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Abstract
In this paper, we consider two fixed points p to q on a Riemannian surface M in 3-dimensional Euclidean
space. We obtain a condition for classical elastic curves with in the family of all curves from p to q on M.
We also prove that this condition can be expressed in terms of the curvature functions. The condition is
realized for curves whose geodesic and normal curvature functions are both constant.
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1. Introduction
The problem of the elastic rod which was proposed by Bernoulli is one of the most classical topics in variational

calculus. As regards Bernoulli’s mathematical idealization, all kinds of elastic curves minimize the total squared
curvature among curves of the same length and first order boundary data [1]. Like many of the problems explored
by mathematicians of this era, the formal investigation of the elastica was motivated by a physical situation. The
Euler-Bernoulli treatment of the elastica transformed a physics problem into one in mathematics. Examining the
bending energy of a physical elastic rod was replaced by investigating the total squared curvature of a regular
curve [2]. The total squared curvature functional has emerged as a useful quantity in the study of geodesics and the
closed thin elastic rod is often used as a model for the DNA molecule [3].

One of the earliest approach on elastica yields prolific consequences on equilibrium of moments which constitute
elemantary principle of statics. Further, it is seen that elastica gives a natural solution for the variotional problem
which deal with the minimizing of bending energy of the elastic curve. Later, the equivalance between the motion
of the simple pendulum and fundamental differential equation of elastica was investigated. Recently, numerical
computation implemented on the elastica used to develop math- ematical spline theory [4].

The volume of unit vector fields has been studied by [5], [6], and [7] among other scientists. They define the volume
of unit vector field X as the volume of the submanifold of the unit tangent bundle defined by X(M). In [8], the
energy of a unit vector field on a Riemannian manifold M is defined as the energy of the mapping X : M → T 1M ,
where the unit tangent bundle T 1M is equipped with the restriction of the Sasaki metric on TM . The general
references [9] and [10] are the classical notation of curve and of surface theory. In [11] author calculated the energy of
the Frenet vector fields in Rn, it was shown that the energy of the velocity vector field was E(V1(s)) = 1

2

∫ s
a
k21(u)du.

In this paper, similar to Rn space, we give a condition for the elastica by defining the surface curve to be elastic.
Finally, we give an example to elastic curve on the cylinder.

Definition 1.1 Let M be a surface in R3 . If p is a point of M , then for each tangent vector v to M at p, let

Sp(v) = −∇vZ
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where Z is a unit normal vector field on a neighborhood of p in M . Sp is called the shape operator of M at p
(derived from Z ).

Definition 1.2 A regular curve α in M ⊂ R3 is a principal curve (or line of curvature) provided that the velocity α
′

of α always points in a principal direction.

Definition 1.3 A regular curve α in M ⊂ R3 is a geodesic of M provided its acceleration α
′′

is always normal to M .

Definition 1.4 Let α be a unit-speed curve in M ⊂ R3 . Instead of the Frenet frame field on α, consider the frame
field {T, Y, Z}, where T is the unit tangent of α, Z is the surface normal restricted to α, and , Y = Z × T then the
following relations are valid.

T
′

= KgY +KnZ (1.1)

Y
′

= −KgT +KtZ (1.2)

Z
′

= −KnT −KtY. (1.3)

where Kn =< S(T ), T > is the normal curvature Kn(T ) of in the T direction, and Kt =< S(T ), Y > is the torsion
function. The new function Kg is called the geodesic curvature of α.

Definition 1.5 Let α be a unit-speed curve in M ⊂ R3.

Then α is geodesic⇔ Kg = 0, (1.4)

then α is asymptotic⇔ Kn = 0. (1.5)

Definition 1.6 A curve segment is the portion of a curve defined in a closed interval.

Definition 1.7 Let V and W be two vector fields on M , and Z be a normal vector field on M . We may then
decompose DVW as

DVW = ∇VW + II(V,W )Z

where∇VW and II(V,W ) are the tangential component and the normal component of DVW , respectively. This
decomposition is known as the Gauss equation.

Definition 1.8 For η1, η2∈Tξ(T 1M) define

gS(η1, η2) =< dπ(η1), dπ(η2) > + < K(η1),K(η2) > . (1.6)

This gives a Riemannian metric on TM . Recall that gS is called the Sasaki metric. The metric gs makes the projection
π : T 1M →M a Riemannian submersion [12] and [13].

Proposition 1.1 The connection map K : T (T 1M)→ T 1M verifies the following conditions.
1) π◦K = π◦dπ and π◦K = π◦π̃ , where π̃ : T (T 1M)→ T 1M is the tangent bundle projection.
2) For ω∈TxM and a section ξ : M → T 1M, we have

K(dξ(ω)) = ∇ωξ

where∇ is the Levi-Civita covariant derivative [12].

Definition 1.9. The energy of a differentiable map
f : (M,<,>)→ (N,h) between Riemannian manifolds is given by

E(f) =
1

2

∫
M

(

n∑
a=1

h(df(ea), df(ea))υ (1.7)

where υ is the canonical volume form in M and {ea} is a local basis of the tangent space (see [8, 14], for example).
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Let C∞(M ;N) denote the space of all smooth maps from M to N . A map f : M → N is said to be harmonic if it is
an extremal (i.e., critical point) of the energy functional E(.;D) : C∞(M ;N)→ R for any compact domain D.
By a (smooth) variation of f we mean a smooth map f : M × (−ε, ε)→ N, (x, t)→ ft(x) (ε > 0) such that f0 = f .
We can think of {ft} as a family of smooth mappings which depends ’smoothly’ on a parameter t ∈ (−ε, ε).

Definition 1.10. A smooth map f : (M, g)→ (N,h) is said to be harmonic if

d

dt
E(ft;D)|t=0 = o (1.8)

where E(f ;D) = 1
2

∫
D

(
∑n
a=1 h(df(ea), df(ea))υg, for all compact domains D and all smooth variations ft of f

supported in D [15].

Definition 1.11 Let α be a regular curve defined on any fixed interval [a; b]. Elastica is defined for the curve α in Rn

over the each point on a fixed interval [a; b] as a minimizer of the bending energy:

EB =
1

2

∫ b

a

k21(s)ds,

with some boundary conditions [15] and [16].

2. Classical Elastic Curves on Surface

Definition 2.1. A regular curve on surface is called elastica if the velocity vector field of the curve is harmonic.

Let ϕ : U ⊂ R2 → R3, ϕ(U) ⊂ M, ϕ(U) = (ϕ1(u, v), ϕ2(u, v), ϕ3(u, v)) and ϕ(u, v) be a local parametrization of
surface M in R3.

Theorem 2.1. Let α be unit speed curve on surface M and α(a) = p, α(b) = q. If α is classical elastic curve, then
the following equation is satisfied,

∫ b

a

λ(s)(Kg(s)K
′

g(s) +Kn(s)K
′

n(s))ds = 0 (2.1)

where Kn,Kg are the normal curvature function and the geodesic curvature function of α and λ is the real-valued
function on [a, b].

Proof. Let (I, α) be a parametric pair for a unit speed curve C on ϕ(U) ⊂ M and α = ϕ ◦ γ, γ = (γ1, γ2). Let
{T, Y, Z} be the Frenet frame field on α in M .
We define λ and vi functions to get a fixed two points on the surface and a collection of curves passing through
these two points.
There existe λ : [a, b] ⊂ I → R, λ(s) = (s− a)(b− s), λ(a) = 0, λ(b) = 0 and λ(s) 6= 0 for all s ∈ (a, b), of class
C2. Since {ϕ1(γ(s)), ϕ2(γ(s))} is a local basis of the tangent space, where ϕ1, ϕ2 are first-order partial derivatives,
we have

λ(s)T (s) = Σ2
i=1vi(s)ϕi(γ(s)); where vi : [a, b]→ R. (2.2)

Let the collection of curve be

αk(s) = ϕ(γ1(s) + kv1(s), γ2(s) + kv2(s)). (2.3)

for k = 0, α0(s) = α(s) and

(ϕ−1 ◦ αk)(s) = γk(s) = (γ1(s) + kv1(s), γ2(s) + kv2(s)).

From (10) we get λ(a)T (a) = Σ2
i=1vi(a)ϕi(γ(a)). Since λ(a) = 0 we have v1(a) = v2(a) = 0 and

γk(a) = (γ1(a) + kv1(a), γ2(a) + kv2(a) = (γ1(a), γ2(a)) = γ(a).
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Similarly we get v1(b) = v2(b) = 0 and γk(b) = γ(b). Using these results in (11) we obtain
αk(a) = (ϕ ◦ γk)(a) = α(a) = p and αk(b) = (ϕ ◦ γk)(b) = α(b) = q.

These results show that αk is curve segment from p to q on M . Take this collection αk(s) = α(s, k) for all curve. The
expression for energy of velocity vector field Tk of αk from p to q on M becomes E(Tk).
On the other hand, let TCk be the tangent bundle. So we have Tk : Ck → TCk =

⋃
s∈I Tαk(s)Ck. , where Ck = αk(I)

and Tαk(s)Ck denotes generated by Tk. Let π : TCk → Ck be the bundle projection. By using equation (7) we obtain
that the energy of Tk is

E(Tk) =
1

2

∫ b

a

gS(dTk(Tk(α(s, k)), dTk(Tk(α(s, k)))ds (2.4)

where ds is the element of arc length. From (6) we have

gS(dTk(Tk), dTk(Tk)) =< dπ(dTk(Tk)), dπ(dTk(Tk)) > + < K(dTk(Tk)),K(dTk(Tk)) > .

Since Tk is a section we have d(π)◦d(Tk) = d(π◦Tk) = d(idCk
) = idTCk

we also have by Proposition 1.1 that
K(dTk(Tk)) = ∇Tk

Tk = T
′

k, then

gS(dTk(T ), dTk(T )) =< Tk, Tk > + < T
′

k, T
′

k > .

Using these results in (12) we get

E(Tk) =
1

2

∫ b

a

(< Tk, Tk > + < T
′

k, T
′

k >)ds (2.5)

where Tk = 1
w(s,k)

∂α
∂s (s, k); w(s, k) =

√
< ∂α

∂s (s, k), ∂α
∂s (s, k) >, T

′

k = ∂Tk

∂s .

From (13) we obtain:

∂E(Tk)

∂k
=

1

2
[

∫ b

a

∂

∂k
[(< Tk, Tk > + <

∂Tk
∂s

,
∂Tk
∂s

>]ds.

Since < Tk, Tk >= 1 we have ∂
∂k < Tk, Tk >= 0 and by using equation (1), we get

∂E(Tk)

∂k
=

1

2
[

∫ b

a

∂

∂k
<
∂Tk
∂s

,
∂Tk
∂s

>]ds =
1

2

∫ b

a

∂

∂k
(K2

g +K2
n)ds. (2.6)

Since α is classical elastic curve, by definition 2.1 and (8) we have

∂E(Tk)

∂k |k=0
= (

1

2

∫ b

a

∂

∂k
(K2

g +K2
n)ds)|k=0 = 0. (2.7)

from (14) we have

∂E(Tk)

∂k
=

1

2

∫ b

a

∂

∂k
<
∂Tk
∂s

,
∂Tk
∂s

> ds =

∫ b

a

<
∂2Tk
∂s∂k

,
∂Tk
∂s

> ds. (2.8)

We can write

∂

∂s
<
∂Tk
∂k

,
∂Tk
∂s

>=<
∂2Tk
∂s∂k

,
∂Tk
∂s

> + <
∂Tk
∂k

,
∂2Tk
∂s2

> .

Thus, we can deduce,

<
∂2Tk
∂s∂k

,
∂Tk
∂s

>=
∂

∂s
<
∂Tk
∂k

,
∂Tk
∂s

> − < ∂Tk
∂k

,
∂2Tk
∂s2

> (2.9)
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Substituting (17) in (16), for, k = 0,

∂E(Tk)

∂k |k=0
=

∫ b

a

[
∂

∂s
<
∂Tk
∂k

(s, 0),
∂Tk
∂s

(s, 0) > − < ∂Tk
∂k

(s, 0),
∂2Tk
∂s2

(s, 0) >]ds

and

∂E(Tk)

∂k |k=0
=<

∂Tk
∂k

(s, 0),
∂Tk
∂s

(s, 0) >|ba −
∫ b

a

<
∂Tk
∂k

(s, 0),
∂2Tk
∂s2

(s, 0) > ds. (2.10)

From (10), (11) we obtain,

∂α

∂k
(s, k)|k=0 = λ(s)T (s). (2.11)

and

∂α

∂s
(s, 0) = α

′
(s) = T (s) = Tk(s.0). (2.12)

Now we calculate the partial derivatives of (20) with respect to s and k; using (1), we get

∂Tk
∂s

(s, 0) =
∂2α

∂s2
(s, 0) = α

′′
(s) = T

′
(s) = Kg(s)Y (s) +Kn(s)Z(s) (2.13)

and

∂Tk
∂k

(s, k) =
∂2α

∂s∂k
(s, k) =

∂2α

∂k∂s
(s, k).

So, (19) gives us that

∂T

∂k
(s, k)|k=0

=
∂T

∂k
(s, 0) = λ

′
(s)T (s) + λ(s)Kg(s)Y (s) + λ(s)Kn(s)Z(s). (2.14)

Therefore, (21) and (22) gives us that

<
∂Tk
∂k

(s, 0),
∂Tk
∂s

(s, 0) >= λ(s)(K2
g (s) +K2

n(s)).

Considering the candidate function λ(a) = λ(b) = 0, we get:

<
∂Tk
∂k

(s, 0),
∂Tk
∂s

(s, 0) >|ba= λ(b)(K2
g (b) +K2

n(b))− λ(a)(K2
g (b) +K2

n(a)) = 0. (2.15)

Now we calculate the derivative (21) with respect to s,

∂2T

∂s2
(s, 0) = K

′

g(s)Y (s) +Kg(s)Y
′
(s) +K

′

n(s)Z(s) +Kn(s)Z
′
(s)

By (2) and (3) we have

∂2T

∂s2
(s, 0) = −(K2

g (s) +K2
n(s))T (s) + (K

′

g(s)−Kn(s)Kt(s))Y (s) + (Kg(s)Kt(s) +K
′

n(s))Z(s). (2.16)

So (22) and (24) given us that

<
∂Tk
∂k

(s, 0),
∂2Tk
∂s2

(s, 0) >= −λ
′
(s)(K2

g (s) +K2
n(s)) + λ(s)(Kg(s)K

′

g(s) +Kn(s)K
′

n(s))
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and

<
∂Tk
∂k

(s, 0),
∂2Tk
∂s2

(s, 0) >= [−λ(s)(K2
g (s) +K2

n(s))]
′
+ 3λ(s)(Kg(s)K

′

g(s) +Kn(s)K
′

n(s)) (2.17)

Using (23) and (25) in (18), yields that

∂E(Tk)

∂k |k=0
= −

∫ b

a

([−λ(s)(K2
g (s) +K2

n(s))]
′
+ 3λ(s)(Kg(s)K

′

g(s) +Kn(s)K
′

n(s))ds

and

∂E(Tk)

∂k |k=0
= (λ(s)(K2

g (s) +K2
n(s))|ba − 3

∫ b

a

λ(s)(Kg(s)K
′

g(s) +Kn(s)K
′

n(s))ds

We are looking the candidate function λ(a) = λ(b) = 0 which gives

(λ(s)(K2
g (s) +K2

n(s))|ba = 0

from (15), we have

∂E(Tk)

∂k |k=0
= −3

∫ b

a

λ(s)(Kg(s)K
′

g(s) +Kn(s)K
′

n(s))ds = 0.

This completes the proof of the theorem.
From equations (4)and (5), if α is both principal and asymptotic or the normal curvature function and the geodesic
curvature function of α are constant, then is satisfy (9) equation.
Example 1. Let ϕ : [−π, π]×R→ R3, ϕ(θ, h) = (cosθ, sinθ, h, ) and β(s) = (cos(coss), sin(coss), sins); β(−π) =
p, β(π) = q. If we can choose λ : [−π, π] → R, λ(s) = π2 − s2 then λ(−π) = 0 λ(π) = 0 and λ(s) 6= 0 for all
s ∈ (−π, π). We calculate;

T (s) = (sins.sin(coss),−sins.cos(coss), Coss),

Z(s) = (cos(coss), sin(coss), 0),

Y (s) = (coss.sin(coss),−coss.cos(coss),−sins),

Kg(s) = 1, Kn(s) = −sin2s

and

∂E(Tk)

∂k |k=0
= 6

∫ π

−π
(π2 − s2)sin2s.sins.coss.ds = 0.

Thus β is elastica on the cylinder, Figure 1.

Figure 1
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