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Abstract
In the present work, the author determine coefficient bounds for functions in certain subclasses of analytic
and bi-univalent functions. Several corollaries and consequences of the main results are also considered.
The results, which are presented in this paper, generalize the recent work of Srivastava et al. [21].
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1. INTRODUCTION
Let

R = (−∞,∞)

be the set of real numbers, C be the set of complex numbers and

N = {1, 2, 3, · · · } = N0 ∪ {0}

be the set of positive integers.In the usual notation, let A denote the class of the functions of the form

f(z) = z +

∞∑
k=2

akz
k (1.1)

which are analytic in the open unit disc
D = {z ∈ C :| z |< 1}.

Further, let S denote the subclass of all functions in A consisting of functions which are univalent in D (see
details in [8], [22] ).We know that every univalent function f ∈ S has an inverse f−1, given by

f−1(f(z)) = z (z ∈ U)

and
f (f−1(w)) = w.

(
| w |< r0(f) ;r0(f) ≥ 1

4

)
The inverse function f−1(w) = g(w) is defined by

g(w) = f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + · · · . (1.2)

The Koebe one quarter theorem ([8]) ensures that the image of S under every f from S contains a disc of radius
1
4 . If both of the functions f and f−1 are univalent in S, then a function f ∈ A is said to be bi-univalent in S. We
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shall demonstrate by
∑

the class of bi-univalent functions in S given by the Taylor- Maclourin series expantion
given by (1.1). The familiar Koebe function is not member of

∑
. Many interesting examples of functions which

are in the class
∑

(or not in
∑

) can be found in the earlier works in Lewin [10] studied the class of bi_univalent
functions obtaining the bound |a2| < 1.51, Brannan and Clunie [5] concectured that |a2| ≤

√
2 and Netanyahu ([12])

proved that max |a2| = 4
3 , for f ∈

∑
. In recent years Srivastava et al. ([21]), Frasin and Aouf ([9]) investigated

various subclasses of the bi-univalent function class
∑

and found estimates on the Taylor-Maclourin coefficient |a2|
and |a3| for functions in these subclasses. But a lot of researcher proved some results within these coefficient for
different classes (see [1–4, 6, 7, 11, 17, 19]). The problem of estimating coefficients |an| , for n ≥ 2 is still an open
problem. Recently Al-Shaqsi and Darus [20] defined a function (G(n; z))−1 given by

G(n; z) ∗ (G(n; z))−1 =
z

(1− z)λ+1
, (λ > −1, n ∈ N)

and obtained the following linear operator

Dn
λf(z) = (G(n, z))−1 ∗ f(z). (1.3)

As it is well known, G(n; z) is the polylogarithm function given by

G(n; z) =
∞∑
k=1

zk

kn
. (n ∈ C, z ∈ U) (1.4)

For n = −1 , G(−1; z) =
z

1− z2
is Koebe function. For more details about polylogarthms in theory of univalent

functions, see Ponnusamy and Sabapath [15] and Ponnusamy [14]. By using the explicit form of the function
(G(n, z))−1, for λ > −1, we obtain

(G(n, z))−1 =

∞∑
k=1

kn
(k + λ− 1)!

λ! (k − 1)!
. (z ∈ U) (1.5)

For n, λ ∈ N0 = {0, 1, 2, 3, . . .} Al_Shaqsi and Darus [20] defined that

Dn
λf(z) = z +

∞∑
k=2

kn
(k + λ− 1)!

λ! (k − 1)!
akz

k. (z ∈ U) (1.6)

If we take λ = 0 in equation(1.6)then we obtain

Dn
0 f(z) = Dnf(z) = z +

∞∑
k=2

knakz
k (1.7)

which gives Sălăgean’s differential operator [18]. For n = 0

D0
λf(z) = Dδf(z) = z +

∞∑
k=2

C(δ, k)akz
k (1.8)

where C(δ, k) =
(
k+δ−1
δ

)
, δ ∈ N0, which gives Ruscheweyh derivative operator [16]. It is obvius that the operator

Dn
λ included two well known derivative operators. Also we have

D1
0f(z) = D0

1f(z) = zf
′
(z). (1.9)

Making use of the polylogarithm functionDn
λ , we now introduce two new subclasses of Σ. We investigate

estimates on the coefficients |a2| and |a3| for functions in these new subclasses employing the techniques used
earlier by Srivastava et al ([21]) and by Frasin and Aouf ([9]). Let P be the class of functions with positive real part
consisting of all analytic functions P : U → C satisfying P (0) = 1 and R(P (z)) > 0.

To prove our main result, we need the following lemma ([13]).

Lemma 1.1. If h ∈ P then | ck |≤ 2 for each k, where P is the family of all functions h analytic in U for which
Re(h(z)) > 0, h(z) = 1 + c1z + c2z

2 + c3z
3 + . . . forz ∈ U .
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2. Coefficient Bounds for the function classHn,µ
Σ (λ, α)

Definition 2.1. A function f(z) given by (1.1) is said to be in the class Hn,µΣ (λ, α) if the following conditions are
satisfied

f ∈ Σ,

∣∣∣∣arg(Dn
λf(z)

z

)µ∣∣∣∣ < απ

2
(0 < α ≤ 1, : λ, n, µ ∈ N0, : z ∈ U) (2.1)

and ∣∣∣∣arg(Dn
λg(w)

w

)µ∣∣∣∣ < απ

2
(0 < α ≤ 1, : λ, n, µ ∈ N0, : w ∈ U) (2.2)

where the function g is given by the equality (1.2). In this study, we will find the estimates on the coefficients | a2 |
and | a3 | for functions in the classHµΣ(λ, α).

Remark 2.1. If we choose n = 0, λ = 1 and µ = 1 in Definition 2.1, then the classHn,µΣ (λ, α) reduces to the classHαΣ
introduced and studied by Srivastava et al.[21] .

Theorem 2.1. Let f(z) given by (1.1) in the classHn,µΣ (λ, α), 0 < α ≤ 1 and λ, n, µ ∈ N0. Then

| a2 |≤
2α√

αµ3n(λ+ 1)(λ+ 2) + 22n(λ+ 1)2µ(µ− α)
(2.3)

and

| a3 |≤
4α

3n(λ+ 1)(λ+ 2)µ
+

4α2

22nµ2(λ+ 1)2
. (2.4)

Proof. It follows from inequalities ( 2.1) and (2.2) that(
Dn
λf(z)

z

)µ
= [P (z)]

α
(z ∈ U) (2.5)

and (
Dn
λg(w)

w

)µ
= [Q(w)]

α
(w ∈ U) (2.6)

where p(z) and q(w) in P and have the forms

p(z) = 1 + p1z + p2z
2 + p3z

3 + . . . (2.7)

and
q(z) = 1 + q1z + q2z

2 + q3z
3 + . . . (2.8)

Now, equating the coefficients in equations (2.5) and (2.6), we find that

2nµ(λ+ 1)a2 = αp1 (2.9)

3n(λ+ 1)(λ+ 2)

2
µa3 +

µ(µ− 1)

2
22n(λ+ 1)2a2

2 = αp2 +
α(α− 1)

2
p2

1 (2.10)

− 2nµ(λ+ 1)a2 = αq1 (2.11)

and
3n(λ+ 1)(λ+ 2)

2
µ(2a2

2 − a3) +
µ(µ− 1)

2
22n(λ+ 1)2a2

2 = αq2 +
α(α− 1)

2
q2
1 . (2.12)

From (2.9) and (2.11), we get
p1 = −q1 (2.13)

and
2(22nµ2(λ+ 1)2a2

2) = α2(p2
1 + q2

1). (2.14)

Also from (2.10),(2.12) and (2.14), we obtain

3n(λ+ 1)(λ+ 2)µa2
2 + µ(µ− 1)2n(λ+ 1)2a2

2 = α(p2 + q2) +
α(α− 1)

2
(p2

1 + q2
1)

= α(p2 + q2) +
(α− 1)2nµ2(λ+ 1)2a2

2

α
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Therefore, we have

a2
2 =

α2(p2 + q2)

3n(λ+ 1)(λ+ 2)αµ+ 22n(λ+ 1)2µ(µ− α)

Applying Lemma 1.1. for the coefficients p2 and q2, we have

| a2 |≤
2α√

3n(λ+ 1)(λ+ 2)αµ+ 22n(λ+ 1)2µ(µ− α)

This gives the bound on |a2| as asserted in inequality (2.3). Next in order to find the bound on |a3|, by subtracting
(2.12) from (2.10), we find that

3n(λ+ 1)(λ+ 2)µa3 − 3n(λ+ 1)(λ+ 2)µa2
2

= α(p2 − q2) +
α(α− 1)

2
(p2

1 − q2
1)

(2.15)

It follows from ( 2.13), (2.14) and (2.15) that

3n(λ+ 1)(λ+ 2)µa3 − 3n(λ+ 1)(λ+ 2)µ
α2(p2

1 + q1)2

22n+1µ2(λ+ 1)2
= α(p2 − q2)

thus,we have

3n(λ+ 1)(λ+ 2)µa3 = α(p2 − q2) +
3n(λ+ 1)(λ+ 2)µα2(p2

1 + q2
1)

22n+1µ2(λ+ 1)2

or equivalently,

a3 =
α(p2 − q2)

3n(λ+ 1)(λ+ 2)µ
+

α2(p2
1 + q2

1)

22n+1µ2(λ+ 1)2

Applying Lemma 1.1. for the coefficients p1, p2, q1, q2 we get

|a3| ≤
4α

3n(λ+ 1)(λ+ 2)µ
+

4α2

22nµ2(λ+ 1)2
.

This completes the proof of Theorem (2.1).

If we choose n = 0, λ = 1 and µ = 1 in Theorem (2.1), then we reduce the result by Srivastava et al. [21], as
follow:

Corollary 2.1. Let the function function f(z) given by (1.1) in the classHαΣ(0 < α ≤ 1). Then

|a2| ≤ α
√

2

α+ 2

and
|a3| ≤

α(3α+ 2)

3
.

3. Coefficient Bounds for the Function Class Bn,µΣ (β, λ)

Definition 3.1. A function f(z) given by (1.1) is said to be in the class Bn,µ∑ (β, λ) if the following conditions are
satisfied

f ∈ Σ, Re

(
Dn
λf(z)

z

)µ
> β (0 ≤ β < 1, λ, n, µ ∈ N0, z ∈ U) (3.1)

and

Re

(
Dn
λg(w)

w

)µ
> β (0 ≤ β < 1, λ, n, µ ∈ N0, w ∈ U) (3.2)

where the function g is given by (1.2).
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Remark 3.1. If we choose n = 0, λ = 1 and µ = 1 in Definition (3.1), then the class Bn,µΣ (β, λ) reduces to the class
HΣ(β), (0 ≤ β < 1) introduced and studied by Srivastava et al. [21].

Theorem 3.1. Let f(z) given by (1.1) be in the class BΣ(β, λ) 0 ≤ β < 1, and λ, n, µ ∈ N0. Then

| a2 |≤

√
4(1− β)

| 3n(λ+ 1)(λ+ 2)µ+ µ(µ− 1)2n(λ+ 1)2 |
(3.3)

and

|a3| ≤
4(1− β)

3n(λ+ 1)(λ+ 2)µ+ µ(µ− 1)22n(λ+ 1)2
+

4(1− β)2

22nµ2(λ+ 1)2
(3.4)

Proof. It follows from 3.1 and 3.2 that there exist p and q ∈ P such that(
Dn
λf(z)

z

)µ
= β + (1− β)p(z) (z ∈ U) (3.5)

and (
Dn
λg(w)

w

)µ
= β + (1− β)q(w) (w ∈ U) (3.6)

where p(z) and q(z) have the forms (2.7) and (2.8) respectively. By equating coefficients of the equations (3.5) and
(3.6), we get

2n(λ+ 1)µa2 = (1− β)p1 (3.7)

3n(λ+ 1)(λ+ 2)

2
µa3 +

µ(µ− 1)

2
22n(λ+ 1)2a2

2 = (1− β)p2 (3.8)

− 2n(λ+ 1)µa2 = (1− β)p1 (3.9)

3n(λ+ 1)(λ+ 2)

2
µ(2a2

2 − a3) +
µ(µ− 1)

2
22n(λ+ 1)2a2

2 = (1− β)p2 (3.10)

From (3.7) and (3.9), we have
p1 = −q1 (3.11)

and
2.22n(λ+ 1)2µ2a2

2 = (1− β)2(p2
1 + q1)2 (3.12)

Also, from (3.8) and (3.10), we find that ,

3n(λ+ 1)(λ+ 2)µa2
2 + µ(µ− 1)22n(λ+ 1)2a2

2 = (1− β)(p2 + q2)

Therefore, we have

a2
2 =

(1− β) (p2 + q2)

3n(λ+ 1)(λ+ 2)µ+ µ(µ− 1)22n(λ+ 1)2
(3.13)

and ∣∣a2
2

∣∣ ≤ (1− β) (|p2|+ |q2|)
3n(λ+ 1)(λ+ 2)µ+ µ(µ− 1)22n(λ+ 1)2

(3.14)

Applying Lemma1.1, we get desired result on the coefficient |a2| as asserted in (3.3). Next, in order to find the
bound on |a3| by subtracting (3.10) from (3.8), we get

3n(λ+ 1)(λ+ 2)µa3 − 3n(λ+ 1)(λ+ 2)µa2
2 = (1− β)(p2 − q2)

which, upon of the value of a2
2 from (3.12), yields

3n(λ+ 1)(λ+ 2)µa3 = 3n(λ+ 1)(λ+ 2)µ
(1− β)2(p2

1 + q2
1)

22n+1(λ+ 1)2µ2
+ (1− β)(p2 − q2).

Then,we have

a3 =
(1− β)(p2 + q2)

3n(λ+ 1)(λ+ 2)µ+ µ(µ− 1)22n(λ+ 1)2
+

(1− β)2(p2
1 + q2

1)

22n+1(λ+ 1)2µ2
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Applying Lemma 1.1 for the coefficients p1, q1, p2 and q2 we obtain

|a3| ≤
(1− β) (|p2|+ |q2|)

3n(λ+ 1)(λ+ 2)µ+ µ(µ− 1)22n(λ+ 1)2
+

(1− β)2(|p1|2 + |q1|2)

22n+1(λ+ 1)2µ2

which is the desired estimate on the coefficient |a3| as asserted in ( 3.4).

If we take n = 0, µ = 1andλ = 1 in the Theorem (3.1), then we reduceHΣ(β)(0 ≤ β < 1) introduced and studied
Srivastava et all , as follow:

Corollary 3.1. ([21]) Let the function function f(z) given by (1.1) in the class HΣ(β)(0 ≤ β < 1). Then

|a2| ≤
√

2(1− β)

3

and
|a3| ≤

(1− β)(5− 3β)

3
.
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