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Abstract
The aim of this paper is to establish some conditions which guarantee the existence of best proximity for
semi-cyclic contraction pairs in regular cone metric spaces. We obtain best proximity points and prove
convergence results for such maps in regular cone metric spaces.
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1. Introduction and preliminaries

Let X := (X, d) be a metric space and A and B be non-empty subsets of X, ϕ : [0,∞) → [0,∞) be a strictly
increasing map and S, T be two self mappings on A∪B. The pair (S, T ) is called a semi-cyclic ϕ−contraction pair if
S(A) ⊆ B, T (B) ⊆ A and

d(Sx, Ty) ≤ d(x, y)− ϕ(d(x, y)) + ϕ(d(A,B)),

for all x ∈ A and y ∈ B [12]. When S = T, T is called a ϕ−contraction map [1]. A semi-cyclic contraction pair
is a semi-cyclic ϕ−contraction pair with ϕ(t) = (1 − k)t, k ∈ [0, 1). In this case the pair (S, T ) satisfies for some
k ∈ (0, 1),

d(Sx, Ty) ≤ kd(x, y) + (1− k)d(A,B),

for all x ∈ A and y ∈ B [3]. When S = T, T is called a cyclic contraction map. In 2006, Eldered and Veeramani
obtained best proximity point results for cyclic contraction maps [2]. They raised a question and in 2009, Al-Thagafi
and Shahzad answered it for cyclic ϕ−contraction maps [1]. Also, in 2012, Karapinar proved some theorems for
generalized cyclic contraction maps [7].
In 2011, Gabeleh and Abkar proved a theorem on the existence and convergence of best proximity points for a
semi-cyclic contraction pair (S, T ) [3]. Thakur and Sharma [12], obtained best proximity point results for semi-cyclic
ϕ−contraction pair in 2014.

On the other hand, Huang and Zhang [6] introduced cone metric spaces as a generalization of metric spaces. In
cone metric spaces the distance between two members not necessary a real positive, it can be sequence, function,
matrix and any arbitrary Banach space. Hence achieved results is important and has many applications in sciences.
In 2007, Rezapour [10] prove best proximity results in cone metric spaces. In 2011, Haghi et al [4] obtained best
proximity points for cyclic contraction maps. In 2014, Lee [9] prove cone metric version of existence and convergence
for best proximity points. Also, In 2015, Kumar and Som [8] give best proximity theorems in regular cone metric
spaces. In this paper, we establish some conditions which guarantee the existence of best proximity for semi-cyclic
contraction pairs in regular cone metric spaces. Then, we prove existence and convergence results for semi-cyclic
contraction pair (S, T ) in regular cone metric spaces.
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To prove our results in the next section we recall some definitions and facts.

Definition 1.1. [6] Let E be a real Banach space. A subset P of E is called a cone if and only if

(P1) P is closed, non-empty and P 6= {0};
(P2) a, b ∈ R , a, b ≥ 0 and x, y ∈ P implies ax+ by ∈ P ;
(P3) x ∈ P and −x ∈ P implies x = 0.

We define a partial ordering � with respect to P by x � y if and only if y − x ∈ P . x ≺ y will stand for x � y
and x 6= y, while x� y will stand for y − x ∈ intP , where intP denotes the interior of P .

Definition 1.2. [6] Let X be a non-empty set and E be a Banach space. Suppose that a mapping d : X ×X → E
satisfies:

(d1) 0 � d(x, y) for every x, y ∈ X and d(x, y) = 0 if and only if x = y;
(d2) d(x, y) = d(y, x) for every x, y ∈ X ;
(d3) d(x, y) � d(x, z) + d(z, y) for every x, y, z ∈ X.

Then d is called a cone metric and (X, d) is called a cone metric space.

A map f : P → P is said to be increasing (strictly increasing) whenever x � y implies that f(x) � f(y) (x ≺ y
implies that f(x) ≺ f(y)).

A continuous function f : P → P has a maximum point at a if f(x) � f(a) for all x ∈ P. Similarly, the function
has a minimum point at a if f(a) � f(x) for all x ∈ P. The value of the function at a maximum point is called the
maximum value of the function and the value of the function at a minimum point is called the minimum value of
the function.

A cone P is said to be normal if there is a number M > 0 such that for all x, y ∈ E

0 � x � y implies ‖x‖ ≤M‖y‖.

The least positive number M satisfying the above inequality is called the normal constant of P .
The cone P is called regular if every increasing sequence which is bounded from above is convergent. That is, if

{xn}n≥1 is a sequence such that x1 � x2 � . . . � y for some y ∈ E, then there is x ∈ E such that limn→∞‖xn−x‖ = 0.
Equivalently the cone P is regular if and only if every decreasing sequence which is bounded from below is
convergent. Every regular cone is normal [11].

The following example shows that the category of regular cone metric spaces is bigger that the category of
metric spaces.

Example 1.1. [5] Let E = (L1[0, 1], ‖ · ‖1), P = {f ∈ E : f � 0 a.e.}, (X, ρ) be a metric space and d : X ×X → E
be defined by d(x, y) = fx,y , where fx,y(t) = ρ(x, y)t2. Then (X, d) is a regular cone metric space. In fact, if {fn}n≥1
is an increasing sequence and there is g ∈ L1 such that f1 � f2 � . . . � fn � . . . � g for all almost x, then {fn}n≥1
converges to a function f for all almost x. Then, fn � f � g (a.e.) for all n ≥ 1. Thus g − f1 ∈ L1, g − fn � g − f1
for all n ≥ 1 and limn→∞g− fn = g− f (a.e.). Hence by the Lebesgue dominated convergence theorem, f ∈ L1 and
limn→∞ ‖ fn − f ‖1= 0. So, the cone P is regular.

Let (X, d) be a cone metric space and A be a non-empty subset of X. We say that A is bounded whenever there
is e� 0 such that d(x, y) � e for all x, y ∈ A.

Definition 1.3. [4] Let A and B be non-empty subsets of cone metric space (X, d). An element p ∈ P is said to be a
lower bound for A×B whenever

p � d(a, b),

for all (a, b) ∈ A×B. If p � q for all lower bound q for A×B, then p is called the greatest lower bound for A×B.
We denote it by d(A,B).
Clearly, d(A,B) is a unique vector in P.

Let {xn} be a sequence in a cone metric space (X, d) and x ∈ X. If for every c ∈ intP, there is a natural number
N such that for every n > N , c − d(xn, x) ∈ intP, then {xn} converges to x with respect to P and is denoted by
limn→∞ xn = x.

Lemma 1.1. [6] Let (X, d) be a cone metric space, P be a normal cone, {xn} and {yn} be sequences in X . Then
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(i) xn converges to x with respect to P if and only if d(xn, x)→ 0 as n→∞,

(ii) If xn → x and yn → y as n→∞ with respect to P , then d(xn, yn)→ d(x, y)
as n→∞,

(iii) If xn → x and yn → y as n→∞ with respect to P and yn − xn ∈ P for
every n ∈ N, then y − x ∈ P .

2. Main results
Throughout this section, E is a normed space, (X, d) is regular cone metric space, � is the partial ordering with

respect of P and A,B are non-empty subsets of X.
Sequences Construction Consider x0 ∈ A, then Sx0 ∈ B, so there exists y0 ∈ B such that y0 = Sx0. Now Ty0 ∈ A,
so there exists x1 ∈ A such that x1 = Ty0. Inductively, we define sequences {xn} and {yn} in A and B, respectively
by

xn+1 = Tyn, yn = Sxn for n ∈ N ∪ {0}. (2.1)

Theorem 2.1. Let S, T : A ∪B → A ∪B be maps such that S(A) ⊆ B, T (B) ⊆ A and

d(Sx, Ty) � (k/3){d(x, y) + d(Sx, x) + d(Ty, y)}+ (1− k)d(a, b), (2.2)

for all (a, b), (x, y) ∈ A×B, where k ∈ (0, 1) is a constant. Then d(A,B) exists.

proof. Let dn = d(xn, Sxn). By inequality (2.2),

dn+1 � (k/3){d(yn, xn+1) + dn+1 + d(yn, xn+1)}+ (1− k)d(a, b).

Since
d(yn, xn+1) � (k/3){2dn + d(yn, xn+1)}+ (1− k)d(a, b),

hence

d(yn, xn+1) �
(2k/3)

(1− (k/3))
dn +

(1− k)
(1− (k/3))

d(a, b).

Therefore

dn+1 � (2k/3)
(2k/3)

(1− (k/3))
dn + (2k/3)

(1− k)
(1− (k/3))

d(a, b)

+ (k/3)dn+1 + (1− k)d(a, b).

Then

dn+1 �
(4k2/9)

(1− (k/3))2
dn +

(1− k)(1 + k/3)

(1− (k/3))2
d(a, b),

which implies that
dn+1 � αdn + (1− α)d(a, b),

for all (a, b) ∈ A×B, where α = (4k2/9)/((1− (k/3))2) ∈ (0, 1). It follows that dn+1 � dn. By the regularity of P,
there exists p ∈ P such that limn→∞ dn = p. Thus p � d(a, b) holds for any (a, b) in A×B. Now if q is a lower bound
for A×B, then q � dn for all n ∈ N ∪ {0}. So q � p. Therefore, d(A,B) = p. 2

Note that, the inequality (2.2) is equivalent to

d(Sx, Ty) ≤ (k/3){d(x, y) + d(Sx, x) + d(Ty, y)}+ (1− k)d(A,B)

in metric spaces.

Theorem 2.2. Suppose that the conditions of Theorem 2.1 hold, for x0 ∈ A, the sequences {xn} and {yn} are generated by
(2.1). If {xn} and {yn} respectively have a convergent subsequence in A and B, then there exists x ∈ A and y ∈ B such that

d(x, Sx) = d(A,B) = d(y, Ty).
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proof. Set dn = d(xn, Sxn). Let {ynk
} be a subsequence of {yn} such that ynk

→ y. The relation

p = d(A,B) � d(Tynk
, y) � d(ynk

, y) + d(ynk
, T ynk

)

holds for each k ≥ 1. Since

p = d(A,B) � d(ynk
, T ynk

) � αdnk
+ (1− α)d(a, b),

for all (a, b) ∈ A × B, where α = (2k/3)/(1 − (k/3)) ∈ (0, 1). It follows that p = d(A,B) � d(ynk
, Tynk

) � dnk
.

Since {d(Sxnk
, xnk

)} is a subsequence of {dn}, hence limk→∞ d(Sxnk
, xnk

) = p. Thus limk→∞ d(ynk
, Tynk

) = p. So
d(Tynk

, y)→ p as k →∞. Now, for k ≥ 1,

d(Ty, ynk
) � (k/3){d(y, xnk

) + d(Sxnk
, xnk

) + d(Ty, y)}+ (1− k)d(a, b)
� (k/3){2d(y, ynk

) + 2d(ynk
, xnk

) + d(Ty, ynk
)}+ (1− k)d(a, b).

Thus
p = d(A,B) � d(Ty, ynk

) � α{d(y, ynk
) + d(ynk

, xnk
)}+ (1− k)d(a, b), (2.3)

for all (a, b) ∈ A×B, where α = ((2k)/3)/(1− (k/3)) ∈ (0, 1). Therefore, by relation (2.3), d(Ty, y) = p = d(A,B).
Similarly, it can be proved that d(x, Sx) = d(A,B). 2

Example 2.1. Let E = R2, P = {(x, y) ∈ E : x, y ≥ 0} ⊂ R2 , X = R and d : X × X → E be such that
d(x, y) = (|x − y|, λ|x − y|), where λ ≥ 0 is a constant. Let A = [0, 1], B = [−1, 0]. So d(A,B) = 0. Define
S, T : A ∪B → A ∪B by

S(x) =


−x
2 , x ∈ A

x
2 , x ∈ B,

T (x) =


x
2 , x ∈ A

−x
2 , x ∈ B.

then for all (a, b), (x, y) ∈ A×B and k = 7/10,

(7/30){d(x, y) + d(Sx, x) + d(Ty, y)}+ (3/10)d(a, b)− d(Sx, Ty)
= (7/30){(|x− y|, λ|x− y|) + (3|x|/2, 3λ|x|/2) + (3|y|/2, 3λ|y|/2)}
+ (3/10)(|a− b|, λ|a− b|)− (1/2)(|x− y|, λ|x− y|)
= ((−8/30)|x− y|+ 3|x|/2 + 3|y|/2 + (3/10)|a− b|, λ((−8/30)|x− y|+ 3|x|/2
+ 3|y|/2 + (3/10)|a− b|)) ∈ P.

Hence for all (a, b), (x, y) ∈ A×B,

d(Sx, Ty) � (7/30){d(x, y) + d(Sx, x) + d(Ty, y)}+ (3/10)d(a, b).

So d(A,B) = 0. Therefore x = 0 and y = 0 are best proximity points for S and T respectively.

Theorem 2.3. Let S, T : A ∪B → A ∪B be maps such that S(A) ⊆ B, T (B) ⊆ A and

d(Sx, Ty) � kmax{d(x, y), (1/2){d(Sx, x) + d(Ty, y)}}+ (1− k)d(a, b), (2.4)

for all (a, b), (x, y) ∈ A×B, where k ∈ (0, 1) is a constant. Then d(A,B) exists.

proof. Assume that max{d(x, y), (1/2){d(Sx, x) + d(Ty, y)}} = d(x, y). So (1/2){d(Sx, x) + d(Ty, y)} � d(x, y).
Set dn = d(xn, Sxn). Since

dn+1 � kd(yn, xn+1) + (1− k)d(a, b)
� k2dn + (1− k2)d(a, b),

for all (a, b) in A×B. It follows that dn+1 � dn.
Assume that max{d(x, y), (1/2){d(Sx, x) + d(Ty, y)}} = (1/2){d(Sx, x) + d(Ty, y)}. So d(x, y) � (1/2){d(Sx, x) +
d(Ty, y)}. Thus

dn+1 � (k/2){dn+1 + d(yn, xn+1}+ (1− k)d(a, b).
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Since
d(yn, xn+1) � (k/2){dn + d(yn, xn+1)}+ (1− k)d(a, b),

hence

d(yn, xn+1) �
(k/2)

1− (k/2)
dn +

(1− k)
1− (k/2)

d(a, b).

Therefore

dn+1 �
(k2/4)

(1− (k/2))2
dn +

(1− k)
(1− (k/2))2

d(a, b),

which implies that
dn+1 � αdn + (1− α)d(a, b),

for all (a, b), (x, y) ∈ A × B, where α = (k2/4)/((1 − (k/2))2) ∈ (0, 1). It follows that dn+1 � dn. Next, the proof
continues similar to the proof of Theorem 2.1. 2

Note that, the inequality (2.4) is equivalent to

d(Sx, Ty) ≤ kmax{d(x, y), (1/2){d(Sx, x) + d(Ty, y)}}+ (1− k)d(A,B)

in metric spaces.

Theorem 2.4. Suppose that the conditions of Theorem 2.3 hold, for x0 ∈ A, the sequences {xn} and {yn} are generated by
(2.1). If {xn} and {yn} respectively have a convergent subsequence in A and B, then there exists x ∈ A and y ∈ B such that

d(x, Sx) = d(A,B) = d(y, Ty).

proof. Set dn = d(xn, Sxn). Let {ynk
} be a subsequence of {yn} such that ynk

→ y. The relation

p = d(A,B) � d(Tynk
, y) � d(ynk

, y) + d(ynk
, T ynk

)

holds for each k ≥ 1.
Assume that max{d(x, y), (1/2){d(Sx, x) + d(Ty, y)}} = d(x, y). So (1/2){d(Sx, x) + d(Ty, y)} � d(x, y). Thus

d(ynk
, T ynk

) � kdnk
+ (1− k)d(a, b),

for all (a, b) ∈ A × B. It follows that d(ynk
, T ynk

) � dnk
. Since {d(Sxnk

, xnk
)} is a subsequence of {dn}, hence

limk→∞ d(Sxnk
, xnk

) = p. Thus
lim
k→∞

d(ynk
, Tynk

) = p.

So d(Tynk
, y)→ p as k →∞. Now, for each k ≥ 1

d(Ty, ynk
) � kd(y, xnk

) + (1− k)d(a, b)
� k{d(y, ynk

) + d(ynk
, xnk

)}+ (1− k)d(a, b).

i.e.
p = d(A,B) � d(Ty, ynk

) � k{d(y, ynk
) + dnk

}+ (1− k)d(a, b),
for all (a, b) ∈ A×B. Letting k →∞, we have d(Ty, y) = p = d(A,B).
Assume that max{d(x, y), (1/2){d(Sx, x)+d(Ty, y)}} = (1/2){d(Sx, x)+d(Ty, y)}. So (1/2){d(Sx, x)+d(Ty, y)} �
d(x, y). Thus

d(ynk
, T ynk

) � (k/2){dnk
+ d(ynk

, T ynk
)}+ (1− k)d(a, b),

which implies that
d(ynk

, T ynk
) � αdnk

+ (1− α)d(a, b),
for all (a, b) ∈ A×B,where α = (k/2)/(1−(k/2)) ∈ (0, 1). It follows that, d(ynk

, Tynk
) � dnk

. Since limk→∞ dnk
= p,

hence d(ynk
, T ynk

)→ p as k →∞. So limk→∞ d(Tynk
, y) = p. Now, for each k ≥ 1

d(Ty, ynk
) � (k/2){d(ynk

, xnk
) + (Ty, y)}+ (1− k)d(a, b)

� (k/2){dnk
+ d(Ty, ynk

) + d(ynk
, y)}+ (1− k)d(a, b).

So
(Ty, ynk

) � α{dnk
+ d(ynk

, y)}+ (1− α)d(a, b),
for all (a, b) ∈ A×B, where α = (k/2)/(1− (k/2)) ∈ (0, 1). Letting k →∞, we have d(Ty, y) = p = d(A,B).
Similarly, it can be proved that d(x, Sx) = d(A,B). 2
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Example 2.2. Suppose that the conditions of Example 2.1 hold. So for all (a, b), (x, y) ∈ A × B and k = 6/10,
max{d(x, y), (1/2){d(Sx, x) + d(Ty, y)}} = d(x, y). Thus

(6/10)d(x, y) + (4/10)d(a, b)− d(Sx, Ty)
= ((1/10)|x− y|+ (4/10)|a− b|, λ((1/10)|x− y|+ (4/10)|a− b|)) ∈ P.

Hence for all (a, b), (x, y) ∈ A×B,

d(Sx, Ty) � (6/10)max{d(x, y), (1/2){d(Sx, x) + d(Ty, y)}}+ (4/10)d(a, b).

So d(A,B) = 0. Therefore x = 0 and y = 0 are best proximity points for S and T respectively.

Theorem 2.5. Let ϕ : P → P be a strictly increasing map, S, T : A∪B → A∪B be maps satisfying S(A) ⊆ B, T (B) ⊆ A
and

d(Sx, Ty) � d(x, y)− ϕ(d(x, y)) + ϕ(p), (2.5)

for all (x, y) ∈ A×B, where p is a lower bound for A×B. Then, d(A,B) = p.

proof. Let dn = d(xn, Sxn). Then, dn+1 � dn. By the regularity of P, there exists q ∈ P such that limn→∞ dn = q.
Since ϕ be a strictly increasing map and p is a lower bound for A×B. Hence ϕ(p) � ϕ(d(yn, xn+1)). So

ϕ(d(yn, xn+1))− ϕ(p) ∈ P. (2.6)

By inequality (2.5),
d(yn, xn+1)− ϕ(d(yn, xn+1)) + ϕ(p)− dn+1 ∈ P.

From (2.5) and (2.6),
d(yn, xn+1)− dn+1 ∈ P.

So dn+1 � d(yn, xn+1). Since

dn+1 � d(yn, xn+1)

� dn − ϕ(dn) + ϕ(p)

Letting n→∞, we have limn→∞ ϕ(dn) = ϕ(p). Since p � dn. Hence, ϕ(p) � ϕ(q) � ϕ(dn). Therefore ϕ(p) = ϕ(q).
It implies that p = q and so d(A,B) = p. 2

Theorem 2.6. Suppose that the conditions of Theorem 2.5 hold, for x0 ∈ A, the sequences {xn} and {yn} are generated by
(2.1). If {xn} and {yn} respectively have a convergent subsequence in A and B, then there exists x ∈ A and y ∈ B such that

d(x, Sx) = d(A,B) = d(y, Ty).

proof. Set dn = d(xn, Sxn). Let {ynk
} be a subsequence of {yn} such that ynk

→ y. The relation

p = d(A,B) � d(Tynk
, y) � d(ynk

, y) + d(ynk
, T ynk

)

holds for each k ≥ 1. Since
d(ynk

, Tynk
) � dnk

.

Hence limk→∞ d(ynk
, Tynk

) = p. Thus d(Tynk
, y)→ p as k →∞. Now, for each k ≥ 1

d(Ty, ynk
) � d(y, xnk

)

� d(y, ynk
) + d(ynk

, xnk
).

Letting k →∞, we have d(Ty, y) = p = d(A,B).
Similarly, it can be proved that d(x, Sx) = d(A,B). 2
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Example 2.3. Suppose that the conditions of Example 2.1 hold. Define ϕ(t1, t2) = (t1
2/(1 + 2t1), t2

2/(1 + 2t2)) for
t1, t2 ≥ 0. Because p is a lower bound for A×B. Then, p = (0, 0). Put t = |x− y|. So for all (a, b), (x, y) ∈ A×B,

d(x, y)− ϕ(d(x, y)) + ϕ(p)− d(Sx, Ty)
= (t, λt) + (t2/(1 + 2t), λ2t2/(1 + 2λt)− (1/2)(t, λt) ∈ P.

Hence for all (x, y) ∈ A×B,
d(Sx, Ty) � d(x, y)− ϕ(d(x, y)) + ϕ(p).

So d(A,B) = 0. Therefore x = 0 and y = 0 are best proximity points for S and T respectively.

Theorem 2.7. Let ϕ : P → P be a strictly increasing map, S, T : A∪B → A∪B be maps satisfying S(A) ⊆ B, T (B) ⊆ A
and

d(Sx, Ty) � (1/3){d(x, y) + d(Sx, x) + d(Ty, y)}
− ϕ(d(x, y) + d(Sx, x) + d(Ty, y)) + ϕ(p),

for all (x, y) ∈ A×B, where p is a lower bound for A×B. Then, d(A,B) = p.

proof. For a strictly increasing mapping ϕ : P → P

ϕ(p) � ϕ(d(x, y))

� ϕ(d(x, y) + d(Sx, x) + d(Ty, y)),

for all (x, y) ∈ A×B, so that

d(Sx, Ty) � (1/3){d(x, y) + d(Sx, x) + d(Ty, y)}.

Thus we have

d(xn, Sxn) � (1/3){d(xn, yn−1) + d(Sxn, xn) + d(Tyn−1, yn−1)}
= (2/3)d(xn, yn−1) + (1/3)d(Sxn, xn).

Since

d(xn, yn−1) � (1/3){d(yn−1, xn−1) + d(yn−1, xn) + d(yn−1, xn−1)}
= (2/3)d(yn−1, xn−1) + (1/3)d(yn−1, xn),

hence

d(xn, yn−1) � d(yn−1, xn−1)

= d(xn−1, Sxn−1).

So
d(xn, Sxn) � (2/3)d(xn−1, Sxn−1) + (1/3)d(Sxn, xn).

Therefore
d(xn, Sxn) � d(xn−1, Sxn−1).

Let dn = d(xn, Sxn). Then dn+1 � dn for n ∈ N ∪ {0}. By the regularity of P, there exists q ∈ P such that
limn→∞ dn = q. Since

dn+1 � (1/3){d(xn+1, yn) + dn+1} − ϕ(2dn + d(xn+1, yn)) + ϕ(p)

� (2/3)dn + (1/3)dn+1 − ϕ(dn) + ϕ(p).

Hence
ϕ(dn)− ϕ(p) � (2/3){dn − dn+1}.

Therefore limn→∞ ϕ(dn) = ϕ(p). Since p � dn. Hence, p � q and ϕ(p) � ϕ(q) � ϕ(dn). Thus, ϕ(p) = ϕ(q). It implies
that p = q and so d(A,B) = p. 2
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Theorem 2.8. Suppose that the conditions of Theorem 2.7 hold, for x0 ∈ A, the sequences {xn} and {yn} are generated by
(2.1). If {xn} and {yn} respectively have a convergent subsequence in A and B, then there exists x ∈ A and y ∈ B such that

d(x, Sx) = d(A,B) = d(y, Ty).

proof. Set dn = d(xn, Sxn). Let {ynk
} be a subsequence of {yn} such that ynk

→ y. The relation

p = d(A,B) � d(Tynk
, y) � d(ynk

, y) + d(ynk
, T ynk

),

holds for each k ≥ 1. Since
d(ynk

, T ynk
) � (2/3)dnk

+ (1/3)d(ynk
, T ynk

).

Hence
d(ynk

, Tynk
) � dnk

.

It follows that limk→∞ d(ynk
, T ynk

) = p. Thus d(Tynk
, y)→ p as k →∞. Now, for k ≥ 1

d(Ty, ynk
) � (1/3){d(y, xnk

) + d(Sxnk
, xnk

) + d(Ty, y)}
� (1/3){2d(y, ynk

) + 2d(ynk
, xnk

) + d(Ty, ynk
)}.

Thus
d(Ty, ynk

) � {d(y, ynk
) + d(ynk

, xnk
)}.

Therefore, d(Ty, y) = p = d(A,B).
Similarly, it can be proved that d(x, Sx) = d(A,B). 2

Example 2.4. Suppose that the conditions of Example 2.1 hold. Define ϕ(t1, t2) = (t1
2/(1 + 8t1), t2

2/(1 + 8t2)) for
t1, t2 ≥ 0. Because p is a lower bound for A×B. Then, p = (0, 0). So for all (x, y) ∈ A×B,

(1/3){d(x, y) + d(Sx, x) + d(Ty, y)} − ϕ(d(x, y) + d(Sx, x) + d(Ty, y)) + ϕ(p) ∈ P.

Hence for all (x, y) ∈ A×B,

d(Sx, Ty) � (1/3){d(x, y) + d(Sx, x) + d(Ty, y)}
− ϕ(d(x, y) + d(Sx, x) + d(Ty, y)) + ϕ(p).

So d(A,B) = 0. Therefore x = 0 and y = 0 are best proximity points for S and T respectively.
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