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Abstract
In this paper, we introduce a new generalization for the gamma function as hyper-gamma function. Some
identities and integral representation are obtained for the this new generalization.
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1. Introduction
There are a few special functions in mathematics that have particular significance and many applications in

many branches such as probability, statistics, physics, engineering, and other mathematical sciences. One of those
functions is the Euler’s gamma function. For x > 0, the Euler’s gamma function is defined as

Γ (x) =

∞∫
0

e−ttx−1dt.

For extensions of the gamma function to complex variables and for the basic properties see [12, p. 235-264]. The
recursion formula for the gamma function

Γ (x+ 1) = xΓ (x)

is well known [12] and this yields
Γ (x+ n) = (x)n Γ (x)

where (x)n is the Pochhammer symbol defined as

(x)0 = 1 and (x)n = x (x+ 1) (x+ 2) · · · (x+ n− 1) .

The gamma function has very extensive literature, especially; recently, numerous papers have been published
concerning with inequalities for the gamma and related functions [1,2,3,4]. Anderson et all. [3] obtained

lim
x→∞

log Γ
(
1 + x

2

)
x log x

=
1

2
. (1.1)

Anderson and Qiu [2] proved that

lim
x→∞

log Γ (x)

(x− 1) log (x− 1)
= 1 (1.2)

and for x > 1,
x(1−γ)x−1 < Γ (x) < xx−1 (1.3)
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where γ is the Euler–Mascheroni constant.
Gamma and related functions have some generalizations [5,6,7,8]. For example, Chaudhry and Zubair [5] have

introduced the following extension for the gamma function

Γp (x) =

∞∫
0

e−t−pt
−1

tx−1dt

where Re(p) > 0.
In this paper, we introduce a new generalization for the gamma function as nth hyper-gamma function of order

r defined as

Γ(r)
n (s) =

n∑
p=0

Γ(r−1)
p (s) , (r ≥ 1, n ≥ 0 and Re(s) > 0)

where Γ
(n)
0 (s) = Γ (s), Γ

(0)
n (s) = Γ (s+ n) and Γ (s) is the classical gamma function. We give the name "hyper-

gamma function" to our generalization because its representation is similar to the representation of hyperharmonic
number see [9,10].

In section 2, we study some properties of Γ
(r)
n (s). Moreover, we give two limits and an inequality concerning

with Γ
(r)
n (s) .

2. The main results

Theorem 2.1. Let Γ
(r)
n (s) be nth hyper-gamma function of order r. If r ≥ 1 and m ≥ 0, then

Γ(m+r)
n (s) =

n∑
p=0

(
n+ r − p− 1

r − 1

)
Γ(m)
p (s) .

Proof. Let (an) and (an) be two real initial sequences. The entries akn corresponding to these sequences are deter-
mined recursively by the formulas

a0n = an, an0 = an (n ≥ 0)

akn = ak−1n + akn−1 (n ≥ 1, k ≥ 1)

The entries akn have the following symmetric relation[10, relation 2]:

akn =

k∑
i=1

(
n+ k − i− 1

n− 1

)
ai0 +

n∑
t=1

(
n+ k − t− 1

k − 1

)
a0t . (2.1)

It is clear that Γ
(r)
n (s) has the recurrence relation as follows: Γ

(r)
n (s) = Γ

(r−1)
n (s) + Γ

(r)
n−1 (s) . Hence, If we select

a0n = Γ
(m)
n (s) and an0 = Γ

(m+n)
0 (s) = Γ (s), n ≥ 1, then arn = Γ

(m+r)
n (s) and from relation (2.1) we have

Γ(m+r)
n (s) =

r∑
i=1

(
n+ r − i− 1

n− 1

)
Γ (s) +

n∑
t=1

(
n+ r − t− 1

r − 1

)
Γ
(m)
t (s)

= Γ (s)

r−1∑
i=0

(
n+ r − i− 2

n− 1

)
+

n−1∑
t=0

(
n+ r − t− 2

r − 1

)
Γ
(m)
t+1 (s) . (2.2)

With selections k = r − i− 1 and b = n− t− 1, the Eq. (2.2) is written as

Γ(m+r)
n (s) = Γ (s)

r−1∑
k=0

(
n+ k − 1
n− 1

)
+

n−1∑
b=0

(
b+ r − 1
r − 1

)
Γ
(m)
n−b (s) .

From the following nice combinatorial identity [11, p. 160]

r−1∑
k=0

(
n+ k − 1
n− 1

)
=

(
n+ r − 1

n

)
, (2.3)
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we have

Γ(m+r)
n (s) =

(
n+ r − 1

n

)
Γ (s) +

n−1∑
b=0

(
b+ r − 1
r − 1

)
Γ
(m)
n−b (s)

=

n∑
b=0

(
b+ r − 1
r − 1

)
Γ
(m)
n−b (s)

=

n∑
p=0

(
n+ r − p− 1

r − 1

)
Γ(m)
p (s)

where p = n− b. Thus the proof is completed.

Corollary 2.1. The following identities hold

i) Γ(r)
n (s) =

n∑
p=0

[(
n+ r − p− 1

r − 1

)
Γ (s+ p)

]
. (2.4)

ii) Γ(r)
n (s) = Γ (s)

n∑
p=0

[(
n+ r − p− 1

r − 1

)
(s)p

]
(2.5)

where (s)p denotes the Pochhammer symbol.

iii) Γ(r)
n (1) =

n∑
p=0

(
n+ r − p− 1

r − 1

)
p!. (2.6)

iv) Γ(1)
n (s) = Γ (s)

n∑
p=0

(s)p .

v) Γ
(r)
1 (s) = (r + s) Γ (s) .

vi) Γ
(1)
1 (1) = 2.

Theorem 2.2. The nth hyper-gamma function of order r, Γ
(r)
n (s) , has the following integral representation

Γ(r)
n (s) =

∞∫
0

e−u
α

uαs−1du

where α =

[
n∑
p=0

(
n+ r − p− 1

r − 1

)
(s)p

]−1
.

Proof. Let α be as α =

[
n∑
p=0

(
n+ r − p− 1

r − 1

)
(s)p

]−1
. Then by using the representation in (2.5) of Γ

(r)
n (s), we

obtain

Γ(r)
n (s) = α−1Γ (s) = α−1

∞∫
0

e−tts−1dt =

∞∫
0

e−t
ts

αt
dt.

If we make change of variable t = uα, we have dt = αuα−1du and

Γ(r)
n (s) =

∞∫
0

e−u
α uαs

αuα
αuα−1du

=

∞∫
0

e−u
α

uαs−1du.
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Theorem 2.3. For the nth hyper-gamma function of order r, Γ
(r)
n (s) , we have

r∑
k=1

Γ(k)
n (s) = Γ

(r)
n+1 (s) − Γ (s+ n+ 1) .

Proof. By using the representation in (2.4) of Γ
(r)
n (s), we obtain

r∑
k=1

Γ(k)
n (s) =

r∑
k=1

n∑
p=0

(
n+ k − p− 1

k − 1

)
Γ (s+ p)

=

n∑
p=0

[
Γ (s+ p)

r∑
k=1

(
n+ k − p− 1

k − 1

)]
.

If we use the nice combinatorial identity in (2.3) we have

r∑
k=1

Γ(k)
n (s) =

n∑
p=0

(
n+ r − p
r − 1

)
Γ (s+ p)

=

n+1∑
p=0

(
n+ r − p
r − 1

)
Γ (s+ p) − Γ (s+ n+ 1)

= Γ
(r)
n+1 (s) − Γ (s+ n+ 1) .

Thus the proof is completed.

Theorem 2.4. For the nth hyper-gamma function of order r, Γ
(r)
n (s) , the following identities hold

i)

n∑
p=1

pΓ(r)
p (s) = nΓ(r+1)

n (s) − Γ
(r+2)
n−1 (s)

ii)

r∑
p=1

pΓ(p)
n (s) = rΓ

(r)
n+1 (s) − Γ

(r−1)
n+2 (s) + (n+ s)Γ (n+ s+ 1) .

Proof. i) It is clear that

n∑
p=1

pΓ(r)
p (s) = Γ

(r)
1 (s) + 2Γ

(r)
2 (s) + 3Γ

(r)
3 (s) + · · · + (n− 1) Γ

(r)
n−1 (s) + nΓ(r)

n (s)

= Γ
(r)
0 (s) + Γ

(r)
1 (s) + Γ

(r)
2 (s) + · · · + Γ(r)

n (s) − Γ
(r)
0 (s)

+ Γ
(r)
0 (s) + Γ

(r)
1 (s) + Γ

(r)
2 (s) + · · · + Γ(r)

n (s) − Γ
(r)
0 (s) − Γ

(r)
1 (s)

...
+ Γ

(r)
0 (s) + Γ

(r)
1 (s) + · · · + Γ(r)

n (s) − Γ
(r)
0 (s) − Γ

(r)
1 (s) − · · · − Γ

(r)
n−1 (s) .

Hence

n∑
p=1

pΓ(r)
p (s) = n

n∑
p=0

Γ(r)
p (s) −

n−1∑
p=0

Γ(r+1)
p (s)

= nΓ(r+1)
n (s) − Γ

(r+2)
n−1 (s) .

The proof of ii) is similar to the proof of i).

Theorem 2.5. For the nth hyper-gamma function of order r, Γ
(r)
n (s) , the following limits hold
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i) lim
s→∞

log Γ
(r)
n

(
1 + s

2

)
s log s

=
1

2

ii) lim
s→∞

log Γ
(r)
n (s)

(s− 1) log (s− 1)
= 1.

Proof. i) From Corollary 2.1 ii), we have

Γ(r)
n

(
1 +

s

2

)
= Γ

(
1 +

s

2

) n∑
p=0

[(
n+ r − p− 1

r − 1

)(
1 +

s

2

)
p

]
.

Hence

lim
s→∞

log Γ
(r)
n

(
1 + s

2

)
s log s

= lim
s→∞

log

(
Γ
(
1 + s

2

) n∑
p=0

[(
n+ r − p− 1

r − 1

)(
1 + s

2

)
p

])
s log s

= lim
s→∞

log Γ
(
1 + s

2

)
s log s

+ lim
s→∞

log
n∑
p=0

[(
n+ r − p− 1

r − 1

)(
1 + s

2

)
p

]
s log s

.

Since

lim
s→∞

log
n∑
p=0

[(
n+ r − p− 1

r − 1

)(
1 + s

2

)
p

]
s log s

= 0

and from the Eq. (1.1), we obtain

lim
s→∞

log Γ
(r)
n

(
1 + s

2

)
s log s

=
1

2
.

The proof of ii) is similar to the proof of i).

Theorem 2.6. For s > 1, the following inequalities hold(
n+ r
r

)
s(1−γ)s−1 < Γ(r)

n (s) <

(
n+ r
r

)
(s+ n)

s+n−1

where γ is the Euler–Mascheroni constant.

Proof. For s > 1, it is true that
n∑
p=0

(
n+ r − p− 1

r − 1

)
Γ (s) ≤ Γ(r)

n (s) =

n∑
p=0

(
n+ r − p− 1

r − 1

)
Γ (s+ p)

≤
n∑

p=0

(
n+ r − p− 1

r − 1

)
Γ (s+ n) .

By considering combinatorial identity in (2.3), the last inequalities above are written as(
n+ r
r

)
Γ (s) ≤ Γ(r)

n (s) ≤
(
n+ r
r

)
Γ (s+ n) .

By using the inequalities in (1.3) for x > 1,

x(1−γ)x−1 < Γ (x) < xx−1,

we have (
n+ r
r

)
s(1−γ)s−1 < Γ(r)

n (s) <

(
n+ r
r

)
(s+ n)

s+n−1
.



On the hyper-gamma function 69

3. Conclusion
In this work, we define a new generalization for the gamma function and study some properties of this new

generalization. We think that our study can be a reference to future researches on the bounds for values of Γ
(r)
n (s)

and relations of other generalizations and functions with Γ
(r)
n (s).
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