MATHEMATICAL SCIENCES AND APPLICATIONS E-NOTES
5(2) 36-44 (2017) ©MSAEN

Best proximity points for semi-cyclic contraction pairs
in regular cone metric spaces
M. Ahmadi Baseri* and H. Mazaheri

(Communicated by Nihal YILMAZ OZGUR)

Abstract

The aim of this paper is to establish some conditions which guarantee the existence of best proximity for
semi-cyclic contraction pairs in regular cone metric spaces. We obtain best proximity points and prove
convergence results for such maps in regular cone metric spaces.
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1. Introduction and preliminaries

Let X := (X, d) be a metric space and A and B be non-empty subsets of X, ¢ : [0,00) — [0, 00) be a strictly
increasing map and S, T' be two self mappings on AU B. The pair (S, T') is called a semi-cyclic ¢—contraction pair if
S(A)C B, T(B) C Aand

d(Sz, Ty) < d(z,y) — (d(z,y)) + p(d(4, B)),

forall z € Aandy € B[12]. When S = T, T is called a p—contraction map [1]. A semi-cyclic contraction pair
is a semi-cyclic p—contraction pair with ¢(t) = (1 — k)t, k € [0,1). In this case the pair (S, T') satisfies for some
ke (0,1),

forallz € Aandy € B [3]. When S = T, T is called a cyclic contraction map. In 2006, Eldered and Veeramani
obtained best proximity point results for cyclic contraction maps [2]. They raised a question and in 2009, Al-Thagafi
and Shahzad answered it for cyclic ¢—contraction maps [1]. Also, in 2012, Karapinar proved some theorems for
generalized cyclic contraction maps [7].

In 2011, Gabeleh and Abkar proved a theorem on the existence and convergence of best proximity points for a
semi-cyclic contraction pair (S, T") [3]. Thakur and Sharma [12], obtained best proximity point results for semi-cyclic
(p—contraction pair in 2014.

On the other hand, Huang and Zhang [6] introduced cone metric spaces as a generalization of metric spaces. In
cone metric spaces the distance between two members not necessary a real positive, it can be sequence, function,
matrix and any arbitrary Banach space. Hence achieved results is important and has many applications in sciences.
In 2007, Rezapour [10] prove best proximity results in cone metric spaces. In 2011, Haghi et al [4] obtained best
proximity points for cyclic contraction maps. In 2014, Lee [9] prove cone metric version of existence and convergence
for best proximity points. Also, In 2015, Kumar and Som [8] give best proximity theorems in regular cone metric
spaces. In this paper, we establish some conditions which guarantee the existence of best proximity for semi-cyclic
contraction pairs in regular cone metric spaces. Then, we prove existence and convergence results for semi-cyclic
contraction pair (S, T') in regular cone metric spaces.
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To prove our results in the next section we recall some definitions and facts.
Definition 1.1. [6] Let £ be a real Banach space. A subset P of E is called a cone if and only if

(P1) P is closed, non-empty and P # {0};
(P2)a,be R, a,b>0and z,y € P implies az + by € P;
(P3) x € Pand —x € P implies ¢ = 0.

We define a partial ordering < with respect to Pby v < yifand onlyify —x € P. v < y will stand forx <y
and x # y, while x < y will stand for y — = € int P, where int P denotes the interior of P.

Definition 1.2. [6] Let X be a non-empty set and E be a Banach space. Suppose that a mappingd : X x X — E
satisfies:

(d1) 0 = d(x,y) for every z,y € X and d(z,y) = 0if and only if z = y;
(d2) d(x,y) = d(y, z) for every z,y € X;
(d3) d(z,y) < d(z,2) + d(z,y) for every z,y, z € X.

Then d is called a cone metric and (X, d) is called a cone metric space.

A map f: P — P issaid to be increasing (strictly increasing) whenever = < y implies that f(z) < f(y) (z <y
implies that f(z) < f(y)).

A continuous function f : P — P has a maximum point at ¢ if f(z) < f(a) for all x € P. Similarly, the function
has a minimum point at a if f(a) < f(x) for all z € P. The value of the function at a maximum point is called the
maximum value of the function and the value of the function at a minimum point is called the minimum value of
the function.

A cone P is said to be normal if there is a number M > 0 such that forall z,y € E

0=z =y implies ||| <Mly|.

The least positive number M satisfying the above inequality is called the normal constant of P.

The cone P is called regular if every increasing sequence which is bounded from above is convergent. That is, if
{zn}n>1isasequencesuchthatz; <z < ... X yforsomey € E, then thereisz € E such thatlim,,_,|z,—z| = 0.
Equivalently the cone P is regular if and only if every decreasing sequence which is bounded from below is
convergent. Every regular cone is normal [11].

The following example shows that the category of regular cone metric spaces is bigger that the category of
metric spaces.

Example 1.1. [5] Let E = (L'[0,1],| - |), P={f€E: f =0 a..}, (X,p)beametricspaceandd: X x X — F
be defined by d(z,y) = f.,,, where f, ,(t) = p(z,y)t*. Then (X, d) is a regular cone metric space. In fact, if {f, },,>1
is an increasing sequence and there is g € L'suchthat fi < fo < ... < f, < ... <X g for all almost z, then { frtn>1
converges to a function f for all almost x. Then, f,, < f < g (a.e.) foralln > 1. Thusg— f1 € L', g— fn 29— f1
foralln > 1and lim,—0cg — fn = g — f (a.e.). Hence by the Lebesgue dominated convergence theorem, f € L' and
limp—eo || fn — f |l1= 0. So, the cone P is regular.

Let (X, d) be a cone metric space and A be a non-empty subset of X. We say that A is bounded whenever there
ise > O such thatd(z,y) < eforall z,y € A.

Definition 1.3. [4] Let A and B be non-empty subsets of cone metric space (X, d). An element p € P is said to be a
lower bound for A x B whenever
p = d(a,b),

for all (a,b) € A x B. If p > g for all lower bound ¢ for A x B, then p is called the greatest lower bound for A x B.
We denote it by d(A4, B).
Clearly, d(A, B) is a unique vector in P.

Let {z,,} be a sequence in a cone metric space (X, d) and = € X. If for every c € intP, there is a natural number
N such that for every n > N, ¢ — d(zy, x) € intP, then {z, } converges to « with respect to P and is denoted by
lim,,—y o0 T, = T.

Lemma 1.1. [6] Let (X, d) be a cone metric space, P be a normal cone, {x,,} and {y,,} be sequences in X. Then
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(i) z,, converges to x with respect to P if and only if d(z,,z) — 0asn — oo,

(ii) If x,, — x and y,, — y as n — oo with respect to P, then d(xy,, yn) — d(z,y)
asn — oo,

(iii) If ©,, — x and y,, — y as n — oo with respect to P and y,, — x,, € P for
everyn € N, theny —x € P.

2. Main results

Throughout this section, E is a normed space, (X, d) is regular cone metric space, < is the partial ordering with
respect of P and A, B are non-empty subsets of X.
Sequences Construction Consider = € A, then Sz, € B, so there exists yy € B such that yo = Szo. Now Ty, € A,
so there exists 1 € A such that 2, = T'yy. Inductively, we define sequences {z,, } and {y, } in A and B, respectively

>y Tnt1 = TYn, Yn =Sz, forneNU{0}. (2.1)
Theorem 2.1. Let S,T : AU B — AU B be maps such that S(A) C B, T(B) C Aand
d(Sz, Ty) = (k/3){d(z,y) + d(Sz,z) + d(Ty,y)} + (1 — k)d(a,b), (2.2)
forall (a,b), (z,y) € A x B, where k € (0,1) is a constant. Then d(A, B) exists.
proof. Let d,, = d(x,,, Sz,). By inequality (2.2),

dny1 = (k/3>{d(ym anrl) +dpy1 + d(yna$n+l)} + (1 — k)d(a, b)'

Since
d(ym $n+1) = (k/3){2dn + d(ynv $n+1)} + (1 - k)d(a, b)7
hence (20/3) (1- k)
d(ymxn-i-l) = (1_(k/3))dn (1_ (k/g))d(avb)
Therefore
(2k/3) -0 .
+ (k/3)dpsr + (1 — k)d(a,b).
Then

(4k%/9)

(1-K)(1+Ek/3)
It X T (k3))2

It A (k732

d(a,b),

which implies that
dn+1 = adn + (1 - Ol)d(a, b);

for all (a,b) € A x B, where o = (4k%/9)/((1 — (k/3))?) € (0,1). It follows that d,, .1 < d,,. By the regularity of P,
there exists p € P such that lim,,_,~ d,, = p. Thus p < d(a, b) holds for any (a,b) in A x B. Now if ¢ is a lower bound
for A x B, then ¢ < d,, foralln € NU {0}. So g < p. Therefore, d(A, B) = p. a

Note that, the inequality (2.2) is equivalent to
d(Sz, Ty) < (k/3){d(x,y) + d(Sz, ) + d(Ty,y)} + (1 — k)d(4, B)
in metric spaces.

Theorem 2.2. Suppose that the conditions of Theorem 2.1 hold, for xo € A, the sequences {x,,} and {y,} are generated by
(2.1). If {xy, } and {y, } respectively have a convergent subsequence in A and B, then there exists © € A and y € B such that

d(z, St) = d(A, B) = d(y, Ty).
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proof. Set d,, = d(zy, Sz,,). Let {y,, } be a subsequence of {y,} such that y,, — y. The relation
= d(A,B) 2 d(Tyny,y) = d(Yns»y) + d(Yni; TYny,)
holds for each k£ > 1. Since
= d(A, B) = d(yn,, Tyn,,) = odp, + (1 — a)d(a,b),

for all (a,b) € A x B, where a = (2k/3)/(1 — (k/3)) € (0,1). It follows that p = d(A, B) < d(yn,, Tyn,) = dn,
Since {d(Szy,,Zn,)} is a subsequence of {d,, }, hence limy,_, oo d(Sxn, , Zn,) = p. Thus limy_ oo d(Yny, TYn, ) =
d(TYn,,y) — pas k — oo. Now, for k > 1,

ATy, yn,) = (k/3{d(Y, Tny) + d(STny s 2y ) + d(Ty, y)} + (1 = k)d(a, b)
= (k/3){2d(y, yn,) + 2d(Yny, Tny) + d(Ty, yny)} + (1 — k)d(a,b).
Thus
p=d(A,B) 2d(Ty,yn,) = o{d(y, yn,) + d(Yn,, Tn,) } + (1 = k)d(a, ), (2.3)
for all (a,b) € A x B, where a = ((2k)/3)/(1 — (k/3)) € (0, 1). Therefore, by relation (2.3), d(T'y,y) = p = d(4, B).
Similarly, it can be proved that d(z, Sx) = d(A, B). ad

Example 2.1. Let E = R?, P = {(z,y) € E: z,y > 0} C R?, X = Randd : X x X — E be such that
d(z,y) = (Jz — y|,\lx — y|), where A > 0 is a constant. Let A = [0,1], B = [-1,0]. So d(A, B) = 0. Define
S, T:AUB — AU Bby

5, r€A 5, zT€A

5
then for all (a,b), (z,y) € A x Band k = 7/10,
(7/30){d(z, y) + d(Sz,x) + d(Ty,y)} + (3/10)d(a,b) — d(Sz, Ty)

= (7/30){(lz — yl, Al = y[) + (3|2[/2, 3A[x]/2) + (3[yl/2, 3)[y|/2)}

+(3/10)(Ja = bl, Ala = b)) = (1/2)(Jx — yI, Alz — yl)

= ((=8/30)[z — [+ 3|2[/2 + 3[yl/2 + (3/10)[a — b], M((=8/30) [« — y| + 3[z[/2

+ 3lyl/2 + (3/10)|a — b])) € P.
Hence for all (a,b), (z,y) € A x B,

d(Sz, Ty) < (7/30){d(z,y) + d(Sz,z) + d(Ty,y)} + (3/10)d(a,d).

So d(A, B) = 0. Therefore = = 0 and y = 0 are best proximity points for S and T respectively.
Theorem 2.3. Let S,T : AU B — AU B be maps such that S(A) C B, T(B) C Aand

d(Sz, Ty) 2 kmax{d(z,y), (1/2{d(Sz,z) + d(Ty,y)}} + (1 — k)d(a,b), (2.4)
forall (a,b), (z,y) € A x B, where k € (0,1) is a constant. Then d(A, B) exists.

proof. Assume that max{d(z,y), (1/2){d(Sz,z) + d(Ty,y)}} = d(z,y). So (1/2){d(Sz,z) + d(Ty,y)} = d(z,y).
Set d,, = d(zy,, Sz,,). Since

dnt1 = kd(Yn, Tni1) + (1 — k)d(a,b)
< k*d, + (1 — k*)d(a,b),

forall (a,b) in A x B. It follows that d,,+1 < d,,.
Assume that max{d(z,y), (1/2){d(Sz,z) + d(Ty,y)}} = (1/2){d(Sz,z) + d(Ty,y)}. So d(z,y) < (1/2){d(Sz,x) +
d(Ty,y)}. Thus

dny1 2 (/2 dny1 + d(yn, T} + (1 = k)d(a, b).
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Since
d(ym xn-‘rl) = (k/2){dn + d(yna $n+1)} + (1 - k)d(a, b),
hence (k/2) 1
d(ynaxn-l-l) = 1— (k/2) dyn, + 1— (k/2) d(aab)
Therefore

2/ (1-p)
- o2 T

dpy1 =

which implies that
dnt1 = ad, + (1 — a)d(a,b),

for all (a,b), (z,y) € A x B, where a = (k?/4)/((1 — (k/2))?) € (0,1). It follows that d,,+1 =< d,. Next, the proof
continues similar to the proof of Theorem 2.1. O

Note that, the inequality (2.4) is equivalent to
d(Sz, Ty) < kmax{d(z,y), (1/2){d(Sz,z) + d(Ty,y)}} + (1 — k)d(A, B)
in metric spaces.

Theorem 2.4. Suppose that the conditions of Theorem 2.3 hold, for xy € A, the sequences {x,,} and {y,,} are generated by
(2.1). If {x,, } and {y,,} respectively have a convergent subsequence in A and B, then there exists x € A and y € B such that
d(z,Sz) = d(A, B) = d(y,Ty).

proof. Set d,, = d(zp, Szy). Let {yn, } be a subsequence of {y, } such that y,, — y. The relation

p=d(A, B) 2 d(Tyny,y) = dYni,y) + dYny, Tyny)
holds for each k£ > 1.
Assume that max{d(z,y), (1/2){d(Sz,x) + d(Ty,y)}} = d(x,y). So (1/2){d(Sz,x) + d(Ty,y)} = d(z,y). Thus
d(Yny, Tyn,,) = kdn,, + (1 = k)d(a,b),
for all (a,b) € A x B. It follows that d(yn,, Tyn,) = dn,. Since {d(Sz,, ,z,,)} is a subsequence of {d,}, hence
limg 00 d(S@n,,, T, ) = p. Thus
A d(Yn,, Tyn,) = p-

So d(T'yn,,,y) — pas k — oo. Now, for each k > 1

d(Tya ynk) = kd(ya xnk) + (1 - k)d(av b)
2 k{d(Y, yni) + d(Yny, Tn) } + (1= K)d(a, b).
i.e.
p=d(A,B) 2 d(Ty,yn,) = k{d(y, yn,) + dn, } + (1 — k)d(a, ),
for all (a,b) € A x B. Letting k — oo, we have d(Ty,y) = p = d(A, B).
Assume that max{d(z,y), (1/2){d(Sz,z) +d(Ty,y)}} = (1/2){d(Sz,x) +d(Ty,y)}. So (1/2){d(Sz,z)+d(Ty,y)} =
d(z,y). Thus
d(Yny,, Tyny) = (k/2){dn, + d(Yn,, Tyn,)} + (1 = k)d(a,b),
which implies that
d(ynk ’ Tynk) = ad”lk + (1 - a)d(a, b)7
forall (a,b) € Ax B, where o = (k/2)/(1—(k/2)) € (0,1). It follows that, d(yn, , Tyn,) = dn, - Since limy_,  dn, = p,
hence d(yn,,, Tyn,) = P as k — 00. So limy_, 0 d(T'Yn, ,y) = p. Now, for each k > 1

ATy, yny) = (k/2){d(Yny,, Tny) + (Ty,9)} + (1 = k)d(a,b)
= (k/2{dn, +d(Ty,yn,) + d(Yn,, )} + (1 — k)d(a,b).
So
(TY, yny,) = a{dn, + d(Yn,,y)} + (1 — a)d(a,b),

for all (a,b) € A x B, where o = (k/2)/(1 — (k/2)) € (0,1). Letting k — oo, we have d(Ty,y) = p = d(4, B).
Similarly, it can be proved that d(z, Sz) = d(A, B). O
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Example 2.2. Suppose that the conditions of Example 2.1 hold. So for all (a,b), (z,y) € A x B and k = 6/10,
max{d(z,y), (1/2){d(Sz,z) + d(Ty,y)}} = d(z,y). Thus

(6/10)d(z,y) + (4/10)d(a,b) — d(Sz, Ty)
= ((1/10)z — y| + (4/10)|a — b, A((1/10)[z — y| + (4/10)|a - b])) € P.

Hence for all (a,b), (z,y) € A x B,
d(Sz, Ty) = (6/10) max{d(z, y), (1/2){d(Sz, ) + d(Ty,y)}} + (4/10)d(a, b).
So d(A, B) = 0. Therefore 2 = 0 and y = 0 are best proximity points for S and T respectively.

Theorem 2.5. Let ¢ : P — P be a strictly increasing map, S, T : AUB — AU B be maps satisfying S(A) C B,T(B) C A
and

forall (x,y) € A x B, where p is a lower bound for A x B. Then, d(A, B) = p.

proof. Let d,, = d(z,,, Sz,,). Then, d,,11 < d,,. By the regularity of P, there exists ¢ € P such that lim,,_, d,, = ¢.
Since ¢ be a strictly increasing map and p is a lower bound for A x B. Hence ¢(p) =< ©(d(yn, Tn+1)). S0

o(d(Yn, Tnt1)) — 0(p) € P. (2.6)
By inequality (2.5),
d(Yn, ng1) — @(A(Yn, Tny1)) + @(p) — dpy1 € P.

From (2.5) and (2.6),
d(ynvxn-i-l) —dpt1 € P.

So dpt1 =X d(Yn, Tpy1). Since

dn+1 j d(yna anrl)
= dn —@(dn) + ¢(p)

Letting n — oo, we have lim,,_,o, ¢(d,,) = ¢(p). Since p < d,,. Hence, ¢(p) < ¢(q) < ¢(d,). Therefore ¢(p) = ¢(q).
It implies that p = ¢ and so d(4, B) = p. m]

Theorem 2.6. Suppose that the conditions of Theorem 2.5 hold, for x € A, the sequences {x,,} and {y,,} are generated by
(2.1). If {zy, } and {y,} respectively have a convergent subsequence in A and B, then there exists x € A and y € B such that

d(z, Sz) = d(A, B) = d(y,Ty).
proof. Set d,, = d(zy,, Sz,). Let {y,, } be a subsequence of {y,} such that y,, — y. The relation

p=d(A,B) 2d(Tyn,,y) 2 dYny,y) + dYny, TYn,)

holds for each k£ > 1. Since
d(ynk’Tynk) = dp,-

Hence limy s 00 d(yn, ; Tyn, ) = p. Thus d(Ty,,,y) — p as k — oco. Now, for each k > 1

ATy, yn,) = d(y, zp,)

=

Letting k — oo, we have d(Ty,y) = p = d(4, B).
Similarly, it can be proved that d(z, Sz) = d(A, B). O
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Example 2.3. Suppose that the conditions of Example 2.1 hold. Define ¢(t1,t2) = (t12/(1 4 2t1),t2%/(1 + 2t5)) for
t1,t2 > 0. Because p is a lower bound for A x B. Then, p = (0,0). Put¢ = |z — y|. So for all (a,b), (x,y) € A x B,

d(z,y) — e(d(z,y)) + ¢(p) — d(Sz, Ty)
= (t, \t) 4+ (12 /(1 4 2t), Nt /(1 + 2)t) — (1/2)(t, \t) € P.

Hence for all (z,y) € A x B,
d(Sz, Ty) 2 d(z,y) = ¢(d(2,y)) + ¢ (p)-
So d(A, B) = 0. Therefore 2 = 0 and y = 0 are best proximity points for S and T respectively.

Theorem 2.7. Let ¢ : P — P be a strictly increasing map, S, T : AUB — AU B be maps satisfying S(A) C B,T(B) C A
and

d(Sz,Ty) = (1/3){d(z,y) +d(Sz,z) +d(Ty,y)}
— p(d(z,y) + d(Sz,z) + d(Ty,y)) + ¢(p),

forall (z,y) € A x B, where p is a lower bound for A x B. Then, d(A, B) = p.

proof. For a strictly increasing mapping ¢ : P — P

ep) = eld(z,y))
= pd(z,y) +d(Sz,z) +d(Ty,y)),

forall (z,y) € A x B, so that
d(Sz,Ty) = (1/3){d(z,y) + d(Sz,z) + d(Ty,y)}.
Thus we have

d(xn, Stn) = (1/3){d(wns Y1) + d(Szn,20) + d(TYn—1,Yn-1)}
= (2/3)d(zn,yn—1) + (1/3)d(Szy, 25).

Since
d(mn;ynfl) j (1/3){d(yn71,$n71) +d(yn71»xn) +d(yn71;xn71)}
= (2/3)d(yn-1,7n-1) + (1/3)d(Yn—1,2n),
hence
d(xnayn—l) = d(yn—l,xn—l)
= d(xn—la S-Tn—l)~
So
d(xp, Sxy) <X (2/3)d(xpn—-1,STn_1) + (1/3)d(Szp, xy).

Therefore

d(xnv an) j d(xnfla an71)~
Let d,, = d(zy,Sz,). Then d,,11 < d, for n € N U {0}. By the regularity of P, there exists ¢ € P such that

lim,, ;o d,, = q. Since

(1/3){d(xn+1’ yn) + dn+1} - @(an + d(mn+1a yn)) + <p(p)
(2/3)dn + (1/3)dni1 — @(dn) + ¢ (p).

dn+1

A TA

Hence
e(dn) —@(p) 2 (2/3){dn — dn41}-

Therefore lim,,_, ¢(d,) = ¢©(p). Since p < d,,. Hence, p < g and ¢(p) < ¢(q) = ¢(d,). Thus, ¢(p) = ¢(q). It implies
that p = ¢ and so d(4, B) = p. O
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Theorem 2.8. Suppose that the conditions of Theorem 2.7 hold, for xo € A, the sequences {x,,} and {y,,} are generated by
(2.1). If {x,, } and {y,,} respectively have a convergent subsequence in A and B, then there exists x € A and y € B such that

d(z,Sz) = d(A,B) =d(y, Ty).
proof. Set d,, = d(zy,, Sz,,). Let {y,, } be a subsequence of {y,} such that y,, — y. The relation

p=d(A,B) 2d(Tyn,,y) = dWYni»Y) + dYns TYn, )

holds for each k > 1. Since
d(Ynye> Tyn,.) = (2/3)dn,, + (1/3)d(Yny, Tyny)-

Hence
d(ynk y Tynk,) = dnk .

It follows that limg o0 d(Yn, ; TYn,, ) = p- Thus d(T'yn,.,y) — p as k — oo. Now, for k > 1

d(Ty, yn,) = (1/3){d(y, vp,) + d(STny, 70y ) +d(Ty, y)}
= (1/3){2d(y, yni) + 2d(Yny, ) + d(Ty, yn,) -

Thus
d(Ty, ynk) = {d(y7 ynk) + d(ynk , xnk)}

Therefore, d(Ty,y) = p = d(A, B).
Similarly, it can be proved that d(z, Sz) = d(A4, B). O

Example 2.4. Suppose that the conditions of Example 2.1 hold. Define ¢(t1,t2) = (t12/(1 + 8t1),t2%/(1 + 8t2)) for
t1,t2 > 0. Because p is a lower bound for A x B. Then, p = (0,0). So for all (z,y) € A x B,

(1/3){d(z, y) + d(Sz,2) + d(Ty, y)} — p(d(z,y) + d(Sz,x) + d(Ty,y)) + ¢(p) € P.
Hence for all (z,y) € A x B,
d(Sz,Ty) = (1/3){d(z,y) + d(Sz,2) + d(Ty,y)}
e(d(z,y) +d(Sz,z) + d(Ty,y)) + »(p).

So d(A, B) = 0. Therefore x = 0 and y = 0 are best proximity points for S and T respectively.
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