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Abstract
We are interested in oscillation of the fourth-order nonlinear differential equations of the form

(r1(t)(x(t) + p(t)x(σ(t)))′′)
′′
+
∑̀
i=1

qi(t)G(x(τi(t)))−
∑̀
i=1

hi(t)H(x(ρi(t))) = 0

under the assumption that

∞∫
0

t
r1(t)

dt <∞

for different ranges of p(t).
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1. Introduction
Over the past few years, there has been a strong concern in the study of the oscillatory behavior of solutions of

delay differential equations with positive and negative coefficients of the first and second orders; see, e.g., [1, 5-8,
10-11]. In this paper, we consider the nonlinear fourth-order delay differential equations of the form

(
r1(t) (x(t) + p(t)x(σ(t)))

′′)′′
+
∑̀
i=1

qi(t)G(x(τi(t)))−
∑̀
i=1

hi(t)H(x(ρi(t))) = 0 (1.1)

where r1, σ, qi, τi, hi, ρi are continuous and positive on [0,∞) ,i ∈ {1, 2, ..., `} p ∈ C([0,∞),R), G,H ∈ C(R,R) with
dG(d) > 0 and bH(b) > 0 for d, b 6= 0, H is bounded, G is nondecreasing. Further σ(t) ≤ t, lim

t→∞
σ(t) =∞, and σ1 is

a positive constant such that σ1 < σ(t) ≤ t. And τ ∈ C([0,∞),R) such that τ(t) ≤ τi(t) ≤ t for i ∈ {1, 2, ..., `}, and
lim
t→∞

τ(t) =∞ and ρ ∈ C([0,∞),R) such that ρ(t) ≤ ρi(t) ≤ t for i ∈ {1, 2, ..., `}, lim
t→∞

ρ(t) =∞.

The main object of our work is to investigate the oscillatory and asymptotic behaviors of the solutions of (1.1)
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under the assumption that

(H1)

∞∫
0

t

r1(t)
dt <∞.

If σ(t) = t− τ and
∑̀
i=1

qi(t)G(x(τi(t)))−
∑̀
i=1

hi(t)H(x(ρi(t))) = q(t)G(x(t− α)), then (1.1) reduced to

(r1(t)(x(t) + p(t)x(t− τ))′′)′′ + q(t)G(x(t− α)) = 0 (1.2)

where G ∈ C(R,R) with dG(d) > 0, d 6= 0, G is nondecreasing, τ, α > 0 are constants. In[4], Parhi and Tripathy
studied Eq. (1.2) under the assumption (H1).

Tripathy et al.[2] considered nonlinear fourth-order neutral delay differential equations of the form

(r(t)(y(t) + p(t)y(t− τ))′′)′′ + q(t)G(y(t− α))− h(t)H(y(t− β)) = 0 (1.3)

where G,H has the same properties with us and τ, α, β > 0 are constants.
They studied (1.3) under the same assumption in addition to

(H2)

∞∫
0

s

r1(s)

∞∫
s

th(t)dtds <∞.

Since Eq. (1.1) is more general than Eqs. (1.2) and (1.3), it is worth studying. Not only the present work is more
illustrative than [2] but also some of results are generalized and improved. A solution of (1.1) is understood as a
function x ∈ C([−η,∞),R) such that (x(t) + p(t)x(σ(t))) and (r1(t)(x(t) + p(t)x(σ(t)))′′) are twice continuously
differentiable, and (1.1) is satisfied for t ≥ 0, where η = max{σ, τi, ρi},

sup{x(t) : t ≥ t0} > 0

for every t ≥ t0.A solution x(t) of (1.1) is called oscillatory if it is neither eventually positive nor eventually negative,
and it is called nonoscillatory otherwise.

2. Preliminaries
We begin with the following results frequently used in what follows:

Lemma 2.1. [4] Let (H1) hold. If f(t) is an eventually positive twice continuously differentiable function such that r1(t)f ′′(t)
is twice continuously differentiable and

(r1(t)f
′′(t))′′ ≤ 0, 6≡ 0

for large t, where r1 ∈ C([0,∞), (0,∞)), then one of the following cases holds for large t:
(a) f ′(t) > 0, f ′′(t) > 0 and (r1(t)f

′′(t))′ > 0,
(b) f ′(t) > 0, f ′′(t) < 0 and (r1(t)f

′′(t))′ > 0,
(c) f ′(t) > 0, f ′′(t) < 0 and (r1(t)f

′′(t))′ < 0,
(d) f ′(t) < 0, f ′′(t) > 0 and (r1(t)f

′′(t))′ > 0.

Lemma 2.2. [4] Assume that the conditions of Lemma 2.1 are satisfied. Then

(i) the following inequalities hold for large t in the case (c) of Lemma 2.1

f ′(t) ≥ −(r1(t)f ′′(t))′R(t), f ′(t) ≥ −r1(t)f ′′(t)
∞∫
t

ds
r1(s)

,

f(t) ≥ ktf ′(t) and f(t) ≥ −k(r1(t)f ′′(t))′tR(t),

where k > 0 is a constant and
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R(t) =
∞∫
t

s−t
r1(s)

ds,

and

(ii)f(t) ≥ r1(t)f ′′(t)R(t) for large t in the case (d) of Lemma 2.1.

Lemma 2.3. [4] If the conditions of Lemma 2.1 are satisfied, then there exist constants k1 > 0 and k2 > 0 such that
k1R(t) ≤ f(t) ≤ k2t for large t.

Lemma 2.4. [4] Let (H1) hold. Suppose that z(t) is a real-valued twice continuously differentiable function on [0,∞) such
that (r1(t)z′′(t))′′ ≤ 0, 6≡ 0 for large t. If z(t) > 0 eventually, then one of the following cases holds for large t:

(a) z′(t) > 0, z′′(t) > 0 and (r1(t)z
′′(t))′ > 0,

(b) z′(t) > 0, z′′(t) < 0 and (r1(t)z
′′(t))′ > 0,

(c) z′(t) > 0, z′′(t) < 0 and (r1(t)z
′′(t))′ < 0,

(d) z′(t) < 0, z′′(t) > 0 and (r1(t)z
′′(t))′ > 0.

If z(t) < 0 for large t, then either one of the cases (b)-(d) holds or one of the following cases holds for large t:

(e) z′(t) < 0, z′′(t) < 0 and (r1(t)z
′′(t))′ > 0,

(f) z′(t) < 0, z′′(t) < 0 and (r1(t)z
′′(t))′ < 0.

Lemma 2.5. [3] Let p, x, z ∈ C([0,∞),R) be such that

z(t) = x(t) + p(t)x(t− τ)

for t ≥ τ ≥ 0, x(t) > 0 for t ≥ t1 > τ lim inf
t→∞

x(t) = 0, and lim
t→∞

z(t) = L exists. Also let p(t) satisfy one of the following
conditions:

(i) 0 ≤ p(t) ≤ p1 < 1,

(ii) 1 < p2 ≤ p(t) ≤ p3,

(iii) p4 ≤ p(t) ≤ 0,

where pi is a constant, 1 ≤ i ≤ 4. Then L = 0

3. Main Results
In this section, sufficient conditions are established for the unbounded oscillation and asymptotic behavior of

the solutions of (1.1) under the assumption (H1). For our aim, we need the following assumptions:

(H3) λ > 0 such that G(d) +G(b) ≥ λG(d+ b) for d, b > 0, d, b ∈ R,
(H4) G(db) = G(d)G(b), d, b ∈ R,
(H5) G(−d) = −G(d), and H(−d) = −H(d), d ∈ R,

(H6)
∞∫
σ1

Q(t)dt =∞, Q(t) = min{q(t), q(σ(t))}, t ≥ σ1,

(H7)
∞∫
t0

b(t)Q(t)
∑̀
i=1

G(R(τi(t)))dt =∞, where b(t) = min{Rγ(t), Rγ(σ(t))},
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γ > 1, t0 ≥ η > 0,

(H8)
∞∫
t0

Rγ(t)
∑̀
i=1

G(R(τi(t)))qi(t)dt =∞, γ > 1, t0 ≥ η > 0.

Remark 3.1. Since

R(t) <
∞∫
t

s
r1(s)

ds,

we conclude that R(t)→ 0 as t→∞ in view of (H1).

Remark 3.2. Assumption (H4) implies that G(−d) = −G(d). Indeed,
G(1)G(1) = G(1) and G(1) > 0 imply that G(1) = 1. Further, G(−1)G(−1) = G(1) = 1 implies that (G(−1))2 = 1.
Since G(−1) < 0, we conclude that G(−1) = −1. Hence,

G(−d) = G(−1)G(d) = −G(d).

Moreover, G(xy) = G(x)G(y) for every x, y ∈ R such that G(db) = G(d)G(b) for d > 0 and b > 0 and G(−d) =
−G(d). In addition, the prototype of G satisfying (H3), (H4) and (H5) is

G(u) = (a+ b|u|γ)|u|µ sgnu,

where a ≥ 0, b > 0, γ ≥ 0 and µ ≥ 0 are such that a+ b = 1.

Theorem 3.1. Let 0 ≤ p(t) ≤ a < 1 or 1 < p(t) ≤ a <∞. Suppose that (H1)-(H7) hold. Then every solution of Eq. (1.1)
with σ(t) = t− σ1 either oscillates or tends to zero as t→∞.

Proof. Due to Remark 3.1, we have b(t)→ 0 as t→∞. So (H7) implies that

∞∫
t0

Q(t)
∑̀
i=1

G(R(τi(t)))dt =∞. (3.1)

We assume that x(t) is a nonoscillatory solution of (1.1). Then x(t) > 0 or x(t) < 0 for t ≥ t0 > ρ. Let x(t) > 0 for
t ≥ t0. Setting

z(t) = x(t) + p(t)x(σ(t)) (3.2)

K(t) =

∞∫
t

s− t
r1(s)

∞∫
s

∑̀
i=1

(θ − s)hi(θ)H(x(ρi(θ)))dθds (3.3)

and

v(t) = z(t)−K(t) = x(t) + p(t)x(σ(t))−K(t) (3.4)

we have

(r1(t)v
′′(t))′′ = −

∑̀
i=1

qi(t)G(x(τi(t))) ≤ 0, 6≡ 0 (3.5)

for t ≥ t0 + σ1. Therefore, v(t), v′(t), (r1(t)v′′(t)), and (r1(t)v
′′(t))′ are monotonic on [t1,∞), t1 ≥ t0 + σ1. In what

follows, we have two cases, v(t) > 0 or < 0 for t ≥ t1. Assume that we have the first case. By Lemma 2.1, any of the
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cases (a), (b), (c), and (d) holds. Suppose that any of the cases (a), (b), and (d) holds. By using (H3), (H4), and (H6),
Eq. (1.1) can be represented as

0 = (r1(t)v
′′(t))′′ +

∑̀
i=1

qi(t)G(x(τi(t))) +G(a)(r1(σ(t))v
′′(σ(t)))′′

+G(a)
∑̀
i=1

qi(σ(t))G(x(τi(σ(t))))

≥ (r1(t)v
′′(t))′′ +G(a)(r1(σ(t))v

′′(σ(t)))′′ + λQ(t)
∑̀
i=1

G(x(τi(t)) + ax(τi(σ(t))))

≥ (r1(t)v
′′(t))′′ +G(a)(r1(σ(t))v

′′(σ(t)))′′ + λQ(t)
∑̀
i=1

G(z(τi(t)))

for t ≥ t2 > t1, where we have used the fact that z(t) ≤ x(t) + ax(σ(t)). From (3.3), K(t) > 0,K ′(t) < 0, and thus,
lim
t→∞

K(t) exists due to (H2). Also, the inequality v(t) > 0 for t ≥ t1 implies that v(t) > z(t) for t ≥ t2 and, thus, the
last inequality yields

(r1(t)v
′′(t))′′ +G(a)(r1(σ(t))v

′′(σ(t)))′′ + λQ(t)
∑̀
i=1

G(v(τi(t))) ≤ 0,

for t ≥ t2, i.e.,

(r1(t)v
′′(t))′′ +G(a)(r1(σ(t))v

′′(σ(t)))′′ + λG(k1)Q(t)
∑̀
i=1

G(R(τi(t))) ≤ 0

due to (H4) and Lemma 2.3, for t ≥ t3 > t2. Integrating this inequality from t3 to∞, we get

λG(k1)
∞∫
t3

Q(t)
∑̀
i=1

G(R(τi(t)))dt <∞

but this contradicts (3.1). Further, we suppose that the case (c) holds. By using Lemmas 2.2 and 2.3, we have

k(−r1(t)v′′(t))′tR(t) ≤ v(t) ≤ k2t

for t ≥ t4 > t3. Hence,

−[((−r1(t)v′′(t))′)1−γ ]′ = (γ − 1)((−r1(t)v′′(t))′)−γ(−r1(t)v′′(t))′′

≥ (γ − 1)LγRγ(t)
∑̀
i=1

qi(σ(t))G(x(τi(σ(t)))), (3.6)

where L = k
k2
> 0. Therefore, the inequality

−[((−r1(t)v′′(t))′)1−γ ]′ −G(a)[((−r1(σ(t))v′′(σ(t)))′)1−γ ]′

≥ (γ − 1)Lγ
[
Rγ(t)

∑̀
i=1

qi(t)G(x(τi(t))) +G(a)Rγ(σ(t))
∑̀
i=1

qi(σ(t))G(x(τi(σ(t))))

]
≥ λ(γ − 1)Lγb(t)Q(t)

∑̀
i=1

G(z(τi(t))) ≥ λ(γ − 1)Lγb(t)Q(t)
∑̀
i=1

G(v(τi(t)))

≥ λ(γ − 1)LγG(k1)b(t)Q(t)
∑̀
i=1

G(R(τi(t)))

implies that

λ(γ − 1)LγG(k1)
∞∫
t4

b(t)Q(t)
∑̀
i=1

G(R(τi(t)))dt <∞,

which contradicts (H7). Therefore, the latter holds. Consequently, the inequality z(t) < K(t), where K(t) is
bounded, implies that x(t) is bounded. It follows from Lemma 2.4 that any of the cases (b)-(f) is realized for
t ≥ t2 > t1. In the cases (e) and (f) of Lemma 2.4, we get lim

t→∞
v(t) = −∞, which contradicts the facts that x(t) is

bounded and lim
t→∞

v(t) exists. Keep in view either the case (b) or the case (c), where −∞ < lim
t→∞

v(t) ≤ 0. Hereby,
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0 ≥ lim
t→∞

v(t) = lim sup
t→∞

[z(t)−K(t)] ≥ lim sup
t→∞

[x(t)−K(t)]

≥ lim sup
t→∞

x(t)− lim
t→∞

K(t) = lim sup
t→∞

x(t)

implies that lim
t→∞

x(t) = 0. We may note that lim
t→∞

K(t) = 0. At last, let the case (d) of Lemma2.4 hold. Then

lim
t→∞

(r1(t)v
′′(t))′ exists. Hence, integrating (3.5) from t2 to∞, we obtain

∞∫
t2

∑̀
i=1

qi(t)G(x(τi(t)))dt <∞,

i.e.,

∞∫
t2

Q(t)
∑̀
i=1

G(x(τi(t)))dt <∞. (3.7)

If lim inf
t→∞

x(t) > 0, then inequality (3.7) implies that

∞∫
t2

Q(t)dt <∞,

which contradicts (H6) due to Remark 3.1. Therefore, lim inf
t→∞

x(t) = 0. Since lim
t→∞

v(t) exists, by using Lemma 2.5,
we get

lim
t→∞

v(t) = 0 = lim
t→∞

z(t).

Even, z(t) ≥ x(t) implies that lim
t→∞

x(t) = 0. If x(t) < 0 for t ≥ t0, then we set y(t) = −x(t) for t ≥ t0 and

(r1(t)(y(t) + p(t)y(σ(t)))′′)′′ +
∑̀
i=1

qi(t)G(y(τi(t)))−
∑̀
i=1

hi(t)H(y(ρi(t))) = 0

Thus Theorem 3.1 is proved.

Remark 3.3. It follows from Theorem 3.1 that x(t) is bounded in the case where v(t) < 0 for t ≥ t1, which further
converges to zero as t→∞. However, this fact is not required in the other case. Hence, the following theorem has
been proved.

Theorem 3.2. Let 0 ≤ p(t) ≤ a <∞. Suppose that (H1)− (H7) hold. Then every unbounded solution of (1.1) oscillates.

Theorem 3.3. Let 0 ≤ p(t) ≤ a < 1. If (H1), (H2), (H4), (H5), and (H8) hold, then every unbounded solution of (1.1)
oscillates.

Proof. Since R(t)→ 0 as t→∞. (H8) implies that

∞∫
t0

∑̀
i=1

G(R(τi(t)))qi(t)dt <∞ (3.8)

and, hence,

∞∫
t0

∑̀
i=1

qi(t)dt <∞. (3.9)

Let x(t) be a nonoscillatory solution of (1.1) such that x(t) is unbounded and x(t) > 0 for t ≥ t0 > 0. The case
x(t) < 0 for t ≥ t0 > 0 is similar. We set z(t), K(t), and v(t) as in (3.2), (3.3), and (3.4), respectively, to obtain (3.5) for
t ≥ t0 + σ1. Consequently, each of v(t), v′(t), (r1(t)v′′(t)), and (r1(t)v

′′(t))′ is of constant sign on [t1,∞), t ≥ t0 + σ1.
Assume that v(t) > 0 for t ≥ t1. Then Lemma 2.1 holds. If any of the cases (a) or (b) holds, then
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0 < v′(t) = z′(t)−K ′(t)

implies that z′(t) > 0 or < 0 for t ≥ t1. Pay attention to z(t) is unbounded because x(t) is unbounded. Thus,
z′(t) < 0 is not true. Ultimately, z′(t) > 0 and we obtain

(1− p(t))z(t) < z(t)− p(t)z(σ(t)) = x(t)− p(t)p(σ(t))x(σ(σ(t))) < x(t).

This means that

x(t) > (1− a)z(t) > (1− a)v(t)

for t ≥ t2 > t1. Hence, (3.5) yields

G((1− a)v(τi(t))qi(t) ≤ −(r1(t)v′′(t))′′,

i.e.,

G(k1(1− a))G(R(τi(t)))qi(t) ≤ −(r1(t)v′′(t))′′ (3.10)

due to Lemma 2.3 and (H4). Integrating (3.10) from t2 to∞, we conclude that

∞∫
t2

∑̀
i=1

G(R(τi(t)))qi(t)dt <∞,

which contradicts (3.8). For the case (c) of Lemma 2.1, we proceed as in the proof of Theorem 3.1 to obtain (3.6). By
using inequality (3.6), we obtain

−[((−r1(t)v′′(t))′)1−γ ]′ ≥ (γ − 1)LγG((1− a)k1)Rγ(t)
∑̀
i=1

qi(t)G(R(τi(t)))

for t ≥ t2. Integrating the last inequality from t2 to∞, we find

∞∫
t2

Rγ(t)
∑̀
i=1

qi(t)G(R(τi(t)))dt <∞

which contradicts (H8). In the case (d) of Lemma 2.1, lim
t→∞

v(t) exists, i.e., lim
t→∞

z(t) exists in contradiction with our

hypothesis. Due to Remark 3.3, the case v(t) < 0 is not executed. Thus, Theorem 3.3 is proved.

Theorem 3.4. Let−1 < a ≤ p(t) ≤ 0. If (H1), (H2), (H5) and (H8) hold, then every solution of Eq. (1.1) with σ(t) = t−σ1
is either oscillatory or tends to zero as t→∞.

Proof. Let x(t) be a nonoscillatory solution of (1.1) such that x(t) > 0 for t ≥ t0 > 0.Setting z(t),K(t), and v(t) as
in (3.2), (3.3) and (3.4) we obtain (3.5) for t ≥ t0 + σ1 and, therefore, v(t) is monotone on [t1,∞), t1 ≥ t0 + σ1. Let
v(t) > 0 for t ≥ t1. Assume that one of the cases (a), (b) and (d) of Lemma 2.1 holds for t ≥ t1. From Lemma 2.3, we
conclude that x(t) ≥ v(t) ≥ k1R(t) for t ≥ t2 > t1 and, hence, (3.5) yields

∞∫
t3

∑̀
i=1

qi(t)G(R(τi(t)))dt <∞, t3 > t2 + σ1,

which contradicts (3.8). Now consider the case (c). Proceeding as in the proof of Theorem 3.1 we have (3.6). Further,
x(t) ≥ v(t) ≥ k1R(t) for t ≥ t2 by Lemma 2.3. Consequently, for t ≥ t3 > t2 + α,

−[((−r1(t)v′′(t))′)1−γ ]′ ≥ (γ − 1)LγG(k1)R
γ(t)

∑̀
i=1

qi(t)G(R(τi(t))).

Integrating above inequality from t3 to∞, we obtain
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∞∫
t3

Rγ(t)
∑̀
i=1

qi(t)G(R(τi(t)))dt <∞

in contradiction with (H8).
If v(t) < 0 for t ≥ t1, then x(t) is ultimately bounded. Thus, z(t) is bounded and the same is true for v(t). In what
follows, none of the cases (e) and (f) of Lemma 2.4 is executed. In the case (b)[or (c)], we have

−∞ < lim
t→∞

v(t) ≤ 0.

In view of the fact that lim
t→∞

K(t) = 0, we obtain

lim
t→∞

v(t) = lim
t→∞

z(t).

Hence,
0 ≥ lim

t→∞
v(t) = lim

t→∞
z(t) = lim sup

t→∞
[x(t) + p(t)x(σ(t))] ≥ lim sup

t→∞
x(t) + lim inf

t→∞
(ax(σ(t)))

= lim sup
t→∞

x(t) + a lim sup
t→∞

x(σ(t)) = (1 + a) lim sup
t→∞

x(t)

implies that lim sup
t→∞

x(t) = 0, i.e., lim
t→∞

x(t) = 0. Let the case (d) hold. Since

lim
t→∞

(r1(t)v
′′(t))′

exists, (3.5) implies that

∞∫
t2

∑̀
i=1

qi(t)G(x(τi(t)))dt <∞. (3.11)

If lim inf
t→∞

x(t) > 0, then it follows from (3.11) that

∞∫
t2

∑̀
i=1

qi(t)dt <∞,

which contradicts (3.9). Therefore, lim inf
t→∞

x(t) = 0. In view of Lemma 2.5, we assert that

lim
t→∞

v(t) = 0 = lim
t→∞

z(t).

Following the above proof, we can see that lim sup
t→∞

x(t) = 0 and, hence, lim
t→∞

x(t) = 0.

If x(t) < 0 for t ≥ t0, then, acting as above, we obtain lim inf
t→∞

x(t) = 0. This means that lim
t→∞

x(t) = 0.
Thus, Theorem 3.4 is proved.

Theorem 3.5. Let −∞ < p(t) ≤ 0. If (H1), (H2), (H5) and (H8) hold, then every unbounded solution of (1.1) with
σ(t) = t− σ1 is oscillatory.

The proof of this theorem is quite similar the proof of Theorem 3.4. Hence, the details are omitted.
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