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Abstract: The power amplifier (PA) is a nonlinear design for which an accurate characterization is required for modeling
and optimizing effectively. To tackle this difficulty, we present a method based on the fine and coarse modeling approach
along with the implementation of deep neural networks (DNNs). For this case, firstly the executed transistor is modeled
with the X-parameters and the DNN, as the ’fine modeling’. Then, the S-parameters are modeled with the help of
configured hidden-layer structure at the previous step as the ’coarse modeling’ leads to facilitate the overall PA sizing.
Finally, the PA is modeled through the optimized DNN, which leads to estimating the performances of PA at the extended
frequency in terms of S-parameters, output power, power gain, and efficiency. The presented fine and coarse modeling is
powerful enough to configure the hidden-layer configuration of DNNs without any need for other optimization methods for
determining the number of hidden layers with neurons in each one. The presented methodology is validated by designing
and optimizing a PA with a power gain of more than 11 dB and a power-added efficiency of around 60% operating with
600 MHz band frequency.
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Derin Sinir Ağı Tabanlı İnce ve Kaba Modelleme Yoluyla Güç
Kuvvetlendirici Performansının Tahmini

Özet: Güç kuvvetlendiricileri (GK), tasarımında yüksek doğruluklu bir karakterizasyonun kritik öneme sahip olduğu lineer
olmayan bir devre bloğudur ve zorlayıcı isterlere göre tasarlanması için etkin bir şekilde modellenip optimize edilmesi
gerekmektedir. Bu amaçla, öncelikle yapıda kullanılan transistörün X parametreleri ve DNN kullanılarak "ince mod-
eli" elde edilir. Ardından, önceki adımda yapılandırılmış gizli katman yapısıyla transistörün bu sefer S parametreleri
elde edilir, çünkü bu "kaba model" genel PA boyutlandırmasını kolaylaştırmaktadır. Son olarak, GK, optimize edilmiş
DNN aracılığıyla modellenir ve bu da GK’nın genişletilmiş frekanstaki performanslarının S parametreleri, çıkış gücü, güç
kazancı ve verimlilik açısından tahmin edilmesine olanak tanır. Önerilen ince ve kaba modelleme yöntemi, DNN’lerin
gizli katman yapılandırmasını belirlemek için yeterli olup, gizli katman sayısı veya her katmandaki nöron sayısı gibi hiper-
parametreleri belirlemek için ek bir optimizasyon yöntemine ihtiyaç duymamaktadır. Sunulan yöntem, 600 MHz bant
frekansında çalışan, 11 dB’den fazla güç kazancı ve yaklaşık %60’lık güç eklenen verimliliğe sahip bir GK’nin tasarlan-
ması ile doğrulanmıştır.

Anahtar Kelimeler: İnce ve kaba modelleme, derin sinir ağı, optimizasyon, güç kuvvetlendirici.
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1 INTRODUCTION
With the exponential advances in wireless communica-
tion systems, high-performance power amplifiers (PAs) for
transmitting signals are becoming necessary [1] and the
bandwidth of these systems is increasing day-by-day [2].
Hence, designing and modeling PAs require diverse tech-
niques and topologies to meet the targeted specifications
[3]. Recently, various optimization methods have been in-
troduced for the accurate modeling of PAs including active
and passive components. Among the diversely presented
methods, the neural networks (NNs) are used for modeling
the PAs which are able to approximate the nonlinear func-
tions accurately [4].

In [5], a signal reconstruction deep residual neural net-
work is introduced for digital pre-distortion (DPD) lineariza-
tion which results in generating the out-of-band spectrum.
The mixed-precision neural network is employed in [6]
for energy-efficient DPD which reduces the computational
complexity to the greatest degree. The convolutional neu-
ral network is introduced in [7] for modeling the PA with low
computational complexity. In another study, [8], the deep
neural network (DNN) is used for reducing the training time
with the help of transfer learning. The recurrent neural net-
work as another type of NN is used in [9] for behavioral
modeling of PA. In [10], the DNN is executed for model-
ing and sizing the PA through the long short-term memory
(LSTM)-based technique.

The NN can also be used for modeling the active de-
vice that in [11], it is employed for generating an automated
optimization process. In summary, various methods are
also introduced for modeling the transistors through NNs
[12]. As it is obvious, starting the optimization process of
PA from the transistor level is significant enough [13]–[15].
For this case, we propose an intelligence-based optimiza-
tion method based on firstly modeling the high-electron-
mobility transistor (HEMT) through the X-parameters with
DNN as the ’fine modeling’. Afterward with the trained net-
work, focus on the structure of hidden layers, a new DNN is
constructed with the S-parameters of PA in which the con-
structed DNN is as the ’coarse modeling’. Finally, with the
configured DNN in which the number of hidden layers with
the number of neurons are known from the previously con-
structed DNNs, a new DNN is trained for optimizing the PA
in terms of the S-parameters (i.e., S11, S22, S21), power gain
(Gp), output power (Pout), and power added efficiency (PAE).
The proposed methodology is executed in a fully automated
way leads to optimize design parameters of any PA that re-
sult in high-performance outcomes. In this study, we de-
sign and optimize a PA operating from 1.7 GHz to 2.3 GHz
in which Gallium nitride (GaN) HEMT is used as an active
device.

This work is organized as follows: Section 2 is devoted to
presenting the methodology that is based on the fine and
coarse modeling in which the DNNs are constructed. The
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Fig. 1 A flowchart of presented fine and coarse modeling app-
rocah in this study.

effectiveness of the proposed approach is validated by de-
signing and optimizing a PA with 600 MHz bandwidth and
the related simulation results are presented in Sec. 3. Fi-
nally, Sec. 4 concludes this study.

2 PROPOSED METHODOLOGY BASED ON
FINE AND COARSE MODELING ALONG
WITH TRAINING DNNs

As previously presented, the DNN method is strong enough
for learning nonlinear behavior between input and output
corresponding data. For this case, we propose an auto-
mated methodology that is based on i) modeling HEMT
device through X-parameters (fine modeling), ii) modeling
PA with S-parameters with the help of constructed DNN
at the previous step (coarse modeling), and iii) optimizing
the PA in terms of one-tone continuous wave (CW) per-
formances. For all the trained DNNs, the normalized root
mean square error (RMSE) is a factor for calculating the
convergence of NN and also the rectified linear unit (ReLU)
function is executed as the activation function. This sec-
tion is devoted to presenting the proposed methodology in
which the flowchart of ’fine and coarse modeling’ through
DNNs is depicted in Figure 1.

2.1 Fine Modeling
X-parameters are frequency-dependent parameters, highly
accurate, and widely used modeling tools for nonlinear
high-frequency structures. It consists of three additional
terms as XF, XS, and XT in the output spectrum. XF cap-
tures a large signal harmonic response and XS with XT cap-
tures the small signal sensitivity by representing the inci-
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dent and scattered waves. Functions for Bpm are reflected
waves (labeled with port p and harmonic m), and are given
small extraction tones as Aqn (labeled with port q and har-
monic n). The detailed definitions are presented in (1) and
(2).

Bpm = X (F)
pm (

∣∣A11
∣∣)Pm+ X (S)

pm,qn(
∣∣A11

∣∣)Pm−nAqn

+ X (T )
pm,qn(

∣∣A11
∣∣)Pm+nA∗

qn (1)

where,

P =
A11∣∣A11

∣∣ (2)

As the first step of optimization, the GaN HEMT transis-
tor is modeled through the LSTM-based DNN in which the
X-parameters are used as a dataset for training. As Figure
1 shows in the fine modeling step, the input layer of LSTM-
based DNN includes specification as the input frequency
(fin), input power (Pin), gate-source (Vgs) and drain-source
(Vds) and the output layer is the Bpm. Here, the LSTM-
based DNN is constructed and the RMSE specification is
considered. If this specification is suitable enough, then the
constructed hidden layers (including the number of LSTM
layers with neurons in each one) are fixed for modeling the
next DNNs.

2.2 Coarse Modeling
After modeling the HEMT device through the X-parameters
and achieving the hidden-layer structure, this configuration
of hidden layers is employed for modeling the PA through
S-parameters. The general structure of LSTM-based DNN
used for coarse modeling is depicted in Figure 1. For this
kind of network, the input layer includes S11 and S22 spec-
ifications and the output layer represents S21 result. This
step of modeling will lead to improving the optimization pro-
cess in which the overall performance of PA will be en-
hanced based on S-parameters and one-tone continuous
wave (CW) performances in the next step.

2.3 Overall PA Optimization
After completing the fine and coarse modeling, the PA must
be optimized in terms of existing parameters (here, capac-
itor (C) and inductor (L)) to achieve high-performance out-
comes in terms of S11, S22, S21, Gp, Pout, and PAE specifica-
tions. Figure 2 shows the DNN structure leading to i) opti-
mizing the PA in terms of inserted design parameters, and
ii) estimating the output specifications at the determined
frequencies. For this kind of DNN, the hidden-layer struc-
ture is the one achieved from fine modeling.
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Fig. 2 Structure of LSTM-based DNN for optimizing the PA and
achieving the optimal design parameters along with predicting
the extended frequencies.

3 SIMULATION RESULTS

For executing the proposed methodology, a CPU environ-
ment with an Intel Core i7-4790 CPU @ 3.60 GHz and 32.0
GB RAM is prepared first. Then, a GaN HEMT transistor as
an active device namely ’Ampleon CLF1G0060-10’ is se-
lected. For the presented procedure, the automated envi-
ronment is generated by the combination of ’Keysight ADS’
and ’MATLAB’ as the electronic design automation tool and
numerical analyzer, respectively. For all the trained DNNs,
the solver is set to ’adam’ and ’gradient threshold’ is set to
1. This section describes the practical implementation of
the proposed method for the PA operating with 600 MHz
band frequency.

As the first step, the fine modeling is executed based on
the X-parameters generated by the fin, Pin, Vgs, Vds [16],
and Bpm specifications as presented in Eq. (1). Here,
the modeling is executed for p=2 and m=5. With the help
of 500 data (achieved from random iteration), the LSTM-
based DNN is trained results in the normalized RMSE value
presented in Figure 3. As it is obvious, the trained DNN
achieved 0.087 RMSE value when the number of hidden
layers is 4 with 200 neurons in each one.

Afterward, the coarse modeling is executed with the
help of configured PA through the simplified real frequency
technique [17] and also by the generated gate and drain
impedances through the load-pull simulation. Figure 4
presents the configured PA that input and output match-
ing networks include 4-LC with 2-LC ladders, respectively.
For the presented PA, Rogers RO4350B with εr=3.66 and
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Fig. 3 Accuracy of the trained DNN at the fine modeling step.
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Fig. 4 Optimized PA with the executed GaN HEMT device; Unit
of each capacitor and inductor are (pF) and (nH), respectively.

a thickness of 0.508 mm is used as a substrate and it
is biased with a drain-source voltage of 50 V and quies-
cent drain-source current of 40 mA. With this constructed
PA, 800 sequences include multi-segment S11, S12, and S22
specifications are generated for training the LSTM-based
DNN as the coarse modeling step. In this stage, the hidden-
layer configuration constructed from the fine modeling step
is exactly substituted. This step leads to facilitating the siz-
ing optimization of configured PA.

For the optimized PA operating from 1.7 GHz to 2.3 GHz,
various results in terms of S-parameters and one-tone CW
performances (i.e., Pout, GP, and PAE at 3-dB gain compres-
sion) are performed. Figure 5 shows the detailed results
for S11, S22, and S21 specifications. Here, the simulated S-
parameters are compared with the estimated results with
the help of trained DNN from 2.1 to 3 GHz. Additionally,
one-tone CW performances are also presented in terms of
simulated and predicted results in Figure 6. For the used
HEMT device and the configured PA, a maximum PAE value
of 60.2% with a linear Gp value larger than 11 dB at 40 dBm
output power is achieved. It is observed that the predicted
regions in both Figure 5 and Figure 6 are tracking the re-
sults achieved from simulations in an acceptable manner.
The stability factor is well-enough in the whole bandwidth,
which shows that the input and output matching networks
are optimized in an improved way.

Fig. 5 S-parameter performances of the optimized PA.

Fig. 6 Pout, Gp, and PAE results at 3-dB gain compression.

4 CONCLUSIONS
In this work, a DNN-based optimization method based on
fine and coarse modeling is proposed. Firstly, the executed
HEMT device is modeled through X-parameters, and then
the S-parameters of PA are modeled through the config-
ured DNN at the fine modeling stage. The presented pro-
cedure is effective enough since the hidden-layer config-
uration generated from fine modeling is employed for the
DNNs at the coarse modeling stage and an NN is trained
for sizing the PA. The fine and coarse modeling helps de-
signers to configure the hidden layers of DNNs in a fast way
without any need for optimization methods. The whole pro-
cedure is automated way, and a 10 W PA is designed and
optimized to prove the effectiveness of the methodology op-
erating from 1.7 GHz to 2.3 GHz.
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