policies are effectively enforced.

« Utilizing OpenFlow-compliant flow tables and queue
configurations in Open vSwitch, enabling precise traffic
management and efficient resource utilization.

The rest of the paper is organized as follows. In Section
I, we provide a detailed literature survey. Then, Section IlI
gives the details of the proposed system. In Section IV, we
provide our experimental results. Finally, we conclude in
Section V.

2 RELATED WORK

SDN has emerged as a transformative technology, provid-
ing centralized, programmable control of network functions
to effectively meet diverse network requirements. Recent
research explores various dimensions of SDN implementa-
tion, with an emphasis on performance evaluation, protocol
optimization, and integration with emerging technologies,
including Network Function Virtualization (NFV) and the In-
ternet of Things (loT).

Performance evaluations of SDN controllers, explicitly uti-
lizing the Ryu controller are conducted within Mininet simu-
lations [4]. Their research mainly addresses QoS measures
of bandwidth and throughput. The outcomes show that
the Ryu controller efficiently controls network resources,
improving network flexibility and efficiency over conven-
tional networks. POX and Ryu SDN controllers are com-
pared in different network topologies using Mininet and ex-
amines their throughput, latency, and jitter performance in
terms of QoS [5]. Similarly, in [6], it is compared three
SDN controllers regarding packet loss and jitter within load-
balancing and firewall scenarios. Their findings indicated
the superior performance of Ryu and OVS controllers, ef-
fectively reducing packet loss and jitter, outperforming the
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basic OpenFlow reference controller. This highlights the
significance of controller selection in SDN deployments,
particularly regarding network reliability and service qual-
ity.

In loT contexts, vertical handover times for lIoT devices
are analyzed within SDN-enabled heterogeneous network
environments [7]. Using Raspberry Pi testbeds, their study
finds significant differences in handover latency depending
on network interfaces and transition orientations, highlight-
ing the requirement for tailored SDN solutions in loT envi-
ronments to get flawless connectivity. It is assessed that
whether Raspberry Pi devices are suitable for loT archi-
tecture as SDN-activated switches [8]. The study confirms
Raspberry Pi as a affordable, low-cost substitute for SDN
in loT, greatly lowering hardware costs while preserving
necessary QoS standards, including bandwidth, delay, jit-
ter, and packet loss. This work underscores the potential
for economical yet efficient network management solutions
using open-source platforms. It is offered that a lightweight
framework that dynamically balances traffic load in SDN-
based 5G/6G networks using OpenFlow Group Tables [9].
Experiments based on Mininet and Ryu have demonstrated
that the method improves link utilization and throughput.

OpenPATH further expands the application-aware capa-
bilities of SDN through a modular data-plane approach
[10]. By supporting network function chaining and paral-
lel execution of network functions (NFs), the framework in-
creases throughput, reduces latency, and most effectively
uses resources. By including programmable logic right in-
side the dataplane, the design of Open PATH solves con-
straints in traditional SDN systems and lowers controller
overhead, hence improving general network performance.
It is investigated live migration capabilities of virtualized
Evolved Packet Core (EPC) network components using
both container-based and Virtual Machine (VM)-based vir-
tualization platforms [11]. They demonstrated that while
container platforms achieved shorter migration completion
times, VM-based systems provided reduced service down-
time. Insights are crucial for optimizing NFV deployments
within mobile networks, particularly in 5G contexts requiring
stringent QoS guarantees. It is explored that network slic-
ing in 5G core networks using the Ryu SDN controller [12].
Their lightweight implementation leveraged existing Linux
kernel tools for resource allocation and effectively demon-
strated performance isolation among slices. This approach
highlights the flexibility of SDN in meeting diverse applica-
tion demands within a shared network infrastructure, re-
inforcing SDN’s role in facilitating next-generation network
services.

From loT to sophisticated virtualized mobile networks,
these studies collectively show the revolutionary potential
of SDN in obtaining improved performance, flexibility, and
cost-efficiencies across many networking environments.
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3 PROTOCOL-BASED TRAFFIC FLOW REG-
ULATION

The proposed system consists of a Raspberry Pi 4B run-
ning Open vSwitch, with traffic regulation managed by the
Ryu controller. The architecture separates the data and
control planes, where OVS handles packet forwarding and
Ryu enforces flow rules based on protocol-specific QoS
requirements. We explain our proposed flow regulation
framework in three main parts. The details are given in the
sections below.

3.1 Data Model

This section highlights how traffic is managed using flow
tables, REST APIl-based QoS configurations, and IPv4 traf-
fic classification to improve network performance. The Flow
Table in the system ensures efficient traffic management by
defining rules based on match fields (such as IP addresses
and protocols), actions (like forwarding or dropping pack-
ets), and counters for monitoring traffic. The REST API
Data Models enable dynamic QoS configuration, including
queue assignments and bandwidth management, by using
parameters such as port names, queue IDs, and packet-
matching rules. The IPv4 protocol is essential for sorting
traffic and enforcing QoS. It uses fields like DSCP to set
priorities, source, and target addresses to route traffic, and
the protocol field to decide how to handle packets.

3.1.1 Flow Table

The data plane components act as simple forwarding de-
vices within the system. However, the system would be
inefficient if all the actions relied solely on the communica-
tion between the forwarding device and controller. Thus,
a Flow Table structure is used to maintain a more efficient
organization. These tables determine how network traffic
is processed and forwarded within the topology based on
predefined criteria. If a packet matches the rule defined in
the table, the forwarding device performs the associated ac-
tion on the packet. However, if there is no matching entry,
the system advises the controller to take appropriate action.
While flow tables do not provide switches’ decision-making
capabilities, they allow switches to execute actions based
on rules pre-configured by the controller.

The flow tables are crucial in enforcing QoS rules and
directing traffic according to protocol-specific requirements.
For example, two hosts can send different HTTP requests
to the same server. The switch must be able to direct the
request to the server and then send responses to the re-
spective hosts without any mismatches. The structure of
the flow table can be listed as follows [13].

1. Match Fields: These fields define the criteria for
matching incoming packets. The following values can
be used for matching the packets with the actions:
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» Source IP address

 Destination IP address

» Transport-layer Protocol

» Port Number

2. Actions: Once a packet matches the defined criteria,

specific actions are performed on the packet. The com-
monly used actions are:

» Forwarding to a port or switch

+ Mapping packets to QoS queue for prioritized pro-
cessing

+ Drop packets for congestion management

3. Counters: Each flow entry is associated with a
counter that monitors traffic for the matched criteria.
These metrics include:

« Packet Count
+ Byte Count

The flow table in Table[1] shows Rule R1, which forwards
packets to a specific port. The use of wildcard characters
in match fields (e.g *) enables flexible rule matching and
reduces the complexity of rule definitions. In the suggested
system, the flow tables are managed dynamically by the
Ryu controller via the OpenFlow13 protocol. Moreover, the
prioritization protocols are applied via the RESTful API of
the Ryu controller.

Table 1 Example Flow Table

Rule  Field 1 Field2  Priority  Action Counter
R1 1+ 0** 1 Forward 1 25

R2 0** 1+ 2 Forward2 35

R3 10* 11* 2 Drop 25

R4 01* 11* 3 Forward 4 17

R5 00* 10* 3 Forward5 32
3.1.2 REST API Data Models

Queue Configuration: The Queue Configuration Model
represents how Quality of Service (QoS) queues are de-
fined and implemented in Open vSwitch to regulate network
traffic. The fields used for the definition can be enlisted as:

» port_name: The port on the switch where the queues
are applied.

+ type: Defines the queuing discipline (e.g., linux-htb for
hierarchical bandwidth management)

* max_rate: The maximum bandwidth allocated to the
port (in bits per second).

* queues: It consists of a list of queue configurations.
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— queue_id: A unique identifier

— max_rate or min_rate: Specifies the minimum
or maximum bandwidth allocated to the queue to
ensure traffic constraints.

QoS Rule Model: The QoS Rules Model defines the
policies used to regulate network traffic in accordance with
application-specific requirements. The Ryu controller dy-
namically configures these rules and implemented in Open
vSwitches to enforce prioritization, bandwidth allocation,
and trafficking.

» match: Defines the criteria for identifying packets to
which QoS policies should be applied

1. nw_src: Matches packets by source IP address.
2. tp_dst: Matches packets by the port number.
3. nw_proto: Matches packets by the protocol.

« actions: Specifies the actions to be applied to packets
that match the conditions

1. queue: Assigns the packet to a queue for priori-
tized processing.

2. mark: Sets the DSCP value in the packet’s IP
header ryubook_cqos

3.1.3 IPv4

The IPv4 protocol is fundamental as it provides the essen-
tial fields for identifying and classifying traffic. The fields on
the protocol, such as DSCP (Differentiated Services Code
Point), Protocol, and Source/Destination IP addresses, are
integral for the Ryu controller to enforce QoS policies.

The ToS (Type of Service) field in the IPv4 header
includes DSCP, which is specifically used for marking
the packets to indicate their priority level. For example,
DSCP value of 46 (Expedited Forwarding) is often used for
latency-sensitive traffic, whereas a value of 0 (Best Effort)
is assigned to non-prioritized traffic [14].

The source and destination address fields identify traf-
fic endpoints to determine the path of the traffic, whereas
the protocol field specifies the transport protocol (e.g., TCP,
UDP) used for transmitting the packet. The fields enable
the system to classify packets and then apply prioritization
techniques for ensuring QoS.

3.2 Network Architecture

The network architecture, as illustrated in the Figure 1] rep-
resents the fundamental characteristic of SDN by decou-
pling the data plane and the control plane. This design
facilitates centralized traffic management and application
of QoS policies. At the core of the system, the Ryu con-
troller acts as the centralized management unit. The con-
troller communicates with the data plane components via
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the Southbound API OpenFlow 1.3 protocol. It is responsi-
ble for managing the network behavior by enforcing the flow
rules.

The data plane consists of seven Open vSwitches,
Bridge 1 to Bridge 7. These switches are interconnected in
a ring topology form to forward the traffic between hosts and
servers based on the rules that lie in the Flow Table. The
hosts simulate end-user devices to generate traffic. The
servers represent various applications to allow the system
to enforce protocol-specific QoS rules. These include:

« HTTP Server For web traffic IP: 10.0.0.1

« FTP Server For file transfer services IP: 10.0.0.3

DNS Server For domain name resolution IP: 10.0.0.5
« SMTP Server For email trafficing IP: 10.0.0.6

» Two Hosts For pinging and ICMP-based communica-
tion IP: 10.0.0.2 and 10.0.0.4

Furthermore, the architecture supports the addition of
new hosts, servers, or switches without requiring major re-
configuration. These demonstrate its adaptability to chang-
ing network requirements. The hardware design of the sys-
tem is centered around a single Raspberry Pi 4B (8GB
RAM), which serves as the platform for deploying multiple
QVS. 4 Python Scripts are used for initializing and config-
uring Ryu manager to interact with RESTful API:

» gos_simple_switch_13.py: Ryu application for imple-
menting a basic OpenFlow 1.3 switch. Handles for-
warding and QoS rules by working with flow tables and
queues.

* rest_qos.py Exposes a RESTful API to interact with
the Ryu controller for managing QoS policies. It allows
administrators to define, update and remove QoS rules
and queue configurations.

+ rest_conf_switch.py Provides RESTful APIs to man-
age and configure OF switches.

+ rest_topology.py Enables RESTful APIs to retrieve
and manage network topology information. It can dy-
namically discover the interconnections between the
switches and hosts [15].

In this step, we implement three main algorithms: Initial-
ization, AddFlow, and EventHandling. Algorithm Initializa-
tion initializes the MAC-to-port mapping dictionary and in-
stalls a default "table-miss" flow on the OpenFlow switch.
This default flow rule forwards all unmatched packets to
the controller for further handling. Initially, it sets up an
empty dictionary for MAC-to-port mappings, retrieves data-
path and related protocol objects, and defines a low-priority
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flow entry matching all incoming packets. This ensures ef-
fective management of unknown packets by directing them
to the controller.

Algorithm AddFlow describes the process of adding flow
rules to an Open vSwitch. It constructs and sends a flow
modification message containing specified match criteria
and actions. The algorithm checks for an optional buffer ID;
if provided, the flow modification message includes this ID.
The flow rule defines precisely which packets it applies to
and the actions to perform, such as forwarding or applying
QoS policies.

Algorithm EventHandling manages incoming packets
through Packet-In events. It extracts packet data, learns
source MAC addresses, and updates MAC-to-port map-
pings to determine packet forwarding decisions. If the desti-
nation MAC address is already known, the algorithm installs
a flow rule to handle similar packets directly in the future, re-
ducing overhead on the controller. The packet is flooded to
all switch ports if the destination MAC is unknown. This ap-
proach optimizes network performance and efficiently han-
dles packet forwarding decisions.

3.3 Dynamic Behavior

The dynamic behavior of the system is illustrated by two
complementary diagrams: State Machine Diagram, and
QoS Activity Diagram. Each of these provides a view of
the interaction between system components and QoS en-
forcement.

The diagram in Figure [2| illustrates the key states of
the Ryu Controller as it operates and interacts with Open
vSwitch (OVS). The controller adapts to incoming traffic
and implements QoS policies when necessary. After initial-
ization, the controller begins listening for incoming packets
or REST API requests. Subsequently, it handles Packet-In
events triggered when no matching flow rule exists for the
packet. A table miss is detected if a packet has no match-
ing rule. In the absence of a specific QoS policy, a fallback
action, such as fallback or drop, is applied. When a QoS
policy is added via REST API, the controller updates the
respective flow table. The controller sends the appropri-
ate flow rule to Open vSwitch to enforce QoS. Finally, the
controller monitors network traffic to validate the application
and QoS policies.

Secondly, upon packet arrival, the switch first analyzes
the packet header to identify its protocol type (e.g., HTTP),
which is crucial for determining the traffic class and whether
special QoS handling is necessary. Next, the controller ver-
ifies whether a specific QoS rule exists for this traffic; if no
matching rule is found, default QoS rules are applied. If
a matching rule is present, the controller applies the set
QoS policy that is unique to that protocol. These QoS
rules control bandwidth allocation, delay, and priority, there-
fore giving critical traffic preference over less critical traf-
fic. Applying the necessary QoS rules directs the packet
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Fig. 3 Activity diagram for QoS enforcement.

towards its intended recipient. Using monitoring tools like
tcpdump or Wireshark for a thorough investigation, the sys-
tem constantly checks network traffic to verify adherence to
QoS rules throughout this process. In the end, the packet
reaches its target completely according to the imposed QoS
criteria. The activity diagram provides a detailed view of
how the system enforces QoS policies for an HTTP GET
request in Figure 3]

4 PERFORMANCE EVALUATION

Implementing the data plane within the network topology
is mostly dependent on the Raspberry Pi 4B (8 GB RAM).
The Raspberry Pi 4B has various fundamental parts to en-
able functioning and simple deployment. The Raspberry Pi
is connected to a monitor using a micro HDMI connection,
therefore granting Graphical User Interface (GUI) access.
Storage and operating system functionality are provided by
a 64 GB microSD card, which contains the Raspberry Pi
OS (64-bit) along with the Open vSwitch software. In the
software environment, various network management and
simulation tools are employed to conduct experiments ef-
fectively. Open vSwitch version 2.15 is selected due to its
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compatibility and proven stability with the Ryu controller.
The Ryu SDN controller supports Open vSwitch versions
that extend 2.10 to 2.15. Hence, version 2.15 is the best op-
tion because of its improved compatibility and steady per-
formance. These software choices are specifically selected
to ensure seamless integration, stability, and compatibility
between the controller and the network switch infrastruc-
ture.
The protocol serves the listed packages:

* HTTP Server: Hosted on H1. It runs a Python-based
HTTP server module. The configuration includes two
key types of HTTP traffic:

— A maximum bandwidth of 5 Mbps is allocated for
general HTTP traffic on port 80. DSCP value is
set to 10 for indicating standard priority for regular
operations

— A minimum bandwidth of 2 Mbps is reserved for
administrative HTTP operations on port 8080.
The DSCP value is set to 46, which is used for
expedited forwarding (EF) to ensure high-priority
and low-latency delivery.

* FTP: Hosted on H3. Uses vsftpd FTP server to support
passive connections. Traffic is divided based on:

— Data transfer is done via port 50000 in passive
connections. The maximum rate bandwidth of 10
Mbps is allocated. The DSCP value is set to 16 to
ensure moderate priority for FTP data transfer to
make sure to balance its requirements with other
network traffic.

— Port 21 is connected for establishing the connec-
tion between the host and the server. The min-
imum bandwidth of 128 Kbpsis reserved. The
DSCP value is set 8 for indicating low priority for
control traffic since it typically requires less band-
width.

+ SMTP Hosted on H6. Uses Postfix for test email trans-
mission over the network.

— The minimum bandwidth of 512 Kbps and DSCP
value of 10 is selected moderate priority. It en-
sures the email is delivered without delay under
normal network conditions on port 25.

* DNS Hosted on H5. Uses bind9 for local domain name
resolution requests.

— A minimum bandwidth of 256 Kbps is allocated for
DNS query responses. The DSCP value is set to
24 to ensure moderate priority for DNS traffic on
port 53. A quick resolution is important but not
as critical as high-priority tasks like administrative
HTTP traffic.

Packet Loss Over Time

HTTP.
HTTP with FR
- FTP
FTP with FR
e suTe

\ & ki —— SMTP with FR
* DNS.
= DNS with FR
icMp
60 ICMP with FR
50 \
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Fig. 4 Packet loss results.

— ICMP Hosted on H2. Used for network diagnos-
tics.

= The minimum bandwidth of 64 Kbps and
DSCP value of 8 is selected to indicate low
priority. Rather than enforcing the policy on
a specific port, it's applied to all ICMP traffic
that arises from host 2.

The packet loss analysis results, as shown in Figure 4}
demonstrate substantial improvements following the appli-
cation of flow regulation (FR) via QoS policies across vari-
ous network protocols (HTTP, FTP, SMTP, DNS, and ICMP)
over a monitoring period of 120 seconds, with measure-
ments taken every 20 seconds. Significant improvements
in packet loss ratios are observed in protocols after imple-
menting flow regulation. After using FR, FTP traffic shows
the most affected drop—from over 70% to almost 10%, sug-
gesting significant improvement in handling data-intensive
transfers. Likewise, the SMTP protocol shows a notable
drop from roughly 55% down to roughly 25%, underscoring
how well FR guarantees constant and dependable email
transmission. From about 45% to about 20%, DNS proto-
col packet loss drops indicate significant increases in net-
work dependability for moderate-priority services. ICMP
also clearly benefits from packet loss reduction ranging
from roughly 65% to roughly 20%, hence confirming the
effectiveness of the framework even for lower-priority diag-
nostic traffic. While showing progress, HTTP traffic main-
tains much higher packet loss than other protocols, thereby
lowering from about 60% to about 40%. For web-based
systems, this implies more optimizations could be helpful.

Figure [5] clearly illustrates the effectiveness of the imple-
mented QoS policies for different network protocols. The
allocated bandwidth for the HTTP protocol ranged from
a minimum of around 2 Mbps to a high of 5 Mbps, and
the measured bandwidth aligned at about 4.8 Mbps. This
alignment suggests that QoS regulations efficiently con-
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Bandwidth Usage
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Fig. 5 Bandwidth usage results.

trol HTTP traffic without running over the allocated re-
sources. Using roughly 7.24 Mbps, FTP protocol traffic
closely matched its permitted maximum bandwidth of 10
Mbps. This shows the system’s effective use of resources
and adherence to the desired QoS standards. With SMTP
using 0.57 Mbps, DNS 0.28 Mbps, and ICMP traffic hav-
ing the lowest actual utilization, protocols including SMTP,
DNS, and ICMP revealed reduced bandwidth usage. These
findings confirm the relevance of the given resources by
stressing protocol prioritizing and effective bandwidth limi-
tation depending on relative priority.

5 CONCLUSION

This work presents a complete SDN-based traffic flow
control system and test-bed using OVS, the Ryu con-
troller, and related RESTful APIs to enforce QoS require-
ments dynamically. The experimental evaluation dramat-
ically enhances network performance and dependability,
showing that the proposed solution addresses conven-
tional network constraints. In many application-layer pro-
tocols, including HTTP, FTP, SMTP, DNS, and ICMP, the
applied protocol-based management efficiently allocates
bandwidth resources and significantly lowers packet loss.
The bandwidth analysis proves that the QoS system effec-
tively used the assigned bandwidth resources, so it tightly
matched observed bandwidth consumption with predeter-
mined minimum and maximum thresholds. Effective man-
agement of protocol prioritizing revealed the valuable ad-
vantages of centralized control given by the Ryu controller.
Moreover, QoS interventions showed clear benefits regard-
ing packet loss metrics; packet loss ratios across all proto-
cols showed significant decreases, highlighting the frame-
work’s capacity to control high-priority network traffic and
increase general network responsiveness. The results con-

firm the adaptability of SDN architectures for dynamically
changing network resources depending on real-time needs
and guarantee the best network operation by validating
their scalability and flexibility.
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