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Abstract
In this paper we establish a necessary and sufficient conditions under which a curve be a geodesic respect
to the warped Sasaki metric.
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1. Introduction

The main idea in this note consists in the modification of the Sasaki metric. First we introduce a new metric
called warped Sasaki metric on the tangent bundle 7M. This new natural metric will lead us to interesting results.
Afterward we establish a necessary and sufficient conditions under which a curve be a geodesic with respect to the
warped Sasaki metric.

2. Basic Notions and Definition on 7M.

Horizontal and vertical lifts on T'M.

Let (M, g) be an m-dimensional Riemannian manifold and (T'M, 7, M) be its tangent bundle. A local chart
(U, 2")i=1.., on M induces a local chart (71 (U), z%, y*);—1..., on TM. Denote by Ffj the Christoffel symbols of g
and by V the Levi-Civita connection of g.

We have two complementary distributions on 7'M, the vertical distribution V and the horizontal distribution #,
defined by :

V(z,u) = Ker<d77(m,u)) = {GL@|(I,U); a' € R}
[ 0 i, ik 0 7
,)L[(:E,’U.) = {a/ %|(I7u) —Qa u]FZ]W|(I’U); AN R},

where (z,u) € TM, such that T, )y TM = Hzu) © Vizw)-
Let X = X2 be alocal vector field on M. The vertical and the horizontal lifts of X are defined by

o
XV = xt 8, (2.1)
oyt
- 0 .0
H _ i — Yt _ 2k 2
D'e Xi— =X { 5~ YT ayk} (2.2)
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For consequences, we have (6‘21 Vi = % and (6‘2 W= 1, then ( i 82 )i=1...n is a local adapted frame in
TTM.
Remark 2.1. .

L ifw=w' g +w 5% € T, )T M, then its horizontal and vertical parts are defined by

0
wh—w%—wiﬂf‘fja 7 € Hiaw)

w’ = {w* +w uJF”}aak € Vi ,u)

2. if u = u'2; € T, M then its vertical and horizontal lifts are defined by

;0
uv ulaiyz' € V(%u) S ’H(m’u)

.0 0
H — i _ ] k
u u{g7 Y ”ayk}

Proposition 2.1 ([16]). Let (M, g) be a Riemannian manifold and R its curvature tensor, then for all vector fields X, Y €
I(TM) and p € T?M we have:

1. [XH,YH]p = [X, Y}f — (R(X,Y)u)V,
2. [XHYV], = (VxY)y,
3. XV, YV], =0,

where p = (z,u).

3. Warped Sasaki metric.

Warped Sasaki metric.
Definition 3.1. Let (M, g) be a Riemannian manifold and f+ M xR —]0, +oo[ be a smooth function. On the tangent

bundle T'M we define a warped Saski metric noted g7 2 by
L g (XY ™) (40 = 92(X,Y)
2. g3 (XY ) gy = 97 (XYY H) gy = 0
3. 97 (XY YV) o) = flz,7)9:(X,Y)
where X, Y € I(TM), (z,u) € TM and r = g(u,u). f is called warping function.

Note that, if f = 1 then g? is the Sasaki metric [16].

The notion of Sasaki metric and Gromol-Chegeer metric was considered in [1], [12], [13], [14], [15], [16].

Lemma 3.1. Let (M,g) be a Riemannian manifold, then for all x € M and
1 X" (g(u, u)@u) =0
2. XH(g(Ya u))(x,u) = g(vXY7 u)w
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Proof. Localy, if U : 2 € M — U, = u'52; € TM be a local vector field constant on each fiber 7, M/, then from
formulas (2.1) and (2.2) we obtain :

7 a S 1,7 a s
1. XH(Q(U’ u))(az,u) = [X @gsty yt *Fij yja—ykgsty yt](w,u)

X(g(U,U)s — 2(F§inngskys)(m,u)
X(g(Uv U)x - QQ(U» VXU))a:
0.
.0 .. 0
H _ 7 st k 7 s, t
2. X" (g(Y, u))(m,u) = [X @gsty —Fin Y’ Tykgsty Yy ](x,u)

= (XY, U)z —g(Y,VxU))s

3. Xv(g(u7 u))(z,u) = [Xl@gstysyt](z,u) = 2ngitut = 2g(Xa u)a:
9 L
4. Xv(g(}/, u))(m’u) = [Xzaiyigstysyt](x,u) =X gsin‘S = g(X7 Y)w

From Lemma 3.1, we obtain

Lemma 3.2. Let (M,g) be a Riemannian manifold, F : (s,t) € R? — F(s,t) €]0,+00[, a : M —]0,+oc[and B : R —
10, +o00] be smooth functions. If f(xz,r) = F(a(z), B(r)), then we have the following

1. Xv(f)(:c,u) = 2ﬂl(r)gz(X7 u)%(O‘(q’.)a 5(7'))
2. XH(f)(m,u) = g:v(.gTadMaa X)%%(Oé(l’),ﬁ(?"))
where (x,u) € TM and r = gz(u,u) .

In the following, we consider f(z,7) = F(a(z), 3(r)), where F : (s,t) € R? — F(s,t) €]0,+00[, a : M —]0, +00|
and 3 : R —]0, +oo] are smooth functions.

Theorem 3.1. Let (M, g) be a Riemannian manifold. If f(x,r) = F(a(z), B(r)) and V (resp V) denote the Levi-Civita
connection of (M, g) (resp (T'M, gf ), then we have:

—_

1. (6xHYH)p = (VXY)ZP;I - i(RI(X7Y)u)V7
2. (VxuYV), = (VxV)/+ / (f’;"") (Ru(u, Y)X)H
1 OF v
+Wgz(gradl\/laaX)%(O‘(I)aﬂ(r))yp
5 (T, f(:;r) (Ro(u, X)Y) ¥ + Qf(x’r)gx(gradMa,Y)%Z (a(z), B(r) XY
L @), = 2 E a0, 800 [0 (U)X + (X0 - (X Y)Y
20 (V) 2 (), () (gradysa)

for all vector fields X,Y € I'(TM) and p = (x,u) € TM, where R denote the curvature tensor of (M,g).
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The proof of Theorem 3.1 follows directly from Kozul formula, Lemma 3.1 and Lemma 3.2.

Lemma 3.3. Let (M, g) be a Riemannian manifold . If X, Y € T'(T' M) are vector fields and (x,u) € TM such that X, = u,
then we have

de X (Ya) = Yy + (Vy X) (-

Proof. Let (U,z") be a local chart on M in z € M and (7—*(U),z*,y’) be the induced chart on TM, if X, =
Xi(2) 2|, and Y, = Y(2) 52 |,, then

LX) = V@) iy + V@) o (1)
thus the horizontal part is given by
h i) 0 i i (Tk 9
(d X (Y:)" =Y (x)%kz,xm) -Y (m)X](I)Fij(I)W|(w,Xz)
= Y(f,xz)
and the vertical part is given by
WX = (0P @)+ V@@ ) gl
= (Vv X)ox.)

4. Geodesics of warped Sasaki metric

Lemma 4.1.
Let (M, g) be a Riemannian manifold and x : I — M bea curveon M. IfC :t € I — C(7) = (x(t),y(t)) € TM isa
curve in T'M such y(t) € Ty M (ie. y(t) is a vector field along x(t)), then
C =i+ (Vuy)V (4.1)

Proof. Locally, If Y € T'(T'M) is a vector field such Y (x(¢)) = y(¢) then we have

Using Lemma 3.3 we obtain

Theorem 4.1.
Let (M, g) be a Riemannian manifold and (T M, g;? ) its tangent bundle equipped with the warped Sasaki metric. If
flz,r) = F(a(z),B(r)) and C(t) = (z(t),y(t)) is curve on T M such y(t) is a vector field along x(t)), then

_ . , 1 ,OF H
Vel = Vi + RO,V w)i — 5 IVayl* S gradual
. olnF olnF olnF 14
+ [Vj;Vj;er [d(cv) 5. T 28, 9V, )| Viy — B 5 IV 3ull%y 4.2)

Proof.
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We have

600 = V[iH+(Viy)V][m’H+(va&y)v}
= Voui +V 1(Viy)" +V(v N +V(v gV (Van)”

f 1 Oln F

S(R(y, Vi)™ + Si(a)

. 1
= (V)" — (R 2)) !
L, V0" 1 S0 T (94

+B’% 9(Vu9) (Vi)Y +9(Vj;y,y)(ngy)v*Q(Vx'y’vi"y)yv}

+(ViViy) +

1 OF
—~9(Viy, Viy) = )

5 s (gradpyra

: . . 1 oOF H
Vel = [Vai+ [R. V)i - 5IVayl* 5 -gradaal
5'lnF aln v
Vi + B [20(V ey ) Vay — [Vl |
. . F H
= [Vai+ ROV 5005~ 51900 S gradal

OlnF ,O0ln F
55 ¥ 5

+ [vaxy + z(a)

3lnF

\4
+[ViViy + i) 9V 9)]Viy — 8 IV 4yl

From the Theorem 4.1 we obtain

Theorem 4.2.

Let (M, g) be a Riemannian manifold and (T M, g]‘? ) its tangent bundle equipped with the warped Sasaki metric. If
flz,r) = F(a(z),B(r)) and C(t) = (x(t),y(t)) is curve on T M such y(t) is a vector field along x(t)), then C'is a geodesic
on TM if and only if

. OF
Vl'x 7Hv$y”2 s gradMa - fR(ya xy)

alnF _ alnF alnF (4.3)
ViViy =0 IVayl*y = [d(a) +28' 9(V30,9)|Viy

Definition 4.1 ([16]). Let (M, g) be a Riemannian manifold and (TM, gf ) its tangent bundle equipped with the
warped Sasaki metric. A curve C(t) = (x(t),y(t)) is said to be a horizontal lift of the curve z(t) if and only if
Vsiy=0.

Definition 4.2 ([16] [15]). Let (M, g) be a Riemannian manifold and (7'M g? ) its tangent bundle equipped with the
warped Sasaki metric. If z(¢) is a curve on (M, g), then the curve C(t) = (x(t), #(¢)) is called the natural lift of curve

x(t).
Using Theorem 4.2 we deduce:

Corollary 4.1. Let (M, g) be a Riemannian manifold and (T M, gf ) its tangent bundle equipped with the warped Sasaki
metric. The natural lift ~ C(t) = (x(t), £(t)) of any geodesic x(t) on (M, g) is a geodesic on (T'M, g?).

Corollary 4.2. Let (M™, g) be a Riemannian manifold, (T M, gf ) its tangent bundle equipped with the warped Sasaki metric
and C(t) = (x(t),y(t)) be a horizontal lift of the curve x(t) (i.e. Vzy = 0 ). Then C(t) is a geodesic on (T'M, g;?) if and only
if x(t) is a geodesic on (M, g).
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Remark 4.1. If C(t) = (z(¢), y(t)) is a horizontal lift of the curve x(t) then locally we have

dy® cdxd
st 2
at Y g

& yt)=e K

V‘,tyzo = =0

where K € R™ and A(t) = (Ffjdd%j)s,i

Remark 4.2. Using the Remark 4.1 we can construct an infinity of examples of geodesics on (7'M, g}? )-

Example 4.1. Condider the upper half-plane
R} = {(x,y) eR? ; y> 0}}
with the metric of Lobatchevski’s non-euclidean geometry given by

1
911292225 ,  g12 =g21 =0.

The Christoffel symbols of the Riemannian connection are given by
Il =Tl =T%,=T%, =0, T2, => T%,=r,=T} =1
=i T T TN T, T T in T T

1. If C(t) = (zo,y(t), u(t), v(t)) is horizontal lift of the curve (zo, y(t)), then the matrix A(t) is given by
1/ )
Aty =—= ¢
o-—(% 4

C(t) = (zo,y(t), k1y(t), k2y(t))

2. IfC(t) = (x(t),y(t), u(t),v(t)) is horizontal lift of the curve (z(t), y(t)) such y(t) = az(t) + band z # 0, then

the matrix A(t) is given by
dx a —1
AW =~ @ ( 1 a )

and

and

¢ = (s.ytemw [muo) (1§ 7 )]K)

where K € R?

Example 4.2. Let R? equipped with the Riemannian metric in polar coordinate defined by :
g =dr® + h(r,0)*do*

Relatively to the orthonormal frame

= g L O
"Tor ' h(r,0)00
we have L oh Lon
Verer = Vereg = O7 ve(;e?“ = EEE(), v€0€9 = —Eaer.

and the matrix of Levi-Civita connection relatively to the orthonormal frame (e,, ey) is given by

0 -2
(g 5)
ghdg 0
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If C(t) = (r(t),0(t), u(t), v(t)) is horizontal lift of the curve (r(¢), 0(t)) then matrix A relatively to the orthonormal
frame (e,, ep) is given by

0 _10hdo
A( 1onae MG >
h Or dt
n t)=k Lohdoy 4 1 0h do
{ u()i 1COS(fh3r df)+ 2S1n(fh8rgt)7
v(t) = —k1 sin(f%%%) + ko cos(f%a—rd—(z),
Theorem 4.3.

Let (M, g) be a Riemannian manifold and (T M, g7) its tangent bundle equipped with the warped Sasaki metric and x(t)
be a geodesic on M. If f(x,r) = F(a(z),3(r)) and C = (x(t),y(t)) is a geodesic on T'M such ¥V ;y # 0 then

i) T2 (afat), 561)) = 0 (@4)

where r(t) = go()(y(t), y(t)).

Proof.
Let () be a geodesic on M then V ;.4 = 0. Using the first equation of formula (4.3) we obtain

. 1 oF . .
9(Viz,2) =0 = §\|V¢yHQgg(gmdMa,x)—fg(R(y,Vgcy)x,x) =0

= IV auIPa) 2 (aa(0), B (1)) = 0

Js
= #o) 0 (alalt), A1) = 0

O

Corollary 4.3. Let (M, g) be a Riemannian manifold and (T M, g? ) its tangent bundle equipped with the warped Sasaki
metric, f(z,r) = a(z) and x(t) be a geodesic on M. If the curve C' = (x(t), y(t)) is a geodesic on T M such V ;y # 0, then
f is a constant along the curve x(t).

The proof follows directly from Theorem 4.3.

Corollary 4.4.

Let (M, g) be a Riemannian manifold and (T M, g7) its tangent bundle equipped with the warped Sasaki metric, x(t) be a
geodesic on M and f be a constant along the curve x(t). If the curve C' = (x(t),y(t)) is a geodesic on TM such V .y # 0
then vaxy =0.

The proof follows directly from Theorem 4.3 and Theorem 4.2.

Corollary 4.5. Let (M, g) be a Riemannian manifold, (T M, g;? ) its tangent bundle equipped with the warped Sasaki
metric and f(x,r) = f(z) = a(zx) be a constant along the curve x(t). Then the curve C = (x(t),y(t)) is a geodesic on T M
such V ;y # 0 if and only if we have

Vi = [(@)R(V;y,y)d
{ ViViy =0. ) (4:5)

Corollary 4.6. Let (M, g) be a flat Riemannian manifold, (T M, g;f ) its tangent bundle equipped with the warped Sasaki
metric and f(z,r) = f(z) = a(x) be a constant along the curve x(t). Then the curve C = (x(t), y(t)) is a geodesic on T M
such V ;y # 0 if and only if x(t) is a geodesic on M and

V;Viy = 0.
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