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Abstract
In this study, we have propesed the extended Kudryashov method to obtain the exact solutions of
nonlinear fractional differential equations. Definiton of modified Riemann Liouville sense fractional
derivative is used and the proposed method is applied to two nonlinear fractional differential equations.
Analytical solutions including hyperbolic functions are obtained.
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1. Introduction
Fractional calculus is one of the most multidisciplinary field of mathematics. Many processes in physics and

engineering are modeled more assertively by fractional derivatives than conventional integer order derivatives.
Miller and Rose [21] made mention of nearly every field of science has application of fractional derivatives. It is
well known that many real systems are fractional in nature, hence, it is more efficient to model them under favor of
fractional order than integer order systems.

Fractional differential equations are the generalization of classical differential equations with integer order.
So, in recent years, fractional differential equations become the realm of physicists and mathematicians who
investigate the expediency of such non-integer order derivatives in different areas of physics and mathematics.
It has been found that the behavior of many physical systems can be properly defined by using fractional order
differential equations. For instance, heat conduction systems, nonlinear chaotic systems, viscoelasticity, plasma
waves, acustic gravity waves, diffusion processes are governed by the fractional differential equations such as
in [3, 6, 21, 25] and the reference therein. Many research works have proposed powerful techniques for solving
fractional evolution equations, such as G′/G−expansion method [4, 5], Exp−function method [12, 29], first integral
method[18], sub−equation method [2, 13, 27], trial equation method [8, 22, 24], rational function method [1], sub−
equation method [27, 30], complex transform method [19, 20] and others.

The spearheading work of Kudryashov [17], introduced Kudryashov method for reliable treatment of
nonlinear wave equations. The practicable Kudryashov method is widely used for both integer order and fractional
order evolution equations by many researchers such as in [7, 9–11, 23, 26, 28] and the reference therein. In this
paper we propose extended Kudryashov method for fractional evolution equations based upon homogenous
balance principle by means of traveling wave transformation. In this method, by using the transformation
ξ = kxβ

Γ(1+β) + lyγ

Γ(1+γ) + mzδ

Γ(1+δ) + · · ·+ ctα

Γ(1+α) , a given fractional differential equation turn into fractional ordinary

differential equation whose solutions are in the form U(ξ, Y ) =
∑N
i=0 aiY

i(ξ), where Y (ξ) satisfies the fractional
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Riccati equation Dα
ξ Y = Y 3 − Y . The main merit of this method over the other classical methods is that gives

more solutions with some parameters which effects both (either) speed and (or) amplitude of waves. By choosing
convenient parameter, solutions can be turned into certain solutions obtained by existing methods.

The aim of this work is to find solitons and soliton-like solutions of the space time fractional Zakharov
Kuznetsov Benjamin Bona Mahony and the space time fractional Fokas equations. The rest of paper is arranged as
follows. Section 2 gives definition of Gamma function and an overview of modified Riemann Liouville fractional
derivative. Section 3 presents the algorithmic procedure of extended Kudryashov method. We construct traveling
wave solutions of space time fractional Zakharov Kuznetsov Benjamin Bona Mahony and the space time fractional
Fokas equations in Section 4 to attest the effectiveness of the proposed method. We finish with Section 5 providing
conclusions.

2. Preliminaries
Definition 1: A real function f(t), t > 0, is said to be in the space Cκ, κ ∈ R, if there exists areal number p > κ

such that f(t) = tpf1(t), where f1(t) ∈ C(0,∞), and it is said to be in the space Cmκ if fm ∈ Cκ,m ∈ N [26,27].
Definition 2: The gamma function Γ(α) is defined by the integral

Γ(α) =

∫ ∞
0

e−tt(α−1)dt.

Γ(α) generates the factorial n! and allows n to take also non-integer values and also gamma function can be
represented also by limit

Γ(α) = lim
n→∞

n!nα

α(α+ 1)...(α+ n)
.

Definition 3:The modified Riemann-Liouville derivative is defined as [26,27]:

Dα
xf(x) =



1

Γ(−α)

d

dx

∫ x

0

(x− ξ)−α−1
[f(ξ)− f(0)] dξ, α < 0,

1

Γ(1− α)

d

dx

∫ x

0

(x− ξ)−α [f(ξ)− f(0)] dξ, 0 < α < 1,

(f (n)(x))α−n, n ≤ α < n+ 1, n ≥ 1.

(2.1)

where

Dα
xf(x) := lim

h↓0
h−α

∞∑
k=0

(−1)kf [x+ (α− k)h]. (2.2)

In addition, some basic properties for the modified Riemann-Liouville derivative are given in [14–16] as follows:

Dα
t t
γ =

Γ(1 + γ)

Γ(1 + γ − α)
tγ−α, γ > 0, (2.3)

Dα
t (f(t)g(t)) = g(t)Dα

t f(t) + f(t)Dα
t g(t), (2.4)

Dα
t f [g(t)] = f ′g[g(t)]Dα

t g(t) = Dα
g f [g(t)](g′(t))α, (2.5)

which are direct results of the equality Dαx(t) = Γ(1 + α)Dx(t) which holds for non-differentiable functions. In
the above formulas, f(t) is nondifferentiable function in Eq.(2.4), g(t) is nondifferentiable function both in Eq.(2.4)
and the right-side of Eq.(2.5), also differentiable in the left side of Eq.(2.5). f(g) is differentiable in the right side of
Eq.(2.5) and nondifferentiable in the left side of Eq.(2.5).
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3. The extended Kudryashov method

We summarize the main steps of the extended Kudryashov method as follows:
For a given nonlinear FDEs for a function u of independent variables, X = (x, y, z, . . . , t):

P
(
u, ut, ux, uy, uz, . . . , D

α
t u,D

α
xu,D

α
y u,D

α
z u, . . .

)
= 0. (3.1)

where Dα
t u,D

α
xu,D

α
y u and Dα

z u are the modified Riemann-Liouville derivatives of u with respect to t, x, y and z. P
is a polynomial in u = u(x, y, z, . . . , t) and its various partial derivatives, in which the highest order derivatives and
nonlinear terms are involved.
Step 1. We seek the traveling wave solutions of Eq.(3.1) by using the transformations in the form:

u(x, y, z, . . . , t) = u(ξ, Y ), ξ =
kxβ

Γ(1 + β)
+

nyγ

Γ(1 + γ)
+

mzδ

Γ(1 + δ)
+ · · ·+ λtα

Γ(1 + α)
, (3.2)

where k, n,m and λ are arbitrary constants. Using Eq.(2.3) and the first equality of Eq.(2.5), we obtain Dβ
xu =

Dβ
xu(ξ, Y ) = uξD

β
xξ = kuξ , Dγ

yu = Dγ
yu(ξ, Y ) = uξD

γ
y ξ = nuξ , . . . , Dα

t u = Dα
t u(ξ, Y ) = uξD

α
t ξ = λuξ. Then

Eq.(3.1) reduces to the following nonlinear ordinary differential equation of the form:

G(u, uξ, uξξ, uξξξ, . . .) = 0. (3.3)

Step 2. We assume that the reduced equation has the following solution:

u(ξ, Y ) =

N∑
i=0

aiY
i(ξ) (3.4)

where Y (ξ) = ±1√
1±e2ξ

and the function Y is the solution of equation

Yξ(ξ) = Y 3(ξ)− Y (ξ). (3.5)

Step 3. According to the method, solution of Eq.(3.3) can be expanded in the form

u(ξ, Y ) = aNY
N + · · · . (3.6)

Analogously as in the classical Kudryashov method, we balance the highest order nonlinear terms in Eq.(3.3) to
find out the value of the pole order N . Supposing ul(ξ, Y )u(s)(ξ) and (u(p)(ξ, Y ))r are the highest order nonlinear
terms of Eq.(3.3) and balancing the highest order nonlinear terms we have:

N =
2(s− rp)
r − l − 1

. (3.7)

Step 4. Substituting Eq.(3.4) into Eq.(3.3) and equating the coefficients of Y i to zero, we obtain a system of algebraic
equations. Solving this system, we procure the exact solutions of Eq.(3.1). And the obtained solutions can depend
on hyperbolic functions.

4. Examples

In this section, we will apply the extended Kudryashov method to the space-time Zakharov-Kuznetsov-Benjamin-
Bona-Mahony (ZKBBM) equation and the space-time fractional Fokas equation .

4.1 Space-Time Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) Equation
Let us consider the space-time Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation

Dα
t u+Dα

xu− 2auDα
xu− bDt(D

2α
x u) = 0. (4.1)

t > 0, 0 < α ≤ 1.
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where a and b are arbitrary constants. It arises as description of unidirectional propagation of long waves in certain
nonlinear dispersive systems and small wave amplitude in the large wavelength regime.
Firstly, we take the following transformations

u(x, t) = u(ξ), ξ =
kxα

Γ(1 + α)
+

ctα

Γ(1 + α)
(4.2)

where k, c 6= 0 are constants.
Using property (2.3) and considering the wave transformation Eq.(4.2), Eq.(4.1) becomes an ordinary differential
equation

(c+ k)u− aku2 − bck2u′′ = 0, (4.3)

Suppose that the solutions of Eq.(4.3) can be expressed as follows:

u(ξ, Y ) =

N∑
i=0

aiY
i(ξ)

where Y (ξ) = ±1√
1±e2ξ

satisfies Yξ(ξ) = Y 3(ξ) − Y (ξ). Then, considering the homogeneous balance between the

highest order derivatives and the nonlinear terms appearing in Eq.(4.3), we find

N = 4.

Hence, we have
u(ξ, Y ) = a0 + a1Y (ξ) + a2Y

2(ξ) + a3Y
3(ξ) + a4Y

4(ξ) (4.4)

and substituting derivatives of u(ξ, Y ) with respect to ξ we obtain

uξ = 4a4Y
6(ξ) + 3a3Y

5(ξ) + (2a2 − 4a4)Y 4(ξ) + (a1 − 3a3)Y 3(ξ)

− 2a2Y
2(ξ)− a1Y (ξ),

uξξ = 24a4Y
8(ξ) + 15a3Y

7(ξ) + (8a2 − 40a4)Y 6(ξ) + (3a1 − 24a3)Y 5(ξ)

+ (16a4 − 12a2)Y 4(ξ) + (9a3 − 4a1)Y 3(ξ) + 4a2Y
2(ξ) + a1Y (ξ).

substituting the obtained derivatives and Eq.(4.4) into Eq.(4.3) and collecting the coefficient of each power of Y (ξ),
setting each of the coefficients to zero, a set of algebraic equations are obtained. By means of the symbolic software
Mathematica, the set of algebraic equations yields the following solutions.
Case 1:

a0 =
c+ k

ak
, a1 = 0, a2 = −6

c+ k

ak
, a3 = 0

a4 = 6
c+ k

ak
, k = k, c = c, b = −c+ k

4ck2
.

By means of the obtained coefficients, solutions of Eq.(4.1) are in the form:

u1(x, t) = c+k
ak

1− 3

2cosh2

(
kxα− k

4k2b+1
tα

Γ(1+α)

)
 ,

u2(x, t) = c+k
ak

1− 3

2sinh2

(
kxα− k

4k2b+1
tα

Γ(1+α)

)
 .

Case 2:

a0 = 0, a1 = 0, a2 = 6
c+ k

ak
, a3 = 0

a4 = −6
c+ k

ak
, k = k, c = c, b =

c+ k

4ck2
.
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Inserting the obtained coefficients into Eq.(4.4) we reach the solution of Eq.(4.1)

u3(x, t) = 3(c+k)
2ak

 1

cosh2

(
kxα− k

2k2b−1
tα

Γ(1+α)

)
 ,

u4(x, t) = 3(c+k)
2ak

 1

sinh2

(
kxα− k

2k2b−1
tα

Γ(1+α)

)
 .

Case 3:

a0 =
c+ k

ak
, a1 = 0, a2 = 6

c+ k

ak
, a3 = 0

a4 = −6
c+ k

ak
, k = k, c = c, b =

c+ k

4ck2
.

From the above coefficients, we obtain the following solutions of Eq.(4.1)

u5(x, t) = c+k
ak

1 + 3

2cosh2

(
kxα+ k

4k2b+1
tα

Γ(1+α)

)
 ,

u6(x, t) = c+k
ak

1 + 3

2sinh2

(
kxα+ k

4k2b+1
tα

Γ(1+α)

)
 .

Case 4:

a0 = 0, a1 = 0, a2 =
24bk2

a(4bk2 − 1)
, a3 = 0

a4 = − 24bk2

a(4bk2 − 1)
, k = k, c =

k

4bk2 − 1
.

Using the foregoing coefficients, we obtain the solutions of Eq.(4.1) as follows:

u7(x, t) = 6bk2

4bk2−1

 1

cosh2

(
kxα− k

4bk2−1
tα

Γ(1+α)

)
 ,

u8(x, t) = 6bk2

4bk2−1

 1

sinh2

(
kxα− k

4bk2−1
tα

Γ(1+α)

)
 .

şeklindedir.
Case 5:

a0 =
4bk2

a(1 + 4bk2)
, a1 = 0, a2 = − 24bk2

a(1 + 4bk2)
, a3 = 0

a4 =
24bk2

a(1 + 4bk2)
, k = k, c = − k

1 + 4bk2
.

By means of the obtained coefficients, solutions of Eq.(4.1) are in the form:

u9(x, t) = 4bk2

a(1+4bk2)

1− 3

2cosh2

(
kxα− k

4k2b+1
tα

Γ(1+α)

)
 ,

u10(x, t) = 4bk2

a(1+4bk2)

1− 3

2sinh2

(
kxα− k

4k2b+1
tα

Γ(1+α)

)
 .
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4.2 Space−Time Fractional Fokas Equation
Consider the following space−time Fokas equation

4
∂2αu

∂tα∂xα1
− ∂4αu

∂x3α
1 ∂xα2

+
∂4αu

∂xα1 ∂x
3α
2

+ 12
∂αu

∂xα1

∂αu

∂xα2
+ 12u

∂2αu

∂xα1 ∂x
α
2

− 6
∂2αu

∂yα1 ∂y
α
2

= 0. (4.5)

t > 0, 0 < α ≤ 1.

which is a model for finite amplitude wave packet in fluid dynamics.
For our purpose, we present the following transformations

u(x1, x2, y1, y2, t) = u(ξ), ξ = k1
xα1

Γ(1 + α)
+ k2

xα2
Γ(1 + α)

+ l1
yα1

Γ(1 + α)
+ l2

yα2
Γ(1 + α)

+ c
tα

Γ(1 + α)
(4.6)

where k1, k2, l1, l2, c 6= 0 are constants. Using property (2.3) and considering the wave transformation Eq.(4.6),
Eq.(4.5) can be reduced to the ordinary differential equation,

(4ck1 − 6l1l2)u′ + (k3
2k1 − k3

1k2)u′′′ + 12k1k2(uu′) = 0. (4.7)

Also we take

u(ξ, Y ) =

N∑
i=0

aiY
i(ξ)

where Y (ξ) = ±1√
1±e2ξ

and Yξ(ξ) = Y 3(ξ)− Y (ξ). Then by using the homogenous balance formula (3.7) between the

highest order derivatives and the nonlinear terms appearing in ODE (4.7), we find

N = 4.

Thus, we have
u(ξ, Y ) = a0 + a1Y (ξ) + a2Y

2(ξ) + a3Y
3(ξ) + a4Y

4(ξ) (4.8)

and substituting derivatives of u(ξ, Y ) with respect to ξ we obtain

uξ = 4a4Y
6(ξ) + 3a3Y

5(ξ) + (2a2 − 4a4)Y 4(ξ) + (a1 − 3a3)Y 3(ξ)

− 2a2Y
2(ξ)− a1Y (ξ),

uξξ = 24a4Y
8(ξ) + 15a3Y

7(ξ) + (8a2 − 40a4)Y 6(ξ) + (3a1 − 24a3)Y 5(ξ)

+ (16a4 − 12a2)Y 4(ξ) + (9a3 − 4a1)Y 3(ξ) + 4a2Y
2(ξ) + a1Y (ξ),

uξξξ = 192a4Y
10(ξ) + 105a3Y

9(ξ) + (48a2 − 432a4)Y 8(ξ)

+ (15a1 − 225a3)Y 7(ξ) + (304a4 − 96a2)Y 6(ξ)

+ (147a3 − 27a1)Y 5(ξ) + (56a2 − 64a4)Y 4(ξ) + (13a1 − 27a3)Y 3(ξ)

− 8a2Y
2(ξ)− a1Y (ξ).

Using the above derivatives and collecting the coefficient of each power of Y (ξ), setting each of the coefficients to
zero, solving the resulting system of algebraic equations by Mathematica we obtain the following results.
Case 1:

a0 = −c− k
2
1k2 + k3

2

3k2
, a1 = 0, a2 = −4(k2

1 − k2
2), a3 = 0,

a4 = 4(k2
1 − k2

2), k1 = k1,
k2 = k2, l1 = l1, l2 = 0,
c = c.

Inserting the obtained coefficients into Eq.(4.8) we reach the solution of Eq.(4.5)

u1(x1, x2, y1, y2, t) = − c−k
2
1k2+k3

2

3k2
+

(k2
2−k

2
1)

cosh2
[
k1x

α
1 +k2x

α
2 +l1y

α
1 +ctα

Γ(1+α)/2

] ,
u2(x1, x2, y1, y2, t) = − c−k

2
1k2+k3

2

3k2
+

(k2
2−k

2
1)

sinh2
[
k1x

α
1 +k2x

α
2 +l1y

α
1 +ctα

Γ(1+α)/2

] .



Extended Kudryashov Method for Fractional Nonlinear Differential Equations 25

Case 2:
a0 = a0, a1 = 0, a2 = −4(k2

1 − k2
2), a3 = 0,

a4 = 4(k2
1 − k2

2), k1 = k1, k2 = k2,

l1 =
2ck1 + 6a0k1k2 − 2k3

1k2 + 2k1k
3
2

3l2
,

l2 = l2, c = c.

Using the foregoing coefficients, we obtain the solutions of Eq.(4.5) as follows:

u3(x1, x2, y1, y2, t) = a0 +
(k2

2−k
2
1)

cosh2

 k1x
α
1 +k2x

α
2 +

(
2ck1+6a0k1k2−2k3

1k2+2k1k
3
2

3l2

)
yα1 +l2y

α
2 +ctα

Γ(1+α)/2


,

u4(x1, x2, y1, y2, t) = a0 +
(k2

2−k
2
1)

sinh2

 k1x
α
1 +k2x

α
2 +

(
2ck1+6a0k1k2−2k3

1k2+2k1k
3
2

3l2

)
yα1 +l2y

α
2 +ctα

Γ(1+α)/2


.

Case 3:
a0 = a0, a1 = 0, a2 = 4k2

2, a3 = 0,
a4 = −4k2

2, k1 = 0, k2 = k2,
l1 = 0, l2 = l2, c = c.

From the above coefficients, we obtain the following solutions of Eq.(4.5)

u5(x1, x2, y1, y2, t) = a0 +
k2

2

cosh2
[
k2x

α
2 +l2y

α
2 +ctα

Γ(1+α)/2

] ,
u6(x1, x2, y1, y2, t) = a0 +

k2
2

sinh2
[
k2x

α
2 +l2y

α
2 +ctα

Γ(1+α)/2

] .
Case 4:

a0 = 0, a1 = 0, a2 = −4(k2
1 − k2

2), a3 = 0,
a4 = 4(k2

1 − k2
2), k1 = k1, k2 = k2,

l1 = l1, l2 = l2, c = c.

Inserting the above coefficients into Eq.(4.8), we obtain the following solutions of Eq.(4.5)

u7(x1, x2, y1, y2, t) =
(k2

2−k
2
1)

cosh2
[
k1x

α
1 +k2x

α
2 +l1y

α
1 +l2x2+ctα

Γ(1+α)/2

] ,
u8(x1, x2, y1, y2, t) =

(k2
2−k

2
1)

cosh2
[
k1x

α
1 +k2x

α
2 +l1y

α
1 +l2x2+ctα

Γ(1+α)/2

] .
Case 5:

a0 = −c− k
2
1k2 + k3

2

3k2
, a1 = 0, a2 = −4(k2

1 − k2
2),

a3 = 0, a4 = 4(k2
1 − k2

2), k1 = k1, k2 = k2,
l1 = 0, l2 = l2, c = c.

By using the obtained coefficients, we get the following solutions of Eq.(4.5)

u9(x1, x2, y1, y2, t) = − c−k
2
1k2+k3

2

3k2
+

(k2
2−k

2
1)

cosh2
[
k1x

α
1 +k2x

α
2 +l2y

α
2 +ctα

Γ(1+α)/2

] ,
u10(x1, x2, y1, y2, t) = − c−k

2
1k2+k3

2

3k2
+

(k2
2−k

2
1)

sinh2
[
k1x

α
1 +k2x

α
2 +l2y

α
2 +ctα

Γ(1+α)/2

] ,
Case 6:

a0 = a0, a1 = 0, a2 = −4k2
1, a3 = 0,

a4 = 4k2
1, k1 = k1, k2 = 0,

l1 = l1, l2 =
2ck1

3l1
, c = c.
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Inserting the obtained coefficients into Eq.(4.8) we reach the solution of Eq.(4.5)

u11(x1, x2, y1, y2, t) = a0 − k2
1

cosh2

[
k1x

α
1 +l1y

α
1 +

2ck1
3l1

yα2 +ctα

Γ(1+α)/2

] ,
u12(x1, x2, y1, y2, t) = a0 − k2

1

sinh2

[
k1x

α
1 +l1y

α
1 +

2ck1
3l1

yα2 +ctα

Γ(1+α)/2

] ,

Case 7:
a0 = a0, a1 = 0, a2 = −4k2

1, a3 = 0,
a4 = 4k2

1, k1 = k1, k2 = 0,

l1 = l1, l2 = l2, c =
3l1l2
2k1

.

From the foregoing coefficients, the solutions of Eq.(4.5) are obtained as follows:

u13(x1, x2, y1, y2, t) = a0 − k2
1

cosh2

[
k1x

α
1 +l1y

α
1 +l2y

α
2 +

3l1l2
2k1

tα

Γ(1+α)/2

] ,
u14(x1, x2, y1, y2, t) = a0 − k2

1

sinh2

[
k1x

α
1 +l1y

α
1 +l2y

α
2 +

3l1l2
2k1

tα

Γ(1+α)/2

] .

Case 8:
a0 = a0, a1 = 0, a2 = −4(k2

1 − k2
2),

a3 = 0, a4 = 4(k2
1 − k2

2), k1 = k1, k2 = k2,
l1 = l1, l2 = l2,

c = −6a0k1k2 − 2k3
1k2 + 2k1k

3
2 − 3l1l2

2k1

By means of the obtained coefficients, solutions of Eq.(4.5) are in the form:

u15(x1, x2, y1, y2, t) = a0 +
(k2

2−k
2
1)

cosh2

 k1x
α
1 +k2x

α
2 +l1y

α
1 +l2y

α
2 −

(
6a0k1k2−2k3

1k2+2k1k
3
2−3l1l2

2k1

)
tα

Γ(1+α)/2


,

u16(x1, x2, y1, y2, t) = a0 +
(k2

2−k
2
1)

sinh2

 k1x
α
1 +k2x

α
2 +l1y

α
1 +l2y

α
2 −

(
6a0k1k2−2k3

1k2+2k1k
3
2−3l1l2

2k1

)
tα

Γ(1+α)/2


.

Case 9:
a0 = a0, a1 = 0, a2 = −4(k2

1 − k2
2),

a3 = 0, a4 = 4(k2
1 − k2

2), k1 = k1, k2 = k2,
l1 = l1, l2 = l2,

c = −12a0k1k2 + 131k3
1k2 − 131k1k

3
2 − 6l1l2

4k1

By using the obtained coefficients, we get the following solutions of Eq.(4.5)

u17(x1, x2, y1, y2, t) = a0 +
(k2

2−k
2
1)

cosh2

 k1x
α
1 +k2x

α
2 +l1y

α
1 +l2y

α
2 −

(
12a0k1k2+131k3

1k2−131k1k
3
2−6l1l2

4k1

)
tα

Γ(1+α)/2


,

u18(x1, x2, y1, y2, t) = a0 +
(k2

2−k
2
1)

sinh2

 k1x
α
1 +k2x

α
2 +l1y

α
1 +l2y

α
2 −

(
12a0k1k2+131k3

1k2−131k1k
3
2−6l1l2

4k1

)
tα

Γ(1+α)/2


.

Remark 2: Although two cases were offered for the solutions of space−time fractional Fokas equation by using
modified Kudryashov method [11], nine cases of solutions are arised by extended Kudryashov method. As well as
the obtained solitary wave solutions show similarity with solutions which are obtained by Kudryashov method,
increment values of parameters can effect wavelenght and speed of the wave.
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5. Conclusion
In this study, we have proposed extended Kudryashov method to solve nonlinear fractional differential equations

with the help of Mathematica. By this way, degree of the auxilary polynomials are increased and more solutions are
provided an opportunity for some models. The space-time Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM)
equation and the space-time fractional Fokas equation are taken to indicate the effectiveness of the proposed
method. Besides the Kudryashov method, more traveling wave solution cases are obtained. In addition, change
in the parameters effects both the wavelenght and speed of the wave. Eventually, the method is influential and
suitable for solving other types of space-time fractional differential equations in which the homogenous balance
principle is satisfied.
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