MATHEMATICAL SCIENCES AND APPLICATIONS E-NOTES 5 (1) 85-92 (2017) ©MSAEN

On Geodesics of Warped Sasaki Metric

Abderrahim Zagane* and Mustapha Djaa

(Communicated by Ákos G. HORVÁTH)

Abstract

In this paper we establish a necessary and sufficient conditions under which a curve be a geodesic respect to the warped Sasaki metric.

Keywords: Horizontal lift; vertical lift; warped Sasaki metric; geodesic.

AMS Subject Classification (2010): Primary: 53C22; 53C25 ; Secondary: 53A45; 53C20; 58E20.

^tCorresponding author

1. Introduction

The main idea in this note consists in the modification of the Sasaki metric. First we introduce a new metric called warped Sasaki metric on the tangent bundle TM. This new natural metric will lead us to interesting results. Afterward we establish a necessary and sufficient conditions under which a curve be a geodesic with respect to the warped Sasaki metric.

2. Basic Notions and Definition on *TM*.

Horizontal and vertical lifts on TM.

Let (M, g) be an m-dimensional Riemannian manifold and (TM, π, M) be its tangent bundle. A local chart $(U, x^i)_{i=1...n}$ on M induces a local chart $(\pi^{-1}(U), x^i, y^i)_{i=1...n}$ on TM. Denote by Γ_{ij}^k the Christoffel symbols of g and by ∇ the Levi-Civita connection of g.

We have two complementary distributions on TM, the vertical distribution \mathcal{V} and the horizontal distribution \mathcal{H} , defined by :

$$\mathcal{V}_{(x,u)} = Ker(d\pi_{(x,u)}) = \{a^i \frac{\partial}{\partial y^i}|_{(x,u)}; a^i \in \mathbb{R}\}$$
$$\mathcal{H}_{(x,u)} = \{a^i \frac{\partial}{\partial x^i}|_{(x,u)} - a^i u^j \Gamma^k_{ij} \frac{\partial}{\partial u^k}|_{(x,u)}; a^i \in \mathbb{R}\},$$

where $(x, u) \in TM$, such that $T_{(x,u)}TM = \mathcal{H}_{(x,u)} \oplus \mathcal{V}_{(x,u)}$. Let $X = X^i \frac{\partial}{\partial x^i}$ be a local vector field on M. The vertical and the horizontal lifts of X are defined by

$$X^V = X^i \frac{\partial}{\partial y^i} \tag{2.1}$$

$$X^{H} = X^{i} \frac{\delta}{\delta x^{i}} = X^{i} \{ \frac{\partial}{\partial x^{i}} - y^{j} \Gamma^{k}_{ij} \frac{\partial}{\partial y^{k}} \}$$
(2.2)

Received: 07-May-2016, Accepted: 25-February-2017

For consequences, we have $\left(\frac{\partial}{\partial x^i}\right)^H = \frac{\delta}{\delta x^i}$ and $\left(\frac{\partial}{\partial x^i}\right)^V = \frac{\partial}{\partial y^i}$, then $\left(\frac{\delta}{\delta x^i}, \frac{\partial}{\partial y^i}\right)_{i=1...n}$ is a local adapted frame in *TTM*.

Remark 2.1. .

1. if $w = w^i \frac{\partial}{\partial x^i} + \overline{w}^j \frac{\partial}{\partial y^j} \in T_{(x,u)}TM$, then its horizontal and vertical parts are defined by

$$w^{h} = w^{i} \frac{\partial}{\partial x^{i}} - w^{i} u^{j} \Gamma^{k}_{ij} \frac{\partial}{\partial y^{k}} \in \mathcal{H}_{(x,u)}$$
$$w^{v} = \{\overline{w}^{k} + w^{i} u^{j} \Gamma^{k}_{ij}\} \frac{\partial}{\partial y^{k}} \in \mathcal{V}_{(x,u)}$$

2. if $u = u^i \frac{\partial}{\partial x^i} \in T_x M$ then its vertical and horizontal lifts are defined by

$$u^{V} = u^{i} \frac{\partial}{\partial y^{i}} \in \mathcal{V}_{(x,u)} \in \mathcal{H}_{(x,u)}$$
$$u^{H} = u^{i} \{ \frac{\partial}{\partial x^{i}} - y^{j} \Gamma^{k}_{ij} \frac{\partial}{\partial y^{k}} \}.$$

Proposition 2.1 ([16]). Let (M, g) be a Riemannian manifold and R its curvature tensor, then for all vector fields $X, Y \in \Gamma(TM)$ and $p \in T^2M$ we have:

1. $[X^{H}, Y^{H}]_{p} = [X, Y]_{p}^{H} - (R_{x}(X, Y)u)^{V},$ 2. $[X^{H}, Y^{V}]_{p} = (\nabla_{X}Y)_{p}^{V},$

$$2. [X, I]_p = (V X I)_p$$

3.
$$[X^V, Y^V]_p = 0$$

where p = (x, u).

3. Warped Sasaki metric.

Warped Sasaki metric.

Definition 3.1. Let (M, g) be a Riemannian manifold and $f : M \times \mathbb{R} \to]0, +\infty[$ be a smooth function. On the tangent bundle TM we define a warped Saski metric noted g_f^S by

1.
$$g_f^S(X^H, Y^H)_{(x,u)} = g_x(X, Y)$$

2.
$$g_f^S(X^H, Y^V)_{(x,u)} = g_f^S(X^V, Y^H)_{(x,u)} = 0$$

3.
$$g_f^S(X^V, Y^V)_{(x,u)} = f(x, r)g_x(X, Y)$$

where $X, Y \in \Gamma(TM)$, $(x, u) \in TM$ and r = g(u, u). *f* is called warping function.

Note that, if f = 1 then g_f^S is the Sasaki metric [16].

The notion of Sasaki metric and Gromol-Chegeer metric was considered in [1], [12], [13], [14], [15], [16].

Lemma 3.1. Let (M,g) be a Riemannian manifold, then for all $x \in M$ and $u = u^i \frac{\partial}{\partial x^i} \in T_x M$, we have the following

1.
$$X^H(g(u,u))_{(x,u)} = 0$$

2. $X^{H}(g(Y,u))_{(x,u)} = g(\nabla_X Y, u)_x$

- 3. $X^V(g(u, u)_{(x,u)} = 2g(X, u)_x$
- 4. $X^V(g(Y, u)_{(x,u)} = g(X, Y)_x$

Proof. Localy, if $U : x \in M \to U_x = u^i \frac{\partial}{\partial x^i} \in TM$ be a local vector field constant on each fiber $T_x M$, then from formulas (2.1) and (2.2) we obtain :

$$1. \quad X^{H}(g(u,u))_{(x,u)} = [X^{i}\frac{\partial}{\partial x^{i}}g_{st}y^{s}y^{t} - \Gamma_{ij}^{k}X^{i}y^{j}\frac{\partial}{\partial y^{k}}g_{st}y^{s}y^{t}]_{(x,u)}$$

$$= X(g(U,U)_{x} - 2(\Gamma_{ij}^{k}X^{i}y^{j}g_{sk}y^{s})_{(x,u)}$$

$$= (X(g(U,U)_{x} - 2g(U,\nabla_{X}U))_{x}$$

$$= 0.$$

$$2. \quad X^{H}(g(Y,u))_{(x,u)} = [X^{i}\frac{\partial}{\partial x^{i}}g_{st}Y^{s}y^{t} - \Gamma_{ij}^{k}X^{i}y^{j}\frac{\partial}{\partial y^{k}}g_{st}Y^{s}y^{t}]_{(x,u)}$$

$$= X(g(Y,U)_{x} - (\Gamma_{ij}^{k}X^{i}y^{j}g_{sk}Y^{s})_{(x,u)}$$

$$= (X(g(Y,U)_{x} - g(Y,\nabla_{X}U))_{x}$$

$$= g(\nabla_{X}Y,U))_{x}.$$

$$3. \quad X^{V}(g(u,u))_{(x,u)} = [X^{i}\frac{\partial}{\partial y^{i}}g_{st}Y^{s}y^{t}]_{(x,u)} = 2X^{i}g_{it}u^{t} = 2g(X,u)_{x}$$

$$4. \quad X^{V}(g(Y,u))_{(x,u)} = [X^{i}\frac{\partial}{\partial y^{i}}g_{st}Y^{s}y^{t}]_{(x,u)} = X^{i}g_{si}Y^{s} = g(X,Y)_{x}$$

From Lemma 3.1, we obtain

Lemma 3.2. Let (M,g) be a Riemannian manifold, $F : (s,t) \in \mathbb{R}^2 \to F(s,t) \in]0, +\infty[, \alpha : M \to]0, +\infty[$ and $\beta : \mathbb{R} \to]0, +\infty[$ be smooth functions. If $f(x,r) = F(\alpha(x), \beta(r))$, then we have the following

1. $X^V(f)_{(x,u)} = 2\beta'(r)g_x(X,u)\frac{\partial F}{\partial t}(\alpha(x),\beta(r))$ 2. $X^H(f)_{(x,u)} = g_x(grad_M\alpha,X)\frac{\partial F}{\partial s}(\alpha(x),\beta(r))$

where $(x, u) \in TM$ and $r = g_x(u, u)$.

In the following, we consider $f(x,r) = F(\alpha(x),\beta(r))$, where $F: (s,t) \in \mathbb{R}^2 \to F(s,t) \in]0, +\infty[, \alpha: M \to]0, +\infty[$ and $\beta: \mathbb{R} \to]0, +\infty[$ are smooth functions.

Theorem 3.1. Let (M,g) be a Riemannian manifold. If $f(x,r) = F(\alpha(x),\beta(r))$ and ∇ (resp $\widetilde{\nabla}$) denote the Levi-Civita connection of (M,g) (resp (TM,g_f^S)), then we have:

$$1. \quad (\widetilde{\nabla}_{X^{H}}Y^{H})_{p} = (\nabla_{X}Y)_{p}^{H} - \frac{1}{2}(R_{x}(X,Y)u)^{V},$$

$$2. \quad (\widetilde{\nabla}_{X^{H}}Y^{V})_{p} = (\nabla_{X}Y)_{p}^{V} + \frac{f(x,r)}{2}(R_{x}(u,Y)X)^{H} + \frac{1}{2f(x,r)}g_{x}(grad_{M}\alpha,X)\frac{\partial F}{\partial s}(\alpha(x),\beta(r))Y_{p}^{V}$$

$$3. \quad (\widetilde{\nabla}_{X^{V}}Y^{H})_{p} = \frac{f(x,r)}{2}(R_{x}(u,X)Y))^{H} + \frac{1}{2f(x,r)}g_{x}(grad_{M}\alpha,Y)\frac{\partial F}{\partial s}(\alpha(x),\beta(r))X_{p}^{V}$$

$$4. \quad (\widetilde{\nabla}_{X^{V}}Y^{V})_{p} = \frac{\beta'(r)}{f(x,r)}\frac{\partial F}{\partial t}(\alpha(x),\beta(r))\left[g_{x}(Y,U)X_{p}^{V}\right] + g_{x}(X,U)Y_{p}^{V}) - g_{x}(X,Y)U_{p}^{V}\right] - \frac{1}{2}g_{x}(X,Y)\frac{\partial F}{\partial t}(\alpha(x),\beta(r))(grad_{M}\alpha)_{p}^{H}.$$

for all vector fields $X, Y \in \Gamma(TM)$ and $p = (x, u) \in TM$, where R denote the curvature tensor of (M,g).

The proof of Theorem 3.1 follows directly from Kozul formula, Lemma 3.1 and Lemma 3.2.

Lemma 3.3. Let (M,g) be a Riemannian manifold. If $X, Y \in \Gamma(TM)$ are vector fields and $(x, u) \in TM$ such that $X_x = u$, then we have

$$d_x X(Y_x) = Y_{(x,u)}^H + (\nabla_Y X)_{(x,u)}^V$$

Proof. Let (U, x^i) be a local chart on M in $x \in M$ and $(\pi^{-1}(U), x^i, y^j)$ be the induced chart on TM, if $X_x = X^i(x)\frac{\partial}{\partial x^i}|_x$ and $Y_x = Y^i(x)\frac{\partial}{\partial x^i}|_x$, then

$$d_x X(Y_x) = Y^i(x) \frac{\partial}{\partial x^i}|_{(x,X_x)} + Y^i(x) \frac{\partial X^k}{\partial x^i}(x) \frac{\partial}{\partial y^k}|_{(x,X_x)},$$

thus the horizontal part is given by

$$(d_x X(Y_x))^h = Y^i(x) \frac{\partial}{\partial x^i}|_{(x,X_x)} - Y^i(x) X^j(x) \Gamma^k_{ij}(x) \frac{\partial}{\partial y^k}|_{(x,X_x)}$$
$$= Y^H_{(x,X_x)}$$

and the vertical part is given by

$$(d_x X(Y_x))^v = \{ Y^i(x) \frac{\partial X^k}{\partial x^i}(x) + Y^i(x) X^j(x) \Gamma^k_{ij}(x) \} \frac{\partial}{\partial y^k} |_{(x,X_x)}$$

= $(\nabla_Y X)^V_{(x,X_x)}.$

-		
_	_	-

4. Geodesics of warped Sasaki metric

Lemma 4.1.

Let (M, g) be a Riemannian manifold and $x : I \to M$ be a curve on M. If $C : t \in I \to C(\tau) = (x(t), y(t)) \in TM$ is a curve in TM such $y(t) \in T_{x(t)}M$ (i.e. y(t) is a vector field along x(t)), then

$$\dot{C} = \dot{x}^H + (\nabla_{\dot{x}}y)^V \tag{4.1}$$

Proof. Locally, If $Y \in \Gamma(TM)$ is a vector field such Y(x(t)) = y(t) then we have

$$\dot{C}(t) = dC(t) = dY(x(t))$$

Using Lemma 3.3 we obtain

$$\dot{C}(t) = dY(x(t)) = \dot{x}^H + (\nabla_{\dot{x}}y)^V$$

Theorem 4.1.

Let (M,g) be a Riemannian manifold and (TM, g_f^S) its tangent bundle equipped with the warped Sasaki metric. If $f(x,r) = F(\alpha(x), \beta(r))$ and C(t) = (x(t), y(t)) is curve on TM such y(t) is a vector field along x(t)), then

$$\begin{split} \widetilde{\nabla}_{\dot{C}}\dot{C} &= \left[\nabla_{\dot{x}}\dot{x} + fR(y, \nabla_{\dot{x}}y)\dot{x} - \frac{1}{2}\|\nabla_{\dot{x}}y\|^{2}\frac{\partial F}{\partial s}grad_{M}\alpha\right]^{H} \\ &+ \left[\nabla_{\dot{x}}\nabla_{\dot{x}}y + \left[\dot{x}(\alpha)\frac{\partial\ln F}{\partial s} + 2\beta'\frac{\partial\ln F}{\partial t}g(\nabla_{\dot{x}}y, y)\right]\nabla_{\dot{x}}y - \beta'\frac{\partial\ln F}{\partial t}\|\nabla_{\dot{x}}y\|^{2}y\right]^{V} \end{split}$$
(4.2)

Proof.

We have

$$\begin{split} \tilde{\nabla}_{\dot{C}}\dot{C} &= \tilde{\nabla}_{\left[\dot{x}^{H}+(\nabla_{\dot{x}}y)^{V}\right]}\left[\dot{x}^{H}+(\nabla_{\dot{x}}y)^{V}\right] \\ &= \tilde{\nabla}_{\dot{x}^{H}}\dot{x}^{H}+\tilde{\nabla}_{\dot{x}^{H}}(\nabla_{\dot{x}}y)^{V}+\tilde{\nabla}_{\left(\nabla_{\dot{x}}y\right)}V\dot{x}^{H}+\tilde{\nabla}_{\left(\nabla_{\dot{x}}y\right)}V(\nabla_{\dot{x}}y)^{V} \\ &= (\nabla_{\dot{x}}\dot{x})^{H}-\frac{1}{2}(R(\dot{x},\dot{x})y)^{V}+(\nabla_{\dot{x}}\nabla_{\dot{x}}y)^{V}+\frac{f}{2}(R(y,\nabla_{\dot{x}}y)\dot{x})^{H}+\frac{1}{2}\dot{x}(\alpha)\frac{\partial\ln F}{\partial s}(\nabla_{\dot{x}}y)^{V} \\ &+\frac{f}{2}(R(y,\nabla_{\dot{x}}y)\dot{x})^{H}+\frac{1}{2}\dot{x}(\alpha)\frac{\partial\ln F}{\partial s}(\nabla_{\dot{x}}y)^{V} \\ &+\beta'\frac{\partial\ln F}{\partial t}\Big[g(\nabla_{\dot{x}}y,y)(\nabla_{\dot{x}}y)^{V}+g(\nabla_{\dot{x}}y,y)(\nabla_{\dot{x}}y)^{V}-g(\nabla_{\dot{x}}y,\nabla_{\dot{x}}y)y^{V}\Big] \\ &-\frac{1}{2}g(\nabla_{\dot{x}}y,\nabla_{\dot{x}}y)\frac{\partial F}{\partial s}(grad_{M}\alpha)^{H} \end{split}$$

$$\begin{split} \widetilde{\nabla}_{\dot{C}}\dot{C} &= \left[\nabla_{\dot{x}}\dot{x} + fR(y,\nabla_{\dot{x}}y)\dot{x} - \frac{1}{2}\|\nabla_{\dot{x}}y\|^{2}\frac{\partial F}{\partial s}grad_{M}\alpha\right]^{H} \\ &+ \left[\nabla_{\dot{x}}\nabla_{\dot{x}}y + \dot{x}(\alpha)\frac{\partial\ln F}{\partial s}\nabla_{\dot{x}}y + \beta'\frac{\partial\ln F}{\partial t}\left[2g(\nabla_{\dot{x}}y,y)\nabla_{\dot{x}}y - \|\nabla_{\dot{x}}y\|^{2}y\right]\right]^{V} \\ &= \left[\nabla_{\dot{x}}\dot{x} + fR(y,\nabla_{\dot{x}}y)\dot{x} - \frac{1}{2}\|\nabla_{\dot{x}}y\|^{2}\frac{\partial F}{\partial s}grad_{M}\alpha\right]^{H} \\ &+ \left[\nabla_{\dot{x}}\nabla_{\dot{x}}y + \left[\dot{x}(\alpha)\frac{\partial\ln F}{\partial s} + 2\beta'\frac{\partial\ln F}{\partial t}g(\nabla_{\dot{x}}y,y)\right]\nabla_{\dot{x}}y - \beta'\frac{\partial\ln F}{\partial t}\|\nabla_{\dot{x}}y\|^{2}y\right]^{V} \end{split}$$

From the Theorem 4.1 we obtain

Theorem 4.2.

Let (M, g) be a Riemannian manifold and (TM, g_f^S) its tangent bundle equipped with the warped Sasaki metric. If $f(x, r) = F(\alpha(x), \beta(r))$ and C(t) = (x(t), y(t)) is curve on TM such y(t) is a vector field along x(t), then C is a geodesic on TM if and only if

$$\begin{cases} \nabla_{\dot{x}}\dot{x} &= \frac{1}{2} \|\nabla_{\dot{x}}y\|^2 \frac{\partial F}{\partial s} grad_M \alpha - fR(y, \nabla_{\dot{x}}y)\dot{x} \\ \nabla_{\dot{x}}\nabla_{\dot{x}}y &= \beta' \frac{\partial \ln F}{\partial t} \|\nabla_{\dot{x}}y\|^2 y - \left[\dot{x}(\alpha) \frac{\partial \ln F}{\partial s} + 2\beta' \frac{\partial \ln F}{\partial t} g(\nabla_{\dot{x}}y, y)\right] \nabla_{\dot{x}}y \end{cases}$$
(4.3)

Definition 4.1 ([16]). Let (M, g) be a Riemannian manifold and (TM, g_f^S) its tangent bundle equipped with the warped Sasaki metric. A curve C(t) = (x(t), y(t)) is said to be a horizontal lift of the curve x(t) if and only if $\nabla_{\dot{x}} y = 0$.

Definition 4.2 ([16] [15]). Let (M, g) be a Riemannian manifold and (TM, g_f^S) its tangent bundle equipped with the warped Sasaki metric. If x(t) is a curve on (M, g), then the curve $C(t) = (x(t), \dot{x}(t))$ is called the natural lift of curve x(t).

Using Theorem 4.2 we deduce:

Corollary 4.1. Let (M, g) be a Riemannian manifold and (TM, g_f^S) its tangent bundle equipped with the warped Sasaki metric. The natural lift $C(t) = (x(t), \dot{x}(t))$ of any geodesic x(t) on (M, g) is a geodesic on (TM, g_f^S) .

Corollary 4.2. Let (M^m, g) be a Riemannian manifold, (TM, g_f^S) its tangent bundle equipped with the warped Sasaki metric and C(t) = (x(t), y(t)) be a horizontal lift of the curve x(t) (i.e. $\nabla_{\dot{x}} y = 0$). Then C(t) is a geodesic on (TM, g_f^S) if and only if x(t) is a geodesic on (M, g).

Remark 4.1. If C(t) = (x(t), y(t)) is a horizontal lift of the curve x(t) then locally we have

$$\begin{aligned} \nabla_{\dot{x}}y &= 0 \quad \Leftrightarrow \quad \frac{dy^s}{dt} + \Gamma^s_{ij}y^i\frac{dx^j}{dt} &= 0 \\ \Leftrightarrow \quad y(t) &= e^{-A(t)}K \end{aligned}$$

where $K \in \mathbb{R}^m$ and $A(t) = (\Gamma^s_{ij} \frac{dx^j}{dt})_{s,i}$

Remark 4.2. Using the Remark 4.1 we can construct an infinity of examples of geodesics on (TM, g_f^S) . **Example 4.1.** Condider the upper half-plane

$$\mathbb{R}^2_+ = \left\{ (x, y) \in \mathbb{R}^2 \quad ; \quad y > 0 \right\} \}$$

with the metric of Lobatchevski's non-euclidean geometry given by

$$g_{11} = g_{22} = \frac{1}{y}$$
, $g_{12} = g_{21} = 0.$

The Christoffel symbols of the Riemannian connection are given by

$$\Gamma_{11}^1 = \Gamma_{22}^1 = \Gamma_{12}^2 = \Gamma_{21}^2 = 0, \quad \Gamma_{11}^2 = \frac{1}{y}, \quad \Gamma_{22}^2 = \Gamma_{12}^1 = \Gamma_{21}^1 = -\frac{1}{y}.$$

1. If $C(t) = (x_0, y(t), u(t), v(t))$ is horizontal lift of the curve $(x_0, y(t))$, then the matrix A(t) is given by

$$A(t) = -\frac{1}{y} \left(\begin{array}{cc} \frac{dy}{dt} & 0\\ 0 & \frac{dy}{dt} \end{array} \right)$$

and

$$C(t) = (x_0, y(t), k_1 y(t), k_2 y(t))$$

2. If C(t) = (x(t), y(t), u(t), v(t)) is horizontal lift of the curve (x(t), y(t)) such y(t) = ax(t) + b and $x \neq 0$, then the matrix A(t) is given by

$$A(t) = -\frac{dx}{(ax(t)+b)dt} \left(\begin{array}{cc} a & -1\\ 1 & a \end{array}\right)$$

and

$$C(t) = \left(x(t), y(t), \exp\left[\ln(y(t)) \begin{pmatrix} a & -1 \\ 1 & a \end{pmatrix}\right] K\right)$$

where $K \in \mathbb{R}^2$

Example 4.2. Let \mathbb{R}^2 equipped with the Riemannian metric in polar coordinate defined by :

$$g = dr^2 + h(r,\theta)^2 d\theta^2$$

Relatively to the orthonormal frame

$$e_r = \frac{\partial}{\partial r}, \quad e_\theta = \frac{1}{h(r,\theta)} \frac{\partial}{\partial \theta}$$

we have

$$\nabla_{e_r} e_r = \nabla_{e_r} e_\theta = 0, \quad \nabla_{e_\theta} e_r = \frac{1}{h} \frac{\partial h}{\partial r} e_\theta, \quad \nabla_{e_\theta} e_\theta = -\frac{1}{h} \frac{\partial h}{\partial r} e_r$$

and the matrix of Levi-Civita connection relatively to the orthonormal frame (e_r, e_θ) is given by

$$\Gamma = \left(\begin{array}{cc} 0 & -\frac{\partial h}{\partial r} d\theta \\ \frac{\partial h}{\partial r} d\theta & 0 \end{array} \right)$$

If $C(t) = (r(t), \theta(t), u(t), v(t))$ is horizontal lift of the curve $(r(t), \theta(t))$ then matrix A relatively to the orthonormal frame (e_r, e_θ) is given by

$$A = \begin{pmatrix} 0 & -\frac{1}{h}\frac{\partial h}{\partial r}\frac{d\theta}{dt} \\ \frac{1}{h}\frac{\partial h}{\partial r}\frac{d\theta}{dt} & 0 \end{pmatrix}$$

and

$$\begin{cases} u(t) = k_1 \cos\left(\int \frac{1}{h} \frac{\partial h}{\partial r} \frac{d\theta}{dt}\right) + k_2 \sin\left(\int \frac{1}{h} \frac{\partial h}{\partial r} \frac{d\theta}{dt}\right),\\ v(t) = -k_1 \sin\left(\int \frac{1}{h} \frac{\partial h}{\partial r} \frac{d\theta}{dt}\right) + k_2 \cos\left(\int \frac{1}{h} \frac{\partial h}{\partial r} \frac{d\theta}{dt}\right),\end{cases}$$

Theorem 4.3.

Let (M, g) be a Riemannian manifold and (TM, g_f^S) its tangent bundle equipped with the warped Sasaki metric and x(t) be a geodesic on M. If $f(x, r) = F(\alpha(x), \beta(r))$ and C = (x(t), y(t)) is a geodesic on TM such $\nabla_{\dot{x}} y \neq 0$ then

$$\dot{x}(\alpha)\frac{\partial\ln F}{\partial s}\Big(\alpha(x(t)),\beta(r(t))\Big) = 0$$
(4.4)

where $r(t) = g_{x(t)}(y(t), y(t))$.

Proof.

Let x(t) be a geodesic on M then $\nabla_{\dot{x}}\dot{x} = 0$. Using the first equation of formula (4.3) we obtain

$$\begin{split} g(\nabla_{\dot{x}}\dot{x},\dot{x}) &= 0 \quad \Rightarrow \quad \frac{1}{2} \|\nabla_{\dot{x}}y\|^2 \frac{\partial F}{\partial s} g(grad_M\alpha,\dot{x}) - fg\big(R(y,\nabla_{\dot{x}}y)\dot{x},\dot{x}\big) = 0 \\ &\Rightarrow \quad \frac{1}{2} \|\nabla_{\dot{x}}y\|^2 \dot{x}(\alpha) \frac{\partial F}{\partial s} \Big(\alpha(x(t)),\beta(r(t))\Big) = 0 \\ &\Rightarrow \quad \dot{x}(\alpha) \frac{\partial F}{\partial s} \Big(\alpha(x(t)),\beta(r(t))\Big) = 0 \end{split}$$

Corollary 4.3. Let (M, g) be a Riemannian manifold and (TM, g_f^S) its tangent bundle equipped with the warped Sasaki metric, $f(x, r) = \alpha(x)$ and x(t) be a geodesic on M. If the curve C = (x(t), y(t)) is a geodesic on TM such $\nabla_{\dot{x}} y \neq 0$, then f is a constant along the curve x(t).

The proof follows directly from Theorem 4.3.

Corollary 4.4.

Let (M, g) be a Riemannian manifold and (TM, g_f^S) its tangent bundle equipped with the warped Sasaki metric, x(t) be a geodesic on M and f be a constant along the curve x(t). If the curve C = (x(t), y(t)) is a geodesic on TM such $\nabla_{\dot{x}} y \neq 0$ then $\nabla_{\dot{x}} \nabla_{\dot{x}} y = 0$.

The proof follows directly from Theorem 4.3 and Theorem 4.2.

Corollary 4.5. Let (M,g) be a Riemannian manifold, (TM, g_f^S) its tangent bundle equipped with the warped Sasaki metric and $f(x,r) = f(x) = \alpha(x)$ be a constant along the curve x(t). Then the curve C = (x(t), y(t)) is a geodesic on TM such $\nabla_{\dot{x}}y \neq 0$ if and only if we have

$$\begin{cases} \nabla_{\dot{x}}\dot{x} &= f(x)R(\nabla_{\dot{x}}y,y)\dot{x} \\ \nabla_{\dot{x}}\nabla_{\dot{x}}y &= 0. \end{cases}$$
(4.5)

Corollary 4.6. Let (M, g) be a flat Riemannian manifold, (TM, g_f^S) its tangent bundle equipped with the warped Sasaki metric and $f(x, r) = f(x) = \alpha(x)$ be a constant along the curve x(t). Then the curve C = (x(t), y(t)) is a geodesic on TM such $\nabla_{\dot{x}}y \neq 0$ if and only if x(t) is a geodesic on M and

$$\nabla_{\dot{x}} \nabla_{\dot{x}} y = 0.$$

Acknowledgement:

The authors are supported by GMFAMI Laboratories and Algerian agency of research ANDRU.

References

- Cengiz, N., Salimov, A.A., Diagonal lift in the tensor bundle and its applications. Appl. Math. Comput. 142, no. 2-3, 309-319 (2003).
- [2] Cherif, A.M., and Djaa, M., Geometry of energy and bienergy variations between Riemannian manifolds, Kyungpook Mathematical Journal, 55(2015), pp 715-730.
- [3] Djaa M., Mohamed Cherif A., Zegga K. And Ouakkas S., On the Generalized of Harmonic and Bi-harmonic Maps, international electronic journal of geometry, 5 no. 1(2012), 90-100.
- [4] Djaa M., Gancarzewicz J., The geometry of tangent bundles of order r, *Boletin Academia*, *Galega de Ciencias*, *Espagne*, 4 (1985), 147–165
- [5] Djaa, M., Djaa, N.E.H. and R. Nasri, Natural Metrics on T2M and Harmonicity, International Electronic Journal of Geometry Volume 6 No.1(2013), 100-111.
- [6] Djaa N.E.H., Ouakkas S., M. Djaa, Harmonic sections on the tangent bundle of order two. Annales Mathematicae et Informaticae 38(2011) pp 15-25. 1.
- [7] Djaa N.E.H., Boulal A. and Zagane A., Generalized warped product manifolds and Biharmonic maps, Acta Math. Univ. Comenianae; Vol. LXXXI, 2 (2012), 283-298.
- [8] Djaa, N.E.H. and Djaa, M., Generalized Warped Product Manifold and Critical Riemannian Metric, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis Vol 28 (2012), 197-206.
- [9] Elhendi, H., Terbeche, M. And Djaa, M., Tangent Bundle Of Order Two And Biharmonicity. Acta Math. Univ. Comenianae . Vol. 83 2 (2014). pp. 165-179.
- [10] GEZER, A., On the tangent bundle with deformed Sasaki metric, Int. Electron. J. Geom. Volume 6 No. 2 (2013), 19-31.
- [11] Gudmundsson, S. and Kappos, E.: On the Geometry of the Tangent Bundles, Expo. Math. 20, no.1(2002), 1-41.
- [12] Salimov, A., Gezer, A., Akbulut, K., Geodesics of Sasakian metrics on tensor bundles. Mediterr. J. Math. 6, no.2, 135-147 (2009).
- [13] Salimov, A., Gezer, A., On the geometry of the (1, 1)-tensor bundle with Sasaki type metric. Chinese Annals of Mathematics, Series B May 2011, Volume 32, Issue 3, pp 369-386.
- [14] Salimov A. and Agca F. ,Some Properties of Sasakian Metrics in Cotangent Bundles. Mediterranean Journal of Mathematics; 8(2) (2011). 243-255.
- [15] Salimov A. A. and Kazimova S., Geodesics of the Cheeger-Gromoll Metric, Turk J Math 33 (2009), 99 105.
- [16] Yano K., Ishihara S. Tangent and Cotangent Bundles, Marcel Dekker. INC. New York 1973.

Affiliations

ABDERAHIM ZAGANE ADDRESS: Relizane University, Dept. of Mathematics, 48000, Relizane-Algeria. E-MAIL: Zagane2014@outlook.fr

MUSTAPHA DJAA ADDRESS: Relizane University, Dept. of Mathematics, 48000, Relizane-Algeria. E-MAIL: Djaamustapha@live.com