Coefficient Estimates for Certain Subclass of Bi-Univalent Functions Obtained With Polylogarithms

Arzu Akgül
(Communicated by Hari M. SRIVASTAVA)

Abstract

In the present work, the author determine coefficient bounds for functions in certain subclasses of analytic and bi-univalent functions. Several corollaries and consequences of the main results are also considered. The results, which are presented in this paper, generalize the recent work of Srivastava et al. [21].

Keywords: Analytic function; Bi-univalent function; coefficient bounds; polylogarithm function; AMS Subject Classification (2010): Primary: 30C45.

1. INTRODUCTION

Let

$$
\mathbb{R}=(-\infty, \infty)
$$

be the set of real numbers, \mathbb{C} be the set of complex numbers and

$$
\mathbb{N}=\{1,2,3, \cdots\}=\mathbb{N}_{0} \cup\{0\}
$$

be the set of positive integers. In the usual notation, let A denote the class of the functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disc

$$
D=\{z \in \mathbb{C}:|z|<1\}
$$

Further, let \mathcal{S} denote the subclass of all functions in A consisting of functions which are univalent in D (see details in [8], [22]). We know that every univalent function $f \in \mathcal{S}$ has an inverse f^{-1}, given by

$$
f^{-1}(f(z))=z \quad(z \in U)
$$

and

$$
f\left(f^{-1}(w)\right)=w . \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)
$$

The inverse function $f^{-1}(w)=g(w)$ is defined by

$$
\begin{equation*}
g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{1.2}
\end{equation*}
$$

The Koebe one quarter theorem ([8]) ensures that the image of \mathcal{S} under every f from \mathcal{S} contains a disc of radius $\frac{1}{4}$. If both of the functions f and f^{-1} are univalent in \mathcal{S}, then a function $f \in A$ is said to be bi-univalent in \mathcal{S}. We

[^0]shall demonstrate by \sum the class of bi-univalent functions in \mathcal{S} given by the Taylor- Maclourin series expantion given by (1.1). The familiar Koebe function is not member of \sum. Many interesting examples of functions which are in the class \sum (or not in \sum) can be found in the earlier works in Lewin [10] studied the class of bi_univalent functions obtaining the bound $\left|a_{2}\right|<1.51$, Brannan and Clunie [5] concectured that $\left|a_{2}\right| \leq \sqrt{2}$ and Netanyahu ([12]) proved that $\max \left|a_{2}\right|=\frac{4}{3}$, for $f \in \sum$. In recent years Srivastava et al. ([21]), Frasin and Aouf ([9]) investigated various subclasses of the bi-univalent function class \sum and found estimates on the Taylor-Maclourin coefficient $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in these subclasses. But a lot of researcher proved some results within these coefficient for different classes (see $[1-4,6,7,11,17,19]$). The problem of estimating coefficients $\left|a_{n}\right|$, for $n \geq 2$ is still an open problem. Recently Al-Shaqsi and Darus [20] defined a function $(G(n ; z))^{-1}$ given by
$$
G(n ; z) *(G(n ; z))^{-1}=\frac{z}{(1-z)^{\lambda+1}}, \quad(\lambda>-1, n \in \mathbb{N})
$$
and obtained the following linear operator
\[

$$
\begin{equation*}
D_{\lambda}^{n} f(z)=(G(n, z))^{-1} * f(z) \tag{1.3}
\end{equation*}
$$

\]

As it is well known, $G(n ; z)$ is the polylogarithm function given by

$$
\begin{equation*}
G(n ; z)=\sum_{k=1}^{\infty} \frac{z^{k}}{k^{n}} . \quad(n \in \mathbb{C}, z \in U) \tag{1.4}
\end{equation*}
$$

For $n=-1, G(-1 ; z)=\frac{z}{1-z^{2}}$ is Koebe function. For more details about polylogarthms in theory of univalent functions, see Ponnusamy and Sabapath [15] and Ponnusamy [14]. By using the explicit form of the function $(G(n, z))^{-1}$, for $\lambda>-1$, we obtain

$$
\begin{equation*}
(G(n, z))^{-1}=\sum_{k=1}^{\infty} k^{n} \frac{(k+\lambda-1)!}{\lambda!(k-1)!} \quad(z \in U) \tag{1.5}
\end{equation*}
$$

For $n, \lambda \in \mathbb{N}_{0}=\{0,1,2,3, \ldots\}$ Al_Shaqsi and Darus [20] defined that

$$
\begin{equation*}
D_{\lambda}^{n} f(z)=z+\sum_{k=2}^{\infty} k^{n} \frac{(k+\lambda-1)!}{\lambda!(k-1)!} a_{k} z^{k} . \quad(z \in U) \tag{1.6}
\end{equation*}
$$

If we take $\lambda=0$ in equation(1.6)then we obtain

$$
\begin{equation*}
D_{0}^{n} f(z)=D^{n} f(z)=z+\sum_{k=2}^{\infty} k^{n} a_{k} z^{k} \tag{1.7}
\end{equation*}
$$

which gives Sălăgean's differential operator [18]. For $n=0$

$$
\begin{equation*}
D_{\lambda}^{0} f(z)=D^{\delta} f(z)=z+\sum_{k=2}^{\infty} C(\delta, k) a_{k} z^{k} \tag{1.8}
\end{equation*}
$$

where $C(\delta, k)=\binom{k+\delta-1}{\delta}, \delta \in \mathbb{N}_{0}$, which gives Ruscheweyh derivative operator [16]. It is obvius that the operator D_{λ}^{n} included two well known derivative operators. Also we have

$$
\begin{equation*}
D_{0}^{1} f(z)=D_{1}^{0} f(z)=z f^{\prime}(z) \tag{1.9}
\end{equation*}
$$

Making use of the polylogarithm function D_{λ}^{n}, we now introduce two new subclasses of Σ. We investigate estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in these new subclasses employing the techniques used earlier by Srivastava et al ([21]) and by Frasin and Aouf ([9]). Let P be the class of functions with positive real part consisting of all analytic functions $P: U \rightarrow \mathbb{C}$ satisfying $P(0)=1$ and $R(P(z))>0$.

To prove our main result, we need the following lemma ([13]).
Lemma 1.1. If $h \in P$ then $\left|c_{k}\right| \leq 2$ for each k, where P is the family of all functions h analytic in U for which $\operatorname{Re}(h(z))>0, h(z)=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\ldots$ for $z \in U$.

2. Coefficient Bounds for the function class $\mathcal{H}_{\Sigma}^{n, \mu}(\lambda, \alpha)$

Definition 2.1. A function $f(z)$ given by (1.1) is said to be in the class $\mathcal{H}_{\Sigma}^{n, \mu}(\lambda, \alpha)$ if the following conditions are satisfied

$$
\begin{equation*}
f \in \Sigma,\left|\arg \left(\frac{D_{\lambda}^{n} f(z)}{z}\right)^{\mu}\right|<\frac{\alpha \pi}{2} \quad\left(0<\alpha \leq 1,: \lambda, n, \mu \in \mathbb{N}_{0},: z \in U\right) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg \left(\frac{D_{\lambda}^{n} g(w)}{w}\right)^{\mu}\right|<\frac{\alpha \pi}{2} \quad\left(0<\alpha \leq 1,: \lambda, n, \mu \in \mathbb{N}_{0},: w \in U\right) \tag{2.2}
\end{equation*}
$$

where the function g is given by the equality (1.2). In this study, we will find the estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in the class $\mathcal{H}_{\Sigma}^{\mu}(\lambda, \alpha)$.
Remark 2.1. If we choose $n=0, \lambda=1$ and $\mu=1$ in Definition 2.1, then the class $\mathcal{H}_{\Sigma}^{n, \mu}(\lambda, \alpha)$ reduces to the class $\mathcal{H}_{\Sigma}^{\alpha}$ introduced and studied by Srivastava et al.[21] .
Theorem 2.1. Let $f(z)$ given by (1.1) in the class $\mathcal{H}_{\Sigma}^{n, \mu}(\lambda, \alpha), 0<\alpha \leq 1$ and $\lambda, n, \mu \in \mathbb{N}_{0}$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{\alpha \mu 3^{n}(\lambda+1)(\lambda+2)+2^{2 n}(\lambda+1)^{2} \mu(\mu-\alpha)}} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{4 \alpha}{3^{n}(\lambda+1)(\lambda+2) \mu}+\frac{4 \alpha^{2}}{2^{2 n} \mu^{2}(\lambda+1)^{2}} \tag{2.4}
\end{equation*}
$$

Proof. It follows from inequalities (2.1) and (2.2) that

$$
\begin{equation*}
\left(\frac{D_{\lambda}^{n} f(z)}{z}\right)^{\mu}=[P(z)]^{\alpha} \quad(z \in U) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{D_{\lambda}^{n} g(w)}{w}\right)^{\mu}=[Q(w)]^{\alpha} \quad(w \in U) \tag{2.6}
\end{equation*}
$$

where $p(z)$ and $q(w)$ in P and have the forms

$$
\begin{equation*}
p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\ldots \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
q(z)=1+q_{1} z+q_{2} z^{2}+q_{3} z^{3}+\ldots \tag{2.8}
\end{equation*}
$$

Now, equating the coefficients in equations (2.5) and (2.6), we find that

$$
\begin{gather*}
2^{n} \mu(\lambda+1) a_{2}=\alpha p_{1} \tag{2.9}\\
\frac{3^{n}(\lambda+1)(\lambda+2)}{2} \mu a_{3}+\frac{\mu(\mu-1)}{2} 2^{2 n}(\lambda+1)^{2} a_{2}^{2}=\alpha p_{2}+\frac{\alpha(\alpha-1)}{2} p_{1}^{2} \tag{2.10}\\
-2^{n} \mu(\lambda+1) a_{2}=\alpha q_{1} \tag{2.11}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{3^{n}(\lambda+1)(\lambda+2)}{2} \mu\left(2 a_{2}^{2}-a_{3}\right)+\frac{\mu(\mu-1)}{2} 2^{2 n}(\lambda+1)^{2} a_{2}^{2}=\alpha q_{2}+\frac{\alpha(\alpha-1)}{2} q_{1}^{2} \tag{2.12}
\end{equation*}
$$

From (2.9) and (2.11), we get

$$
\begin{equation*}
p_{1}=-q_{1} \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
2\left(2^{2 n} \mu^{2}(\lambda+1)^{2} a_{2}^{2}\right)=\alpha^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{2.14}
\end{equation*}
$$

Also from (2.10),(2.12) and (2.14), we obtain

$$
\begin{aligned}
3^{n}(\lambda+1)(\lambda+2) \mu a_{2}^{2}+\mu(\mu-1) 2^{n}(\lambda+1)^{2} a_{2}^{2} & =\alpha\left(p_{2}+q_{2}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{1}^{2}+q_{1}^{2}\right) \\
& =\alpha\left(p_{2}+q_{2}\right)+\frac{(\alpha-1) 2^{n} \mu^{2}(\lambda+1)^{2} a_{2}^{2}}{\alpha}
\end{aligned}
$$

Therefore, we have

$$
a_{2}^{2}=\frac{\alpha^{2}\left(p_{2}+q_{2}\right)}{3^{n}(\lambda+1)(\lambda+2) \alpha \mu+2^{2 n}(\lambda+1)^{2} \mu(\mu-\alpha)}
$$

Applying Lemma 1.1. for the coefficients p_{2} and q_{2}, we have

$$
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{3^{n}(\lambda+1)(\lambda+2) \alpha \mu+2^{2 n}(\lambda+1)^{2} \mu(\mu-\alpha)}}
$$

This gives the bound on $\left|a_{2}\right|$ as asserted in inequality (2.3). Next in order to find the bound on $\left|a_{3}\right|$, by subtracting (2.12) from (2.10), we find that

$$
\begin{align*}
3^{n}(\lambda & +1)(\lambda+2) \mu a_{3}-3^{n}(\lambda+1)(\lambda+2) \mu a_{2}^{2} \\
& =\alpha\left(p_{2}-q_{2}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{1}^{2}-q_{1}^{2}\right) \tag{2.15}
\end{align*}
$$

It follows from (2.13), (2.14) and (2.15) that

$$
3^{n}(\lambda+1)(\lambda+2) \mu a_{3}-3^{n}(\lambda+1)(\lambda+2) \mu \frac{\alpha^{2}\left(p_{1}^{2}+q_{1}\right)^{2}}{2^{2 n+1} \mu^{2}(\lambda+1)^{2}}=\alpha\left(p_{2}-q_{2}\right)
$$

thus, we have

$$
3^{n}(\lambda+1)(\lambda+2) \mu a_{3}=\alpha\left(p_{2}-q_{2}\right)+\frac{3^{n}(\lambda+1)(\lambda+2) \mu \alpha^{2}\left(p_{1}^{2}+q_{1}^{2}\right)}{2^{2 n+1} \mu^{2}(\lambda+1)^{2}}
$$

or equivalently,

$$
a_{3}=\frac{\alpha\left(p_{2}-q_{2}\right)}{3^{n}(\lambda+1)(\lambda+2) \mu}+\frac{\alpha^{2}\left(p_{1}^{2}+q_{1}^{2}\right)}{2^{2 n+1} \mu^{2}(\lambda+1)^{2}}
$$

Applying Lemma 1.1. for the coefficients $p_{1}, p_{2}, q_{1}, q_{2}$ we get

$$
\left|a_{3}\right| \leq \frac{4 \alpha}{3^{n}(\lambda+1)(\lambda+2) \mu}+\frac{4 \alpha^{2}}{2^{2 n} \mu^{2}(\lambda+1)^{2}}
$$

This completes the proof of Theorem (2.1).
If we choose $n=0, \lambda=1$ and $\mu=1$ in Theorem (2.1), then we reduce the result by Srivastava et al. [21], as follow:

Corollary 2.1. Let the function function $f(z)$ given by (1.1) in the class $\mathcal{H}_{\Sigma}^{\alpha}(0<\alpha \leq 1)$. Then

$$
\left|a_{2}\right| \leq \alpha \sqrt{\frac{2}{\alpha+2}}
$$

and

$$
\left|a_{3}\right| \leq \frac{\alpha(3 \alpha+2)}{3}
$$

3. Coefficient Bounds for the Function Class $\mathcal{B}_{\Sigma}^{n, \mu}(\beta, \lambda)$

Definition 3.1. A function $f(z)$ given by (1.1) is said to be in the class $\mathcal{B}_{\sum}^{n, \mu}(\beta, \lambda)$ if the following conditions are satisfied

$$
\begin{equation*}
f \in \Sigma, \operatorname{Re}\left(\frac{D_{\lambda}^{n} f(z)}{z}\right)^{\mu}>\beta \quad\left(0 \leq \beta<1, \lambda, n, \mu \in \mathbb{N}_{0}, z \in U\right) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left(\frac{D_{\lambda}^{n} g(w)}{w}\right)^{\mu}>\beta \quad\left(0 \leq \beta<1, \lambda, n, \mu \in \mathbb{N}_{0}, w \in U\right) \tag{3.2}
\end{equation*}
$$

where the function g is given by (1.2).

Remark 3.1. If we choose $n=0, \lambda=1$ and $\mu=1$ in Definition (3.1), then the class $\mathcal{B}_{\Sigma}^{n, \mu}(\beta, \lambda)$ reduces to the class $\mathcal{H}_{\Sigma}(\beta),(0 \leq \beta<1)$ introduced and studied by Srivastava et al. [21].
Theorem 3.1. Let $f(z)$ given by (1.1) be in the class $\mathcal{B}_{\Sigma}(\beta, \lambda) 0 \leq \beta<1$, and $\lambda, n, \mu \in \mathbb{N}_{0}$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{4(1-\beta)}{\left|3^{n}(\lambda+1)(\lambda+2) \mu+\mu(\mu-1) 2^{n}(\lambda+1)^{2}\right|}} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{4(1-\beta)}{3^{n}(\lambda+1)(\lambda+2) \mu+\mu(\mu-1)^{2} 2^{n}(\lambda+1)^{2}}+\frac{4(1-\beta)^{2}}{2^{2 n} \mu^{2}(\lambda+1)^{2}} \tag{3.4}
\end{equation*}
$$

Proof. It follows from 3.1 and 3.2 that there exist p and $q \in P$ such that

$$
\begin{equation*}
\left(\frac{D_{\lambda}^{n} f(z)}{z}\right)^{\mu}=\beta+(1-\beta) p(z) \quad(z \in U) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{D_{\lambda}^{n} g(w)}{w}\right)^{\mu}=\beta+(1-\beta) q(w) \quad(w \in U) \tag{3.6}
\end{equation*}
$$

where $p(z)$ and $q(z)$ have the forms (2.7) and (2.8) respectively. By equating coefficients of the equations (3.5) and (3.6), we get

$$
\begin{gather*}
2^{n}(\lambda+1) \mu a_{2}=(1-\beta) p_{1} \tag{3.7}\\
\frac{3^{n}(\lambda+1)(\lambda+2)}{2} \mu a_{3}+\frac{\mu(\mu-1)}{2} 2^{2 n}(\lambda+1)^{2} a_{2}^{2}=(1-\beta) p_{2} \tag{3.8}\\
-2^{n}(\lambda+1) \mu a_{2}=(1-\beta) p_{1} \tag{3.9}\\
\frac{3^{n}(\lambda+1)(\lambda+2)}{2} \mu\left(2 a_{2}^{2}-a_{3}\right)+\frac{\mu(\mu-1)}{2} 2^{2 n}(\lambda+1)^{2} a_{2}^{2}=(1-\beta) p_{2} \tag{3.10}
\end{gather*}
$$

From (3.7) and (3.9), we have

$$
\begin{equation*}
p_{1}=-q_{1} \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
2.2^{2 n}(\lambda+1)^{2} \mu^{2} a_{2}^{2}=(1-\beta)^{2}\left(p_{1}^{2}+q_{1}\right)^{2} \tag{3.12}
\end{equation*}
$$

Also, from (3.8) and (3.10), we find that,

$$
3^{n}(\lambda+1)(\lambda+2) \mu a_{2}^{2}+\mu(\mu-1) 2^{2 n}(\lambda+1)^{2} a_{2}^{2}=(1-\beta)\left(p_{2}+q_{2}\right)
$$

Therefore, we have

$$
\begin{equation*}
a_{2}^{2}=\frac{(1-\beta)\left(p_{2}+q_{2}\right)}{3^{n}(\lambda+1)(\lambda+2) \mu+\mu(\mu-1) 2^{2 n}(\lambda+1)^{2}} \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{2}^{2}\right| \leq \frac{(1-\beta)\left(\left|p_{2}\right|+\left|q_{2}\right|\right)}{3^{n}(\lambda+1)(\lambda+2) \mu+\mu(\mu-1) 2^{2 n}(\lambda+1)^{2}} \tag{3.14}
\end{equation*}
$$

Applying Lemma1.1, we get desired result on the coefficient $\left|a_{2}\right|$ as asserted in (3.3). Next, in order to find the bound on $\left|a_{3}\right|$ by subtracting (3.10) from (3.8), we get

$$
3^{n}(\lambda+1)(\lambda+2) \mu a_{3}-3^{n}(\lambda+1)(\lambda+2) \mu a_{2}^{2}=(1-\beta)\left(p_{2}-q_{2}\right)
$$

which, upon of the value of a_{2}^{2} from (3.12), yields

$$
3^{n}(\lambda+1)(\lambda+2) \mu a_{3}=3^{n}(\lambda+1)(\lambda+2) \mu \frac{(1-\beta)^{2}\left(p_{1}^{2}+q_{1}^{2}\right)}{2^{2 n+1}(\lambda+1)^{2} \mu^{2}}+(1-\beta)\left(p_{2}-q_{2}\right) .
$$

Then, we have

$$
a_{3}=\frac{(1-\beta)\left(p_{2}+q_{2}\right)}{3^{n}(\lambda+1)(\lambda+2) \mu+\mu(\mu-1) 2^{2 n}(\lambda+1)^{2}}+\frac{(1-\beta)^{2}\left(p_{1}^{2}+q_{1}^{2}\right)}{2^{2 n+1}(\lambda+1)^{2} \mu^{2}}
$$

Applying Lemma 1.1 for the coefficients p_{1}, q_{1}, p_{2} and q_{2} we obtain

$$
\left|a_{3}\right| \leq \frac{(1-\beta)\left(\left|p_{2}\right|+\left|q_{2}\right|\right)}{3^{n}(\lambda+1)(\lambda+2) \mu+\mu(\mu-1) 2^{2 n}(\lambda+1)^{2}}+\frac{(1-\beta)^{2}\left(\left|p_{1}\right|^{2}+\left|q_{1}\right|^{2}\right)}{2^{2 n+1}(\lambda+1)^{2} \mu^{2}}
$$

which is the desired estimate on the coefficient $\left|a_{3}\right|$ as asserted in (3.4).
If we take $n=0, \mu=1$ and $\lambda=1$ in the Theorem (3.1), then we reduce $\mathcal{H}_{\Sigma}(\beta)(0 \leq \beta<1)$ introduced and studied Srivastava et all, as follow:

Corollary 3.1. ([21]) Let the function function $f(z)$ given by (1.1) in the class $H_{\Sigma}(\beta)(0 \leq \beta<1)$. Then

$$
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\beta)}{3}}
$$

and

$$
\left|a_{3}\right| \leq \frac{(1-\beta)(5-3 \beta)}{3}
$$

References

[1] Akgül, A., Finding Initial Coefficients For A Class Of Bi-Univalent Functions Given By Q-Derivative, In: AIP Conference Proceedings 2018 Jan 12 (Vol. 1926, No. 1, p. 020001). AIP Publishing.
[2] Akgül, A. and Altınkaya, S., Coefficient Estimates Associated With A New Subclass Of Bi-Univalent Functions. Acta Universitatis Apulensis,52 (2017), 121-128.
[3] Akgül, A., New Subclasses of Analytic and Bi-Univalent Functions Involving a New Integral Operator Defined by Polylogarithm Function, Theory and Applications of Mathematics \& Computer Science, 7 (2) (2017), 31 - 40.
[4] Altınkaya, Ş. and Yalçın, S., Coefficient Estimates For Two New Subclass Of Bi-Univalent Functions With Respect To Symmetric Points, Journal of Function Spaces. Article ID 145242,(2015), 5 pages.
[5] Brannan, D. A. and Clunie, J. G., Aspects Of Contemporary Complex Analysis, in Proceeding of the NATO Advanced Study Instutte Held at University of Durham: July 1-20, (1979), Academic Press, New York, N, YSA, 1980.
[6] Çağlar, M., Orhan, H., and Yağmur, N., Coefficient Bounds For New Subclass Of Bi-Univalent Functions, Filomat, 27 (2013),1165-1171.
[7] Crisan, O., Coefficient Estimates Of Certain Subclass Of Bi-Univalent Functions, Gen. Math. Notes, 16 (2013) no.2, 93-102.
[8] Duren, P. L., Grundlehren der Mathematischen Wissenchaften, Springer, New York, NY, USA,(1983).
[9] Frasin, B. A. and Aouf, M. K., New Subclass Of Bi-Univalent Functions, Appl. Math. Lett., 24 (2011), 1569-1573.
[10] Lewin, M., On A Coefficient Problem Of Bi-Univalent Functions, Proc. Amer. Math. Soc., 18 (1967), 63-68.
[11] Magesh, N. and Yamini, J., Coefficient Bounds For A Certain Subclass Of Bi-Univalent Functions, International Mathematical Forum 8(22),(2013), 1337-1344.
[12] Netanyahu, E., The Minimal Distance Of The Image Boundary From The Orijin And The Second Coefficient Of A Univalent Function in $|z|<1$, Archive for Rational Mechanics and Analysis, 32 (1969), 100-112.
[13] Pommerenke, C. H. , Univalent Functions, Vandenhoeck and Rupercht, Gottingen, (1975).
[14] Ponnusamy, S. , Inclusion Theorems For Convolution Product Of Second Order Polylogariyhms And Functions With The Derivative In A Half Plane, Rocky Montain J. Math., 28(2) (1998), 695-733.
[15] Ponnusamy, S. and Sabapathy, S., Polylogarithms In The Theory Of Univalent Functions, Result in Mathematics, 30 (1996),136-150.
[16] Ruscheweyh, St., New Criteria For Univalent Functions, Proc. Amer. Math. Soc., 49 (1975),109-115.
[17] Porwal, S. and Darus, M., On A New Subclass Of Bi-Univalent Functions, J. Egypt. Math. Soc.,21(13),(2013),190193.
[18] G.Sâlâgean, Subclasses Of Univalent Functions, Lecture Notes In Math., Springer Verlag, 1013 (1983),362-372.
[19] Sakar, F. M. and Güney, H. Ö., Coefficient Bounds For A New Subclass Of Analytic Bi-Close-To-Convex Functions By Making Use Of Faber Polynomial Expansion. Turkish Journal of Mathematics, 41(4),(2017), 888-895.
[20] Shaqsi K. Al and Darus, M., An Oparator Defined By Convolution Involving The Polylogarithms Functions, Journal of Mathematics and Statics, 4 (2008), 1, 46-50.
[21] Srivastava, H. M., Mishra, A. K. and Gochhayat, P., Certain Subclass Of Analytic And Bi-Univalent Functions, Appl. Math. Lett.,23 (2010), 1188-1192.
[22] Srivastava, H. M. and Owa, S., Current Topics In Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.

Affiliations

Arzu Akgül
Address: Kocaeli University, Dept. of Mathematics, 14380, Kocaeli-Turkey.
E-MAIL: akgul@kocaeli.edu.tr
ORCID ID: $0000-0001-7934-0339$

[^0]: Received : 03-03-2017, Accepted : 18-04-2018

