Best proximity points for semi-cyclic contraction pairs in regular cone metric spaces

M. Ahmadi Baseri* and H. Mazaheri

(Communicated by Nihal YILMAZ ÖZGÜR)

Abstract

The aim of this paper is to establish some conditions which guarantee the existence of best proximity for semi-cyclic contraction pairs in regular cone metric spaces. We obtain best proximity points and prove convergence results for such maps in regular cone metric spaces.

Keywords: Best proximity point; Regular cone metric; Semi-cyclic contraction pairs; Lower bound.

AMS Subject Classification (2010): Primary: 41A65; Secondary: 41A52; 46N10.

*Corresponding author

1. Introduction and preliminaries

Let X := (X, d) be a metric space and A and B be non-empty subsets of $X, \varphi : [0, \infty) \to [0, \infty)$ be a strictly increasing map and S, T be two self mappings on $A \cup B$. The pair (S, T) is called a semi-cyclic φ -contraction pair if $S(A) \subseteq B, T(B) \subseteq A$ and

$$d(Sx,Ty) \le d(x,y) - \varphi(d(x,y)) + \varphi(d(A,B)).$$

for all $x \in A$ and $y \in B$ [12]. When S = T, T is called a φ -contraction map [1]. A semi-cyclic contraction pair is a semi-cyclic φ -contraction pair with $\varphi(t) = (1 - k)t$, $k \in [0, 1)$. In this case the pair (S, T) satisfies for some $k \in (0, 1)$,

$$d(Sx, Ty) \le kd(x, y) + (1 - k)d(A, B),$$

for all $x \in A$ and $y \in B$ [3]. When S = T, T is called a cyclic contraction map. In 2006, Eldered and Veeramani obtained best proximity point results for cyclic contraction maps [2]. They raised a question and in 2009, Al-Thagafi and Shahzad answered it for cyclic φ -contraction maps [1]. Also, in 2012, Karapinar proved some theorems for generalized cyclic contraction maps [7].

In 2011, Gabeleh and Abkar proved a theorem on the existence and convergence of best proximity points for a semi-cyclic contraction pair (S, T) [3]. Thakur and Sharma [12], obtained best proximity point results for semi-cyclic φ -contraction pair in 2014.

On the other hand, Huang and Zhang [6] introduced cone metric spaces as a generalization of metric spaces. In cone metric spaces the distance between two members not necessary a real positive, it can be sequence, function, matrix and any arbitrary Banach space. Hence achieved results is important and has many applications in sciences. In 2007, Rezapour [10] prove best proximity results in cone metric spaces. In 2011, Haghi et al [4] obtained best proximity points for cyclic contraction maps. In 2014, Lee [9] prove cone metric version of existence and convergence for best proximity points. Also, In 2015, Kumar and Som [8] give best proximity theorems in regular cone metric spaces. In this paper, we establish some conditions which guarantee the existence of best proximity for semi-cyclic contraction pairs in regular cone metric spaces. Then, we prove existence and convergence results for semi-cyclic contraction pair (S, T) in regular cone metric spaces.

Received: 03-January-2017, Accepted: 21-June-2017

To prove our results in the next section we recall some definitions and facts.

Definition 1.1. [6] Let *E* be a real Banach space. A subset *P* of *E* is called a cone if and only if

(P1) P is closed, non-empty and $P \neq \{0\}$; (P2) $a, b \in \mathbb{R}$, $a, b \ge 0$ and $x, y \in P$ implies $ax + by \in P$; (P3) $x \in P$ and $-x \in P$ implies x = 0.

We define a partial ordering \leq with respect to *P* by $x \leq y$ if and only if $y - x \in P$. $x \leq y$ will stand for $x \leq y$ and $x \neq y$, while $x \ll y$ will stand for $y - x \in intP$, where intP denotes the interior of *P*.

Definition 1.2. [6] Let *X* be a non-empty set and *E* be a Banach space. Suppose that a mapping $d : X \times X \rightarrow E$ satisfies:

(d1) $0 \leq d(x, y)$ for every $x, y \in X$ and d(x, y) = 0 if and only if x = y; (d2) d(x, y) = d(y, x) for every $x, y \in X$; (d3) $d(x, y) \leq d(x, z) + d(z, y)$ for every $x, y, z \in X$.

Then *d* is called a cone metric and (X, d) is called a cone metric space.

A map $f : P \to P$ is said to be increasing (strictly increasing) whenever $x \preceq y$ implies that $f(x) \preceq f(y)$ ($x \prec y$ implies that $f(x) \prec f(y)$).

A continuous function $f : P \to P$ has a maximum point at a if $f(x) \leq f(a)$ for all $x \in P$. Similarly, the function has a minimum point at a if $f(a) \leq f(x)$ for all $x \in P$. The value of the function at a maximum point is called the maximum value of the function and the value of the function at a minimum point is called the minimum value of the function.

A cone *P* is said to be normal if there is a number M > 0 such that for all $x, y \in E$

$$0 \leq x \leq y \quad implies \quad \|x\| \leq M\|y\|.$$

The least positive number M satisfying the above inequality is called the normal constant of P.

The cone *P* is called regular if every increasing sequence which is bounded from above is convergent. That is, if $\{x_n\}_{n\geq 1}$ is a sequence such that $x_1 \leq x_2 \leq \ldots \leq y$ for some $y \in E$, then there is $x \in E$ such that $\lim_{n\to\infty} ||x_n-x|| = 0$. Equivalently the cone *P* is regular if and only if every decreasing sequence which is bounded from below is convergent. Every regular cone is normal [11].

The following example shows that the category of regular cone metric spaces is bigger that the category of metric spaces.

Example 1.1. [5] Let $E = (L^1[0,1], \|\cdot\|_1)$, $P = \{f \in E : f \succeq 0 \ a.e.\}$, (X, ρ) be a metric space and $d : X \times X \to E$ be defined by $d(x, y) = f_{x,y}$, where $f_{x,y}(t) = \rho(x, y)t^2$. Then (X, d) is a regular cone metric space. In fact, if $\{f_n\}_{n\geq 1}$ is an increasing sequence and there is $g \in L^1$ such that $f_1 \preceq f_2 \preceq \ldots \preceq f_n \preceq \ldots \preceq g$ for all almost x, then $\{f_n\}_{n\geq 1}$ converges to a function f for all almost x. Then, $f_n \preceq f \preceq g$ (a.e.) for all $n \geq 1$. Thus $g - f_1 \in L^1$, $g - f_n \preceq g - f_1$ for all $n \geq 1$ and $\lim_{n\to\infty}g - f_n = g - f$ (a.e.). Hence by the Lebesgue dominated convergence theorem, $f \in L^1$ and $\lim_{n\to\infty}\|f_n - f\|_1 = 0$. So, the cone P is regular.

Let (X, d) be a cone metric space and A be a non-empty subset of X. We say that A is bounded whenever there is $e \gg 0$ such that $d(x, y) \preceq e$ for all $x, y \in A$.

Definition 1.3. [4] Let *A* and *B* be non-empty subsets of cone metric space (X, d). An element $p \in P$ is said to be a lower bound for $A \times B$ whenever

$$p \preceq d(a, b),$$

for all $(a,b) \in A \times B$. If $p \succeq q$ for all lower bound q for $A \times B$, then p is called the greatest lower bound for $A \times B$. We denote it by d(A, B).

Clearly, d(A, B) is a unique vector in *P*.

Let $\{x_n\}$ be a sequence in a cone metric space (X, d) and $x \in X$. If for every $c \in intP$, there is a natural number N such that for every n > N, $c - d(x_n, x) \in intP$, then $\{x_n\}$ converges to x with respect to P and is denoted by $\lim_{n\to\infty} x_n = x$.

Lemma 1.1. [6] Let (X, d) be a cone metric space, P be a normal cone, $\{x_n\}$ and $\{y_n\}$ be sequences in X. Then

- (i) x_n converges to x with respect to P if and only if $d(x_n, x) \to 0$ as $n \to \infty$,
- (ii) If $x_n \to x$ and $y_n \to y$ as $n \to \infty$ with respect to P, then $d(x_n, y_n) \to d(x, y)$ as $n \to \infty$,
- (iii) If $x_n \to x$ and $y_n \to y$ as $n \to \infty$ with respect to P and $y_n x_n \in P$ for every $n \in \mathbb{N}$, then $y x \in P$.

2. Main results

Throughout this section, *E* is a normed space, (X, d) is regular cone metric space, \leq is the partial ordering with respect of *P* and *A*, *B* are non-empty subsets of *X*.

Sequences Construction Consider $x_0 \in A$, then $Sx_0 \in B$, so there exists $y_0 \in B$ such that $y_0 = Sx_0$. Now $Ty_0 \in A$, so there exists $x_1 \in A$ such that $x_1 = Ty_0$. Inductively, we define sequences $\{x_n\}$ and $\{y_n\}$ in A and B, respectively by

$$x_{n+1} = Ty_n, \quad y_n = Sx_n \text{ for } n \in \mathbb{N} \cup \{0\}.$$
 (2.1)

Theorem 2.1. Let $S, T : A \cup B \to A \cup B$ be maps such that $S(A) \subseteq B$, $T(B) \subseteq A$ and

$$d(Sx, Ty) \leq (k/3)\{d(x, y) + d(Sx, x) + d(Ty, y)\} + (1 - k)d(a, b), \quad (2.2)$$

for all $(a, b), (x, y) \in A \times B$, where $k \in (0, 1)$ is a constant. Then d(A, B) exists.

proof. Let $d_n = d(x_n, Sx_n)$. By inequality (2.2),

$$d_{n+1} \leq (k/3) \{ d(y_n, x_{n+1}) + d_{n+1} + d(y_n, x_{n+1}) \} + (1-k)d(a, b)$$

Since

$$d(y_n, x_{n+1}) \leq (k/3) \{ 2d_n + d(y_n, x_{n+1}) \} + (1-k)d(a, b) \}$$

hence

$$d(y_n, x_{n+1}) \preceq \frac{(2k/3)}{(1 - (k/3))} d_n + \frac{(1 - k)}{(1 - (k/3))} d(a, b).$$

Therefore

$$d_{n+1} \leq (2k/3) \frac{(2k/3)}{(1-(k/3))} d_n + (2k/3) \frac{(1-k)}{(1-(k/3))} d(a,b) + (k/3) d_{n+1} + (1-k) d(a,b).$$

Then

$$d_{n+1} \preceq \frac{(4k^2/9)}{(1-(k/3))^2} d_n + \frac{(1-k)(1+k/3)}{(1-(k/3))^2} d(a,b),$$

which implies that

$$d_{n+1} \preceq \alpha d_n + (1-\alpha)d(a,b),$$

for all $(a, b) \in A \times B$, where $\alpha = (4k^2/9)/((1 - (k/3))^2) \in (0, 1)$. It follows that $d_{n+1} \preceq d_n$. By the regularity of P, there exists $p \in P$ such that $\lim_{n\to\infty} d_n = p$. Thus $p \preceq d(a, b)$ holds for any (a, b) in $A \times B$. Now if q is a lower bound for $A \times B$, then $q \preceq d_n$ for all $n \in \mathbb{N} \cup \{0\}$. So $q \preceq p$. Therefore, d(A, B) = p.

Note that, the inequality (2.2) is equivalent to

$$d(Sx, Ty) \le (k/3)\{d(x, y) + d(Sx, x) + d(Ty, y)\} + (1 - k)d(A, B)$$

in metric spaces.

Theorem 2.2. Suppose that the conditions of Theorem 2.1 hold, for $x_0 \in A$, the sequences $\{x_n\}$ and $\{y_n\}$ are generated by (2.1). If $\{x_n\}$ and $\{y_n\}$ respectively have a convergent subsequence in A and B, then there exists $x \in A$ and $y \in B$ such that

$$d(x, Sx) = d(A, B) = d(y, Ty)$$

proof. Set $d_n = d(x_n, Sx_n)$. Let $\{y_{n_k}\}$ be a subsequence of $\{y_n\}$ such that $y_{n_k} \to y$. The relation

$$p = d(A, B) \preceq d(Ty_{n_k}, y) \preceq d(y_{n_k}, y) + d(y_{n_k}, Ty_{n_k})$$

holds for each $k \ge 1$. Since

$$p = d(A, B) \preceq d(y_{n_k}, Ty_{n_k}) \preceq \alpha d_{n_k} + (1 - \alpha)d(a, b),$$

for all $(a,b) \in A \times B$, where $\alpha = (2k/3)/(1 - (k/3)) \in (0,1)$. It follows that $p = d(A,B) \preceq d(y_{n_k}, Ty_{n_k}) \preceq d_{n_k}$. Since $\{d(Sx_{n_k}, x_{n_k})\}$ is a subsequence of $\{d_n\}$, hence $\lim_{k\to\infty} d(Sx_{n_k}, x_{n_k}) = p$. Thus $\lim_{k\to\infty} d(y_{n_k}, Ty_{n_k}) = p$. So $d(Ty_{n_k}, y) \to p$ as $k \to \infty$. Now, for $k \ge 1$,

$$d(Ty, y_{n_k}) \leq (k/3) \{ d(y, x_{n_k}) + d(Sx_{n_k}, x_{n_k}) + d(Ty, y) \} + (1-k)d(a, b)$$

$$\leq (k/3) \{ 2d(y, y_{n_k}) + 2d(y_{n_k}, x_{n_k}) + d(Ty, y_{n_k}) \} + (1-k)d(a, b).$$

Thus

$$p = d(A, B) \preceq d(Ty, y_{n_k}) \preceq \alpha \{ d(y, y_{n_k}) + d(y_{n_k}, x_{n_k}) \} + (1 - k)d(a, b),$$
(2.3)

for all $(a,b) \in A \times B$, where $\alpha = ((2k)/3)/(1 - (k/3)) \in (0,1)$. Therefore, by relation (2.3), d(Ty,y) = p = d(A,B). Similarly, it can be proved that d(x, Sx) = d(A, B).

Example 2.1. Let $E = \mathbb{R}^2$, $P = \{(x, y) \in E : x, y \ge 0\} \subset \mathbb{R}^2$, $X = \mathbb{R}$ and $d : X \times X \to E$ be such that $d(x, y) = (|x - y|, \lambda | x - y|)$, where $\lambda \ge 0$ is a constant. Let A = [0, 1], B = [-1, 0]. So d(A, B) = 0. Define $S, T : A \cup B \to A \cup B$ by

$$S(x) = \begin{cases} \frac{-x}{2}, & x \in A \\ & & \\ \frac{x}{2}, & x \in B, \end{cases} \qquad T(x) = \begin{cases} \frac{x}{2}, & x \in A \\ \frac{-x}{2}, & x \in B. \end{cases}$$

then for all $(a, b), (x, y) \in A \times B$ and k = 7/10,

$$\begin{aligned} (7/30)\{d(x,y) + d(Sx,x) + d(Ty,y)\} + (3/10)d(a,b) - d(Sx,Ty) \\ &= (7/30)\{(|x-y|,\lambda|x-y|) + (3|x|/2,3\lambda|x|/2) + (3|y|/2,3\lambda|y|/2)\} \\ &+ (3/10)(|a-b|,\lambda|a-b|) - (1/2)(|x-y|,\lambda|x-y|) \\ &= ((-8/30)|x-y| + 3|x|/2 + 3|y|/2 + (3/10)|a-b|,\lambda((-8/30)|x-y| + 3|x|/2 \\ &+ 3|y|/2 + (3/10)|a-b|)) \in P. \end{aligned}$$

Hence for all $(a, b), (x, y) \in A \times B$,

$$d(Sx, Ty) \leq (7/30)\{d(x, y) + d(Sx, x) + d(Ty, y)\} + (3/10)d(a, b).$$

So d(A, B) = 0. Therefore x = 0 and y = 0 are best proximity points for S and T respectively.

Theorem 2.3. Let $S, T : A \cup B \to A \cup B$ be maps such that $S(A) \subseteq B, T(B) \subseteq A$ and

$$d(Sx, Ty) \leq k \max\{d(x, y), (1/2)\{d(Sx, x) + d(Ty, y)\}\} + (1 - k)d(a, b), \quad (2.4)$$

for all $(a, b), (x, y) \in A \times B$, where $k \in (0, 1)$ is a constant. Then d(A, B) exists.

proof. Assume that $\max\{d(x,y), (1/2)\{d(Sx,x) + d(Ty,y)\}\} = d(x,y)$. So $(1/2)\{d(Sx,x) + d(Ty,y)\} \leq d(x,y)$. Set $d_n = d(x_n, Sx_n)$. Since

$$d_{n+1} \leq kd(y_n, x_{n+1}) + (1-k)d(a, b)$$

$$\leq k^2 d_n + (1-k^2)d(a, b),$$

for all (a, b) in $A \times B$. It follows that $d_{n+1} \preceq d_n$.

Assume that $\max\{d(x,y), (1/2)\{d(Sx,x) + d(Ty,y)\}\} = (1/2)\{d(Sx,x) + d(Ty,y)\}$. So $d(x,y) \leq (1/2)\{d(Sx,x) + d(Ty,y)\}$. Thus

$$d_{n+1} \leq (k/2) \{ d_{n+1} + d(y_n, x_{n+1}) \} + (1-k)d(a, b).$$

Since

$$d(y_n, x_{n+1}) \leq (k/2) \{ d_n + d(y_n, x_{n+1}) \} + (1-k)d(a, b)$$

hence

$$d(y_n, x_{n+1}) \preceq \frac{(k/2)}{1 - (k/2)} d_n + \frac{(1-k)}{1 - (k/2)} d(a, b).$$

Therefore

$$d_{n+1} \preceq \frac{(k^2/4)}{(1-(k/2))^2} d_n + \frac{(1-k)}{(1-(k/2))^2} d(a,b)$$

which implies that

 $d_{n+1} \preceq \alpha d_n + (1-\alpha)d(a,b),$

for all $(a,b), (x,y) \in A \times B$, where $\alpha = (k^2/4)/((1-(k/2))^2) \in (0,1)$. It follows that $d_{n+1} \preceq d_n$. Next, the proof continues similar to the proof of Theorem 2.1.

Note that, the inequality (2.4) is equivalent to

$$d(Sx, Ty) \le k \max\{d(x, y), (1/2)\{d(Sx, x) + d(Ty, y)\}\} + (1 - k)d(A, B)$$

in metric spaces.

Theorem 2.4. Suppose that the conditions of Theorem 2.3 hold, for $x_0 \in A$, the sequences $\{x_n\}$ and $\{y_n\}$ are generated by (2.1). If $\{x_n\}$ and $\{y_n\}$ respectively have a convergent subsequence in A and B, then there exists $x \in A$ and $y \in B$ such that

$$d(x, Sx) = d(A, B) = d(y, Ty).$$

proof. Set $d_n = d(x_n, Sx_n)$. Let $\{y_{n_k}\}$ be a subsequence of $\{y_n\}$ such that $y_{n_k} \to y$. The relation

$$p = d(A, B) \preceq d(Ty_{n_k}, y) \preceq d(y_{n_k}, y) + d(y_{n_k}, Ty_{n_k})$$

holds for each $k \ge 1$.

Assume that $\max\{d(x,y), (1/2)\{d(Sx,x) + d(Ty,y)\}\} = d(x,y)$. So $(1/2)\{d(Sx,x) + d(Ty,y)\} \leq d(x,y)$. Thus $d(y_{nk}, Ty_{nk}) \leq kd_{nk} + (1-k)d(a,b),$

for all $(a,b) \in A \times B$. It follows that $d(y_{n_k}, Ty_{n_k}) \preceq d_{n_k}$. Since $\{d(Sx_{n_k}, x_{n_k})\}$ is a subsequence of $\{d_n\}$, hence $\lim_{k\to\infty} d(Sx_{n_k}, x_{n_k}) = p$. Thus

$$\lim_{k \to \infty} d(y_{n_k}, Ty_{n_k}) = p$$

So $d(Ty_{n_k}, y) \to p$ as $k \to \infty$. Now, for each $k \ge 1$

$$d(Ty, y_{n_k}) \leq kd(y, x_{n_k}) + (1 - k)d(a, b)$$

$$\leq k\{d(y, y_{n_k}) + d(y_{n_k}, x_{n_k})\} + (1 - k)d(a, b).$$

i.e.

$$p = d(A, B) \preceq d(Ty, y_{n_k}) \preceq k \{ d(y, y_{n_k}) + d_{n_k} \} + (1 - k)d(a, b),$$

for all $(a, b) \in A \times B$. Letting $k \to \infty$, we have d(Ty, y) = p = d(A, B). Assume that $\max\{d(x, y), (1/2)\{d(Sx, x) + d(Ty, y)\}\} = (1/2)\{d(Sx, x) + d(Ty, y)\}$. So $(1/2)\{d(Sx, x) + d(Ty, y)\} \preceq d(x, y)$. Thus

$$d(y_{n_k}, Ty_{n_k}) \preceq (k/2) \{ d_{n_k} + d(y_{n_k}, Ty_{n_k}) \} + (1-k)d(a, b),$$

which implies that

 $d(y_{n_k}, Ty_{n_k}) \preceq \alpha d_{n_k} + (1 - \alpha)d(a, b),$

for all $(a,b) \in A \times B$, where $\alpha = (k/2)/(1-(k/2)) \in (0,1)$. It follows that, $d(y_{n_k}, Ty_{n_k}) \preceq d_{n_k}$. Since $\lim_{k \to \infty} d_{n_k} = p$, hence $d(y_{n_k}, Ty_{n_k}) \to p$ as $k \to \infty$. So $\lim_{k \to \infty} d(Ty_{n_k}, y) = p$. Now, for each $k \ge 1$

$$d(Ty, y_{n_k}) \leq (k/2) \{ d(y_{n_k}, x_{n_k}) + (Ty, y) \} + (1-k)d(a, b) \\ \leq (k/2) \{ d_{n_k} + d(Ty, y_{n_k}) + d(y_{n_k}, y) \} + (1-k)d(a, b).$$

So

 $(Ty, y_{n_k}) \preceq \alpha \{ d_{n_k} + d(y_{n_k}, y) \} + (1 - \alpha) d(a, b),$

for all $(a,b) \in A \times B$, where $\alpha = (k/2)/(1 - (k/2)) \in (0,1)$. Letting $k \to \infty$, we have d(Ty,y) = p = d(A,B). Similarly, it can be proved that d(x, Sx) = d(A, B).

Example 2.2. Suppose that the conditions of Example 2.1 hold. So for all $(a, b), (x, y) \in A \times B$ and k = 6/10, $\max\{d(x, y), (1/2)\{d(Sx, x) + d(Ty, y)\}\} = d(x, y)$. Thus

$$(6/10)d(x,y) + (4/10)d(a,b) - d(Sx,Ty) = ((1/10)|x-y| + (4/10)|a-b|, \lambda((1/10)|x-y| + (4/10)|a-b|)) \in P.$$

Hence for all $(a, b), (x, y) \in A \times B$,

$$d(Sx, Ty) \preceq (6/10) \max\{d(x, y), (1/2)\{d(Sx, x) + d(Ty, y)\}\} + (4/10)d(a, b).$$

So d(A, B) = 0. Therefore x = 0 and y = 0 are best proximity points for S and T respectively.

Theorem 2.5. Let $\varphi : P \to P$ be a strictly increasing map, $S, T : A \cup B \to A \cup B$ be maps satisfying $S(A) \subseteq B, T(B) \subseteq A$ and

$$d(Sx, Ty) \leq d(x, y) - \varphi(d(x, y)) + \varphi(p), \tag{2.5}$$

for all $(x, y) \in A \times B$, where p is a lower bound for $A \times B$. Then, d(A, B) = p.

proof. Let $d_n = d(x_n, Sx_n)$. Then, $d_{n+1} \leq d_n$. By the regularity of P, there exists $q \in P$ such that $\lim_{n\to\infty} d_n = q$. Since φ be a strictly increasing map and p is a lower bound for $A \times B$. Hence $\varphi(p) \leq \varphi(d(y_n, x_{n+1}))$. So

$$\varphi(d(y_n, x_{n+1})) - \varphi(p) \in P.$$
(2.6)

By inequality (2.5),

$$d(y_n, x_{n+1}) - \varphi(d(y_n, x_{n+1})) + \varphi(p) - d_{n+1} \in P$$

From (2.5) and (2.6),

$$d(y_n, x_{n+1}) - d_{n+1} \in P.$$

So $d_{n+1} \leq d(y_n, x_{n+1})$. Since

$$\begin{aligned} d_{n+1} & \preceq & d(y_n, x_{n+1}) \\ & \preceq & d_n - \varphi(d_n) + \varphi(p) \end{aligned}$$

Letting $n \to \infty$, we have $\lim_{n\to\infty} \varphi(d_n) = \varphi(p)$. Since $p \preceq d_n$. Hence, $\varphi(p) \preceq \varphi(q) \preceq \varphi(d_n)$. Therefore $\varphi(p) = \varphi(q)$. It implies that p = q and so d(A, B) = p.

Theorem 2.6. Suppose that the conditions of Theorem 2.5 hold, for $x_0 \in A$, the sequences $\{x_n\}$ and $\{y_n\}$ are generated by (2.1). If $\{x_n\}$ and $\{y_n\}$ respectively have a convergent subsequence in A and B, then there exists $x \in A$ and $y \in B$ such that

$$d(x, Sx) = d(A, B) = d(y, Ty).$$

proof. Set $d_n = d(x_n, Sx_n)$. Let $\{y_{n_k}\}$ be a subsequence of $\{y_n\}$ such that $y_{n_k} \to y$. The relation

$$p = d(A, B) \preceq d(Ty_{n_k}, y) \preceq d(y_{n_k}, y) + d(y_{n_k}, Ty_{n_k})$$

holds for each $k \ge 1$. Since

$$d(y_{n_k}, Ty_{n_k}) \preceq d_{n_k}$$

Hence $\lim_{k\to\infty} d(y_{n_k}, Ty_{n_k}) = p$. Thus $d(Ty_{n_k}, y) \to p$ as $k \to \infty$. Now, for each $k \ge 1$

$$d(Ty, y_{n_k}) \leq d(y, x_{n_k})$$
$$\leq d(y, y_{n_k}) + d(y_{n_k}, x_{n_k}).$$

Letting $k \to \infty$, we have d(Ty, y) = p = d(A, B). Similarly, it can be proved that d(x, Sx) = d(A, B).

Example 2.3. Suppose that the conditions of Example 2.1 hold. Define $\varphi(t_1, t_2) = (t_1^2/(1+2t_1), t_2^2/(1+2t_2))$ for $t_1, t_2 \ge 0$. Because p is a lower bound for $A \times B$. Then, p = (0, 0). Put t = |x - y|. So for all $(a, b), (x, y) \in A \times B$,

$$d(x,y) - \varphi(d(x,y)) + \varphi(p) - d(Sx,Ty) = (t,\lambda t) + (t^2/(1+2t),\lambda^2 t^2/(1+2\lambda t) - (1/2)(t,\lambda t) \in P.$$

Hence for all $(x, y) \in A \times B$,

$$d(Sx,Ty) \preceq d(x,y) - \varphi(d(x,y)) + \varphi(p).$$

So d(A, B) = 0. Therefore x = 0 and y = 0 are best proximity points for S and T respectively.

Theorem 2.7. Let $\varphi : P \to P$ be a strictly increasing map, $S, T : A \cup B \to A \cup B$ be maps satisfying $S(A) \subseteq B, T(B) \subseteq A$ and

$$d(Sx,Ty) \leq (1/3)\{d(x,y) + d(Sx,x) + d(Ty,y)\} - \varphi(d(x,y) + d(Sx,x) + d(Ty,y)) + \varphi(p)\}$$

for all $(x, y) \in A \times B$, where p is a lower bound for $A \times B$. Then, d(A, B) = p.

proof. For a strictly increasing mapping $\varphi: P \to P$

$$\begin{array}{rcl} \varphi(p) & \preceq & \varphi(d(x,y)) \\ & \preceq & \varphi(d(x,y) + d(Sx,x) + d(Ty,y)), \end{array}$$

for all $(x, y) \in A \times B$, so that

$$d(Sx, Ty) \preceq (1/3) \{ d(x, y) + d(Sx, x) + d(Ty, y) \}$$

Thus we have

$$d(x_n, Sx_n) \preceq (1/3) \{ d(x_n, y_{n-1}) + d(Sx_n, x_n) + d(Ty_{n-1}, y_{n-1}) \}$$

= $(2/3) d(x_n, y_{n-1}) + (1/3) d(Sx_n, x_n).$

Since

$$d(x_n, y_{n-1}) \preceq (1/3) \{ d(y_{n-1}, x_{n-1}) + d(y_{n-1}, x_n) + d(y_{n-1}, x_{n-1}) \}$$

= $(2/3) d(y_{n-1}, x_{n-1}) + (1/3) d(y_{n-1}, x_n),$

hence

$$d(x_n, y_{n-1}) \leq d(y_{n-1}, x_{n-1}) = d(x_{n-1}, Sx_{n-1}).$$

So

$$d(x_n, Sx_n) \preceq (2/3)d(x_{n-1}, Sx_{n-1}) + (1/3)d(Sx_n, x_n).$$

Therefore

$$d(x_n, Sx_n) \preceq d(x_{n-1}, Sx_{n-1}).$$

Let $d_n = d(x_n, Sx_n)$. Then $d_{n+1} \preceq d_n$ for $n \in \mathbb{N} \cup \{0\}$. By the regularity of P, there exists $q \in P$ such that $\lim_{n\to\infty} d_n = q$. Since

$$\begin{aligned} d_{n+1} &\preceq & (1/3)\{d(x_{n+1}, y_n) + d_{n+1}\} - \varphi(2d_n + d(x_{n+1}, y_n)) + \varphi(p) \\ &\preceq & (2/3)d_n + (1/3)d_{n+1} - \varphi(d_n) + \varphi(p). \end{aligned}$$

Hence

$$\varphi(d_n) - \varphi(p) \preceq (2/3) \{ d_n - d_{n+1} \}.$$

Therefore $\lim_{n\to\infty} \varphi(d_n) = \varphi(p)$. Since $p \leq d_n$. Hence, $p \leq q$ and $\varphi(p) \leq \varphi(q) \leq \varphi(d_n)$. Thus, $\varphi(p) = \varphi(q)$. It implies that p = q and so d(A, B) = p.

Theorem 2.8. Suppose that the conditions of Theorem 2.7 hold, for $x_0 \in A$, the sequences $\{x_n\}$ and $\{y_n\}$ are generated by (2.1). If $\{x_n\}$ and $\{y_n\}$ respectively have a convergent subsequence in A and B, then there exists $x \in A$ and $y \in B$ such that

$$d(x, Sx) = d(A, B) = d(y, Ty)$$

proof. Set $d_n = d(x_n, Sx_n)$. Let $\{y_{n_k}\}$ be a subsequence of $\{y_n\}$ such that $y_{n_k} \to y$. The relation

$$p = d(A, B) \preceq d(Ty_{n_k}, y) \preceq d(y_{n_k}, y) + d(y_{n_k}, Ty_{n_k}),$$

holds for each $k \ge 1$. Since

$$d(y_{n_k}, Ty_{n_k}) \preceq (2/3)d_{n_k} + (1/3)d(y_{n_k}, Ty_{n_k}).$$

Hence

$$d(y_{n_k}, Ty_{n_k}) \preceq d_{n_k}$$

It follows that $\lim_{k\to\infty} d(y_{n_k}, Ty_{n_k}) = p$. Thus $d(Ty_{n_k}, y) \to p$ as $k \to \infty$. Now, for $k \ge 1$

$$d(Ty, y_{n_k}) \leq (1/3) \{ d(y, x_{n_k}) + d(Sx_{n_k}, x_{n_k}) + d(Ty, y) \}$$

$$\leq (1/3) \{ 2d(y, y_{n_k}) + 2d(y_{n_k}, x_{n_k}) + d(Ty, y_{n_k}) \}$$

Thus

$$d(Ty, y_{n_k}) \preceq \{ d(y, y_{n_k}) + d(y_{n_k}, x_{n_k}) \}.$$

Therefore, d(Ty, y) = p = d(A, B). Similarly, it can be proved that d(x, Sx) = d(A, B).

Example 2.4. Suppose that the conditions of Example 2.1 hold. Define $\varphi(t_1, t_2) = (t_1^2/(1+8t_1), t_2^2/(1+8t_2))$ for $t_1, t_2 \ge 0$. Because p is a lower bound for $A \times B$. Then, p = (0, 0). So for all $(x, y) \in A \times B$,

$$(1/3)\{d(x,y) + d(Sx,x) + d(Ty,y)\} - \varphi(d(x,y) + d(Sx,x) + d(Ty,y)) + \varphi(p) \in P$$

Hence for all $(x, y) \in A \times B$,

$$\begin{aligned} d(Sx,Ty) &\preceq (1/3)\{d(x,y) + d(Sx,x) + d(Ty,y)\} \\ &- \varphi(d(x,y) + d(Sx,x) + d(Ty,y)) + \varphi(p). \end{aligned}$$

So d(A, B) = 0. Therefore x = 0 and y = 0 are best proximity points for S and T respectively.

References

- Al-Thagafi, M. A., Shahzad, N., Convergence and existence result for best proximity points. *Nonliner Analysis, Theory, Methods and Applications*. 70 (2009), no. 10, 3665-3671.
- [2] Eldred, A. A., Veeramani, P., Existence and convergence of best proximity points. J. Math. Anal. Appl. 323 (2006), no. 2, 1001-1006.
- [3] Gabeleh, M., Abkar, A., Best proximity points for semi-cyclic contractive pairs in Banach spaces. *Int. Math. Forum.* 6 (2011), no. 44, 2179-2186.
- [4] Haghi, R. H., Rakočević, V., Rezapour, Sh., Shahzad, N., Best proximity result in regular cone metric space. *Rendiconti del circolo Mathematico di palermo Co.* 60 (2011), no. 3, 323-327.
- [5] Haghi, R. H., Rezapour, Sh., Fixed points of multifunctions on regular cone metric space. *Expo. Math.* 28 (2010), no. 1, 71-77.
- [6] Huang, L. G., Zhang, X., Cone metric spaces and fixed point theorems of contractive mappings. J. Math. Anal. Appl. 332 (2007), no. 2, 1468-1476.
- [7] Karapinar, E., Best proximity points of cyclic mappings. Appl. Math. 25 (2012), no. 11, 1761-1766.
- [8] Kumar, L., Som T., Existence of best proximity points in regular cone Metric Spaces. Azerbaijan Journal of Mathematics. 5 (2015), no. 1, 44-53.

- [9] Lee, B. S., Cone metric version of existence and convergence for best proximity points. *Universal J. Appl. Math.* 2 (2014), no. 2, 104-108.
- [10] Rezapour, Sh., Best approximations in cone metric spaces. Mathematica moravica. 11 (2007), 85-88.
- [11] Rezapour, Sh., Hamlbarani Haghi, R., Some notes on the paper "Cone metric spaces and fixed point theorems of contractive mappings". *J. Math. Anal. Appl.* 345 (2008) no. 2, 719-724.
- [12] Thakur, B. S., Sharma, A., Existence and convergence of best proximity points for semi-cyclic contraction pairs. *International Journal of Analysis and Applications*. 5 (2014), no. 1, 33-44.

Affiliations

M. AHMADI BASERI **ADDRESS:** Department of Mathematics, Yazd University, Yazd, Iran. **E-MAIL:** m.ahmadi@stu.yazd.ac.ir ORCID ID: orcid.org/0000-0003-4997-6576

H. MAZAHERI **ADDRESS:** Department of Mathematics, Yazd University, Yazd, Iran. **E-MAIL:** hmazaheri@yazd.ac.ir ORCID ID: orcid.org/0000-0003-3450-3776