h-Fourier Integral Operators with Complex Phase

Chafika Amel Aitemrar and Abderrahmane Senoussaoui*

(Communicated by Nihal YILMAZ ÖZGÜR)

Abstract

We study in this work a class of h-Fourier integral operators with complex phase. These operators are continuous on $S\left(\mathbb{R}^{n}\right)$ and on $S^{\prime}\left(\mathbb{R}^{n}\right)$.

Keywords: h-admissible Fourier integral operators; complex phase; boundedness ; compactness; amplitude; composition. AMS Subject Classification (2010): Primary: 35S30 ; Secondary: 35S05; 47G30.

1. Introduction

A Fourier integral operator is an operator that can be written in the form

$$
\begin{equation*}
(I(a, \phi) f)(x)=\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{N}} e^{i \phi(x, \theta, y)} a(x, \theta, y) f(y) d y d \theta \tag{1.1}
\end{equation*}
$$

$f \in S\left(\mathbb{R}^{n}\right)$ (the Schwartz space). The function $a(x, \theta, y) \in C^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{N} \times \mathbb{R}^{n}\right)$ is called the amplitude, the function $\phi(x, y, \theta) \in C^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{N} \times \mathbb{R}^{n} ; \mathbb{R}\right)$ is called the phase function. The study of these operators, which are intimately connected to the theory of linear partial differential operators, has a long history and there is a large body of results made by a several authors (see, e.g.,[2,5-12]). The first works on Fourier integral operators deal with local properties. We note that, K. Asada and D. Fujiwara [2] have studied for the first time a class of Fourier integral operators defined on \mathbb{R}^{n}.

In this paper we consider one of the most important problems in the theory of differential equations which is the study of the h-Fourier integral operators with a complex phase, this type of operator is represented by formula of the type

$$
\begin{equation*}
(I(a, \phi ; h) f)(x)=\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{N}} e^{\frac{i}{h} \phi(x, \theta, y)} a(x, \theta, y) f(y) d y d \theta \tag{1.2}
\end{equation*}
$$

in which appear two C^{∞}-functions, the phase function $\phi(x, y, \theta) \in C^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{N} \times \mathbb{R}^{n}\right)$ and the amplitude $a(x, \theta, y) \in C^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{N} \times \mathbb{R}^{n}\right)$ and a semiclassical parameter $\left.\left.h \in\right] 0, h_{0}\right]$.

The purpose of this work is to generalize the notion of h-Fourier integral operators defined in [8] by considering the phase function ϕ with complex values, and appling the same technique of [2] to show that the h-Fourier integral operators with complex phase are well defined and they are continuous on $S\left(\mathbb{R}^{n}\right)$ and on $S^{\prime}\left(\mathbb{R}^{n}\right)$ (the space of tempered distributions). We give also a result where it is shown that these types of operators are stable by composition.

When the phase function $\phi(x, y, \theta)=S(x, \theta)-y \theta$, where $S \in C^{\infty}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\theta}^{n} ; \mathbb{C}\right)$, the operator (1.2) will be a particular case of h-Fourier integral operators with complex phase. In this case we will also give some hypothesis on the phase function ϕ and the amplitude a.

Let us now describe the plan of this article. In the second section we recall the continuity of some general class of Fourier integral operators on $S\left(\mathbb{R}^{n}\right)$ and on $S^{\prime}\left(\mathbb{R}^{n}\right)$. The composition of h-Fourier integral operators with complex phase is given in the third section. The last section is devoted to study the particular case.

2. A general class of h-Fourier integral operators with complex phase

In this section we define the class of integral transformations of type

$$
\begin{equation*}
(I(a, \phi ; h), f)(x)=\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{N}} e^{\frac{i}{\hbar} \phi(x, \theta, y)} a(x, \theta, y) f(y) d y d \theta, \tag{2.1}
\end{equation*}
$$

where $\left.\left.f \in S\left(\mathbb{R}^{n}\right), x \in \mathbb{R}^{n}, h \in\right] 0, h_{0}\right]$, and $\phi: \mathbb{R}^{n} \times \mathbb{R}^{N} \times \mathbb{R}^{n} \rightarrow \mathbb{C}$.
In general the integral (2.1) is not absolutely convergent, so we can use the technique of oscillatory integral developed by Hörmander in [10].
Notation 2.1. For $(x, \theta, y) \in \mathbb{R}^{n} \times \mathbb{R}^{N} \times \mathbb{R}^{n}$, we set

$$
\lambda(x, \theta, y)=\left(1+|x|^{2}+|y|^{2}+|\theta|^{2}\right)^{1 / 2} .
$$

The phase function $\phi=\varphi+i \psi$ and the amplitude a are assumed to satisfy the following conditions:
$\left(H_{1}\right) \phi: \mathbb{R}^{n} \times \mathbb{R}^{N} \times \mathbb{R}^{n} \rightarrow \mathbb{C}$ is a C^{∞} application.
$\left(H_{2}\right) \forall(\alpha, \beta, \gamma) \in \mathbb{N}^{n} \times \mathbb{N}^{N} \times \mathbb{N}^{n}, \exists C_{\alpha \beta \gamma} \geq 0$:

$$
\left|\partial_{x}^{\alpha} \partial_{y}^{\beta} \partial_{\theta}^{\gamma} \phi(x, \theta, y)\right| \leq C_{\alpha \beta \gamma}[\lambda(x, \theta, y)]^{2-(|\alpha|+|\beta|+|\gamma|)} .
$$

$\left(H_{3}\right)$ There exist real numbers $K_{1}, K_{2}>0$ such that

$$
K_{1} \lambda(x, \theta, y) \leq \lambda\left(\partial_{y} \phi, \partial_{\theta} \phi, y\right) \leq K_{2} \lambda(x, \theta, y), \forall(x, \theta, y) \in \mathbb{R}_{x}^{n} \times \mathbb{R}_{\theta}^{N} \times \mathbb{R}_{y}^{n}
$$

$\left(H_{3}^{*}\right)$ There exist real numbers $K_{1}^{*}, K_{2}^{*}>0$ such that

$$
K_{1}^{*} \lambda(x, \theta, y) \leq \lambda\left(x, \partial_{\theta} \phi, \partial_{x} \phi\right) \leq K_{2}^{*} \lambda(x, \theta, y), \forall(x, \theta, y) \in \mathbb{R}_{x}^{n} \times \mathbb{R}_{\theta}^{N} \times \mathbb{R}_{y}^{n} .
$$

$\left(H_{4}\right) \forall(x, \theta, y) \in \mathbb{R}^{n} \times \mathbb{R}^{N} \times \mathbb{R}^{n}: \psi(x, \theta, y) \geq 0$.
For any open subset Ω of $\mathbb{R}_{x}^{n} \times \mathbb{R}_{\theta}^{N} \times \mathbb{R}_{y}^{n}, \mu \in \mathbb{R}$ and $\rho \in[0,1]$, we set

$$
\Gamma_{\rho}^{\mu}(\Omega)=\left\{a \in C^{\infty}(\Omega):\left|\partial_{x}^{\alpha} \partial_{y}^{\beta} \partial_{\theta}^{\gamma} a\right| \leq C_{\alpha \beta \gamma}[\lambda(x, \theta, y)]^{\mu-(|\alpha|+|\beta|+|\gamma|)}\right\} .
$$

For $\Omega=\mathbb{R}_{x}^{n} \times \mathbb{R}_{\theta}^{N} \times \mathbb{R}_{y}^{n}$, we denote $\Gamma_{\rho}^{\mu}(\Omega)=\Gamma_{\rho}^{\mu}$.
Now if φ satisfies $\left(H_{1}\right),\left(H_{2}\right),\left(H_{3}\right),\left(H_{4}\right)$ and $a \in \Gamma_{0}^{\mu}$, we can give a meaning to the right hand side of (2.1), so we consider $g \in S\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\theta}^{N} \times \mathbb{R}_{y}^{n}\right), g(0)=1$. If $a \in \Gamma_{0}^{\mu}$, we define

$$
a_{\sigma}(x, \theta, y)=g\left(\frac{x}{\sigma}, \frac{\theta}{\sigma}, \frac{y}{\sigma}\right) a(x, \theta, y), \sigma>0
$$

We have the following result concerning the boundedness of h-Fourier integral operators with complex phase on $S\left(\mathbb{R}^{n}\right)$ and on $S^{\prime}\left(\mathbb{R}^{n}\right)$.
Theorem 2.1. If the phase function ϕ satisfies $\left(H_{1}\right),\left(H_{2}\right),\left(H_{3}\right)$ and $(H 4)$ and if $a \in \Gamma_{0}^{\mu}$, then

1. For all $f \in S\left(\mathbb{R}^{n}\right), \lim _{p \rightarrow \infty}\left[\left(I\left(a_{p}, \phi ; h\right), f\right)\right](x)$ exists for every $x \in \mathbb{R}^{n}$ and is independent of the choice of the function g. We set then

$$
(I(a, \phi ; h), f)=\lim _{p \rightarrow \infty}\left(I\left(a_{p}, \phi ; h\right), f\right)
$$

2. $I(a, \phi ; h)$ is a linear continuous operator from $S\left(\mathbb{R}^{n}\right)$ into itself.
3. Furthermore, if ϕ satisfies $\left(H_{3}^{*}\right)$, so $I(a, \phi ; h) \in \mathcal{L}\left(S^{\prime}\left(\mathbb{R}^{n}\right)\right)$ (here $S^{\prime}\left(\mathbb{R}^{n}\right)$ is the space of all tempered distributions on \mathbb{R}^{n})

Proof. Let $\delta \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\operatorname{supp} \delta \subseteq[-1,2]$ and $\delta \equiv 1$ on $[0,1]$.
For all $\varepsilon>0$, we set

$$
\omega_{\varepsilon}(x, \theta, y)=\delta\left(\frac{\left|\partial_{y} \phi\right|^{2}+\left|\partial_{\theta} \phi\right|^{2}}{\varepsilon \lambda(x, \theta, y)^{2}}\right)
$$

From $\left(H_{3}\right)$ there exists $C>0$ for which we have on the support of ω_{ε}

$$
\lambda(x, \theta, y) \leq C\left[\left(1+|y|^{2}\right)^{\frac{1}{2}}+\varepsilon^{\frac{1}{2}} \lambda(x, \theta, y)\right]
$$

Choosing ε small enough we get that there exists a constant C_{0}, such that the inequality

$$
\lambda(x, \theta, y) \leq C_{0}\left(1+|y|^{2}\right)^{\frac{1}{2}}
$$

holds in the support of ω_{ε}.
From this inequality we can see that $I\left(\omega_{\varepsilon} a_{p}, \phi ; h\right) f$ is an absolutely convergent integral and we have

$$
\begin{equation*}
\lim _{p \rightarrow \infty} I\left(\omega_{\varepsilon} a_{p}, \phi ; h\right) f=I\left(\omega_{\varepsilon} a, \phi ; h\right) f \tag{2.2}
\end{equation*}
$$

The continuity of the operator $I\left(\omega_{\varepsilon} a, \phi ; h\right) f$ from $S\left(\mathbb{R}^{n}\right)$ into itself follows from $\left(H_{2}\right)$.
Next we study the limit $\lim _{p \rightarrow \infty} I\left(\left(1-\omega_{\varepsilon}\right) a_{p}, \phi ; h\right) f$. Consider the operator

$$
L=\frac{h}{i} \frac{\left(\sum_{j=1}^{n}\left(\partial_{y_{j}} \phi\right) \frac{\partial}{\partial y_{j}}+\sum_{j=1}^{N}\left(\partial_{\theta_{j}} \phi\right) \frac{\partial}{\partial \theta_{j}}\right)}{\left|\partial_{y} \phi\right|^{2}+\left|\partial_{\theta} \phi\right|^{2}}
$$

One can show easily that

$$
\begin{equation*}
L\left(e^{i \phi}\right)=e^{i \phi} \tag{2.3}
\end{equation*}
$$

Let Ω_{0} be the open subset of $\mathbb{R}^{n} \times \mathbb{R}^{N} \times \mathbb{R}^{n}$ defined by

$$
\Omega_{0}=\left\{(x, \theta, y),\left|\partial_{y} \phi\right|^{2}+\left|\partial_{\theta} \phi\right|^{2}>\frac{\varepsilon}{2} \lambda(x, \theta, y)^{2}\right\}
$$

By recurrence we prove that:
For all integers $q \geq 0$, and $b \in C^{\infty}\left(\mathbb{R}_{y}^{n} \times \mathbb{R}_{\theta}^{N}\right)$, we have

$$
\begin{equation*}
\left({ }^{t} L\right)^{q}\left(\left(1-\omega_{\varepsilon}\right) b\right)=\sum_{|\alpha|+|\beta| \leq q} g_{\alpha, \beta}^{q} \partial_{y}^{\beta} \partial_{\theta}^{\beta}\left(\left(1-\omega_{\varepsilon}\right) b\right), \tag{2.4}
\end{equation*}
$$

where the $g_{\alpha, \beta}^{q}$ are in $\Gamma_{0}^{-q}\left(\Omega_{0}\right)$ and depend only on ϕ. In particular for $q=0$, we have

$$
\begin{equation*}
{ }^{t} L=\sum_{j} F_{j} \frac{\partial}{\partial y_{j}}+\sum_{j} G_{j} \frac{\partial}{\partial \theta_{j}}+H \tag{2.5}
\end{equation*}
$$

where $F_{j} \in \Gamma_{0}^{-1}\left(\Omega_{0}\right), G_{j} \in \Gamma_{0}^{-1}\left(\Omega_{0}\right), H \in \Gamma_{0}^{-2}\left(\Omega_{0}\right)$.
From (2.3) we have also for all integer $q \geq 0$,

$$
\begin{equation*}
I\left(\left(1-\omega_{\varepsilon}\right) a_{p}, \phi ; h\right) f(x)=\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{N}} e^{\frac{i}{h} \phi(x, \theta, y)}\left({ }^{t} L\right)^{q}\left(\left(1-\omega_{\varepsilon}\right) a_{p}, f\right) d y d \theta \tag{2.6}
\end{equation*}
$$

But

$$
\begin{equation*}
\left({ }^{t} L\right)^{q}\left(\left(1-\omega_{\varepsilon}\right) a_{p} f\right) \text { described (when } p \text { varies) a bound of } \Gamma_{0}^{\mu-q} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{p \rightarrow \infty}\left({ }^{t} L\right)^{q}\left(\left(1-\omega_{\varepsilon}\right) a_{p} f\right)(x, \theta, y)=\left({ }^{t} L\right)^{q}\left(\left(1-\omega_{\varepsilon}\right) a f\right)(x, \theta, y) \tag{2.8}
\end{equation*}
$$

for all $(x, \theta, y) \in \mathbb{R}^{n} \times \mathbb{R}^{N} \times \mathbb{R}^{n}$.

To finish, we have for all $s>n+N$

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{N}} \lambda^{-s}(x, \theta, y) d y d \theta \leq \gamma_{s} \lambda^{n+N-s}(x) \tag{2.9}
\end{equation*}
$$

From (2.6)-(2.9) and using the Lebesgue's theorem we obtain

$$
\begin{equation*}
\lim _{p \rightarrow \infty} I\left(\left(1-\omega_{\varepsilon}\right) a_{p}, \phi ; h\right) f(x)=\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{N}} e^{\frac{i}{h} \phi(x, \theta, y)}\left({ }^{t} L\right)^{q}\left(\left(1-\omega_{\varepsilon}\right) a, f ; h\right) d y d \theta \tag{2.10}
\end{equation*}
$$

where q satisfies $q>n+N+\mu$.
The first assertion of the theorem can be proved from (2.2) and (2.10).
Now let's show the continuity of $I\left(\left(1-\omega_{\varepsilon}\right) a, \phi ; h\right)$. From (2.5) and (2.10), we have

$$
\begin{equation*}
I\left(\left(1-\omega_{\varepsilon}\right) a, \phi ; h\right) f(x)=\sum_{|\gamma| \leq q} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{N}} e^{\frac{i}{h} \phi(x, \theta, y)} b_{\gamma}^{(q)}(x, \theta, y) \partial_{y}^{\gamma} f(y) d y d \theta \tag{2.11}
\end{equation*}
$$

with $b_{\gamma}^{(q)} \in \Gamma_{0}^{\mu-q}$. On the other hand, we have

$$
\begin{equation*}
x^{\alpha} \partial_{x}^{\beta}\left(e^{\frac{i}{\hbar} \phi} b_{\gamma}^{(q)}(x, \theta, y)\right) \in \Gamma_{0}^{\mu-q+|\alpha|+|\beta|} \tag{2.12}
\end{equation*}
$$

This property and (2.11) imply that, for all $q>n+N+\mu+|\alpha|+|\beta|$, there exists a constant $C_{\alpha, \beta, q}$ such that

$$
\left|x^{\alpha} \partial_{x}^{\beta} I\left(\left(1-\omega_{\varepsilon}\right) a, \phi ; h\right) f(x)\right| \leq C_{\alpha, \beta, q} \sup _{\substack{x \in \mathbb{R}^{n} \\|\gamma| \leq q}}\left|\partial_{x}^{\gamma} f(x)\right|,
$$

which proves the continuity of $I\left(\left(1-\omega_{\varepsilon}\right) a, \phi ; h\right)$.
The last assertion of the theorem is an immediate consequence of the second one, indeed the matter is to show that the operator ${ }^{t} F$ is continuous from $S\left(\mathbb{R}^{n}\right)$ to itself, where $F=I(a, \phi ; h)$. But ${ }^{t} F=I(\widetilde{a}, \widetilde{\phi} ; h)$, with

$$
\begin{aligned}
\widetilde{\phi}(x, \theta, y) & =\phi(y, \theta, x), \\
\widetilde{a}(x, \theta, y) & =a(y, \theta, x) .
\end{aligned}
$$

Since ϕ satisfies $\left(H_{3}^{*}\right)$, then $\widetilde{\phi}$ satisfies $\left(H_{3}\right)$, so we can deduce the result.
Remark 2.1. We can obtain the same result if the hypothesis on ϕ are fulfilled only on the support of the amplitude a.

3. Composition of two h-Fourier integral operators with complex phase

In this section we prove that the composition of two h-Fourier integral operators with complex phase, have a meaning, and give an operator of same type.

Theorem 3.1. Assume that the phase functions ϕ_{1} and ϕ_{2} satisfy $\left(H_{1}\right),\left(H_{2}\right),\left(H_{3}\right)$ and $\left(H_{4}\right)$. Set

$$
\begin{equation*}
\phi(x, \theta, z)=\phi_{1}\left(x, \theta_{1}, y\right)+\phi_{2}\left(y, \theta_{2}, z\right) \tag{3.1}
\end{equation*}
$$

with $\theta_{1} \in \mathbb{R}^{N_{1}}, \theta_{2} \in \mathbb{R}^{N_{2}}, x \in \mathbb{R}^{n}, y \in \mathbb{R}^{n}, z \in \mathbb{R}^{n}, \theta=\left(\theta_{1}, y, \theta_{2}\right)$. Then ϕ verifies $\left(H_{1}\right),\left(H_{2}\right),\left(H_{3}\right)$ and $\left(H_{4}\right)$, and for all $a_{1} \in \Gamma_{0}^{\mu_{1}}, a_{2} \in \Gamma_{0}^{\mu_{2}}$, we have

$$
\begin{equation*}
I\left(a_{1}, \phi_{1} ; h\right) I\left(a_{2}, \phi_{2} ; h\right)=I\left(a_{1} \times a_{2}, \phi ; h\right), \tag{3.2}
\end{equation*}
$$

where

$$
\left(a_{1} \times a_{2}\right)(x, \theta, z)=a_{1}\left(x, \theta_{1}, y\right) a_{2}\left(y, \theta_{2}, z\right) .
$$

Proof. We first observe that $\left(H_{1}\right),\left(H_{2}\right)$ and $\left(H_{4}\right)$ are trivial. So we have to prove the condition $\left(H_{3}\right)$.
We can see that the first inequality is evident, so it suffices to show that ϕ satisfies the following property:
there exists $K>0$ such that

$$
\begin{equation*}
\lambda\left(x, \theta_{1}, y, \theta_{2}, z\right) \leq K \lambda\left(z, \partial_{z} \phi_{2}, \partial_{y} \phi_{1}+\partial_{y} \phi_{2}, \partial_{\theta_{1}} \phi_{1}, \partial_{\theta_{2}} \phi_{2}\right) \tag{3.3}
\end{equation*}
$$

Applying $\left(H_{3}\right)$ to ϕ_{1} and ϕ_{2} we get that there exists $C>0$ such that

$$
\begin{equation*}
\lambda\left(x, \theta_{1}, y, \theta_{2}, z\right) \leq C \lambda\left(\partial_{y} \phi_{1}, \partial_{\theta_{1}} \phi_{1}, y, \partial_{\theta_{2}} \phi_{2}, \partial_{z} \phi_{2}, z\right) \tag{3.4}
\end{equation*}
$$

but we have also

$$
\begin{equation*}
\lambda(y) \leq C^{\prime} \lambda\left(\partial_{\theta_{2}} \phi_{2}, \partial_{z} \phi_{2}, z\right) \tag{3.5}
\end{equation*}
$$

from $\left(H_{3}\right)$ applied to ϕ_{2}, and

$$
\begin{equation*}
\left|\partial_{y} \phi_{2}\right| \leq C^{\prime \prime} \lambda\left(y, \theta_{2}, z\right) \leq C^{\prime \prime \prime}\left(\lambda\left(\partial_{\theta_{2}} \phi_{2}, \partial_{z} \phi_{2}, z\right)\right), \tag{3.6}
\end{equation*}
$$

from $\left(H_{2}\right)$ and $\left(H_{3}\right)$ applied to ϕ_{2}.
Next we note that

$$
\begin{equation*}
\left|\partial_{y} \phi_{1}\right| \leq\left|\partial_{y} \phi_{1}+\partial_{y} \phi_{2}\right|+\left|\partial_{y} \phi_{2}\right| . \tag{3.7}
\end{equation*}
$$

The inequalities (3.4)-(3.7) imply (3.3).
It remains to show the composition formulas. Consider for $i=1,2$, the sequences of functions

$$
\chi_{p}^{i}\left(x, \theta_{i}, y\right)=\exp \left(-p^{-1}\left(|x|^{2}+\left|\theta_{i}\right|^{2}+|y|^{2}\right)\right) ;\left(x, \theta_{i}, y\right) \in \mathbb{R}^{n} \times \mathbb{R}^{N_{i}} \times \mathbb{R}^{n}
$$

We can show that (3.2) is satisfied for

$$
a_{p}^{1}=a_{1} \chi_{p}^{1}, a_{p}^{2}=a_{2} \chi_{p}^{2}
$$

But

$$
\chi_{p}^{1}\left(x, \theta_{1}, y\right) \chi_{p}^{2}\left(y, \theta_{2}, z\right)=\exp \left(-p^{-1}\left(|x|^{2}+2|y|^{2}+\left|\theta_{1}\right|^{2}+\left|\theta_{2}\right|^{2}+|z|^{2}\right)\right)
$$

Then it results that

$$
\begin{equation*}
\lim _{p \rightarrow \infty}\left(I\left(a_{p}^{1} a_{p}^{2}, \phi ; h\right) f\right)(x)=\left(I\left(a_{1} a_{2}, \phi\right) f ; h\right)(x) \tag{3.8}
\end{equation*}
$$

for all $f \in S\left(\mathbb{R}^{n}\right)$.
On the other hand, we have seen in the proof of Theorem 2.1 that there exists, for all $l \in \mathbb{N}$ and $j=1,2$, an integer $M_{j, l}$ and a constant $C_{j, l}>0$, such that, for all f in $S\left(\mathbb{R}^{n}\right)$ and $p \geq 1$, we have

$$
\begin{equation*}
\left\|I\left(a_{p}^{j}, \phi_{j} ; h\right) f\right\|_{B^{l}} \leq C_{l, j}\|f\|_{B^{M_{j, l}}} \tag{3.9}
\end{equation*}
$$

where $B^{l}\left(\mathbb{R}^{n}\right)=\left\{u \in L^{2}\left(\mathbb{R}^{n}\right), x^{\alpha} D_{x}^{\beta} u \in L^{2}\left(\mathbb{R}^{n}\right),|\alpha|+|\beta| \leq l\right\}$.
So, for all fixed f_{0} in $S\left(\mathbb{R}^{n}\right), g_{p}=I\left(a_{p}^{2}, \phi_{2} ; h\right) f_{0}$ describes a bounded subset of $S\left(\mathbb{R}^{n}\right)$ when p varies. Since $S\left(\mathbb{R}^{n}\right)$ is a Montel space, we can extract a subsequence, denoting also g_{p}, that converges in $S\left(\mathbb{R}^{n}\right)$ to $g=I\left(a_{1}, \phi_{2} ; h\right) f_{0}$, but we have

$$
\begin{align*}
& \left\|I\left(a_{p}^{1}, \phi_{1} ; h\right) g_{p}-I\left(a_{1}, \phi_{1} ; h\right) g\right\|_{B^{l}} \\
\leq & \left\|I\left(a_{p}^{1}, \phi_{1} ; h\right)\left(g_{p}-g\right)\right\|_{B^{l}}+\left\|\left(I\left(a_{p}^{1}, \phi_{1} ; h\right)-I\left(a_{1}, \phi_{1} ; h\right)\right) g\right\|_{B^{l}} \tag{3.10}
\end{align*}
$$

Even re-extract a subsequence, we can suppose that

$$
\begin{equation*}
I\left(a_{p}^{1}, \phi_{1} ; h\right) g \rightarrow I\left(a_{1}, \phi_{1} ; h\right) g, \text { in } S\left(\mathbb{R}^{n}\right) \tag{3.11}
\end{equation*}
$$

From (3.9)-(3.11), It follows so, that for all l, leaves to extract a subsequence, we have

$$
I\left(a_{p}^{1}, \phi_{1} ; h\right) I\left(a_{p}^{2}, \phi_{2} ; h\right) f_{0} \rightarrow I\left(a_{1}, \phi_{1} ; h\right) I\left(a_{2}, \phi_{2} ; h\right) f_{0} \text { in } B^{l}
$$

4. The particular case

The purpose of this section is to study a particular case of the phase function ϕ which is very important in Cauchy problems, see [13]. Consider ϕ of the form

$$
\phi(x, y, \theta)=S(x, \theta)-y \theta,
$$

and suppose that S satisfies:
$\left(G_{1}\right) S \in C^{\infty}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\theta}^{n} ; \mathbb{C}\right)$, where $S=S_{1}+i S_{2}$.
$\left(G_{2}\right)$ For all $(\alpha, \beta) \in \mathbb{N}^{n} \times \mathbb{N}^{n}$, there exist $C_{\alpha, \beta}>0$, such that

$$
\left|\partial_{x}^{\alpha} \partial_{\theta}^{\beta} S(x, \theta)\right| \leq C_{\alpha, \beta} \lambda(x, \theta)^{(2-|\alpha|-|\beta|)} .
$$

$\left(G_{3}\right)$ There exists $\delta_{0}>0$ such that

$$
\inf _{x, \theta \in \mathbb{R}^{n}}\left|\operatorname{det} \frac{\partial^{2} S}{\partial x \partial \theta}(x, \theta)\right| \geq \delta_{0} .
$$

$\left(G_{4}\right) \forall(x, \theta) \in \mathbb{R}^{n} \times \mathbb{R}^{N}, S_{2}(x, \theta) \geq 0$.
Remark 4.1. From $\left(G_{2}\right)$ and $\left(G_{3}\right)$ and using the global inversion theorem we see that the mappings φ_{1} and φ_{2} defined by

$$
\varphi_{1}:(x, \theta) \rightarrow\left(x, \partial_{x} S(x, \theta)\right), \quad \varphi_{2}:(x, \theta) \rightarrow\left(\theta, \partial_{\theta} S(x, \theta)\right),
$$

are global diffeomorphisms from $\mathbb{R}^{2 n}$ onto $\mathbb{R}^{n} \times \mathbb{C}^{n}$. Indeed we have

$$
J_{\varphi_{1}}=\left(\begin{array}{cc}
I_{n} & 0 \\
\frac{\partial^{2} S}{\partial x^{2}} & \frac{\partial^{2} S}{\partial x \partial \theta}
\end{array}\right), \quad J_{\varphi_{2}}=\left(\begin{array}{cc}
0 & I_{n} \\
\frac{\partial^{2} S}{\partial x \partial \theta} & \frac{\partial^{2} S}{\partial \theta^{2}}
\end{array}\right),
$$

and so

$$
\left|J_{\varphi_{1}}\right|=\left|J_{\varphi_{2}}\right|=\left|\operatorname{det} \frac{\partial^{2} S}{\partial x \partial \theta}\right| \geq \delta_{0} \neq 0, \text { for all }(x, \theta) \in \mathbb{R}^{2 n} .
$$

Furthermore

$$
\begin{align*}
\left\|\left(\varphi_{1}^{\prime}(x, \theta)\right)^{-1}\right\| & =\frac{1}{\left|\operatorname{det} \frac{\partial^{2} S}{\partial x \partial \theta}(x, \theta)\right|}\left\|^{t} A(x, \theta)\right\| \tag{4.1}\\
\left\|\left(\varphi_{2}^{\prime}(x, \theta)\right)^{-1}\right\| & =\frac{1}{\left|\operatorname{det} \frac{\partial^{2} S}{\partial x \partial \theta}(x, \theta)\right|}\left\|^{t} B(x, \theta)\right\|, \tag{4.2}
\end{align*}
$$

where $A(x, \theta)$ and $B(x, \theta)$ are respectively the cofactor matrix of $\varphi_{1}^{\prime}(x, \theta)$ and $\varphi_{2}^{\prime}(x, \theta)$. By $\left(G_{2}\right)$, we know that $\left\|{ }^{t} A(x, \theta)\right\|$ and $\left\|^{t} B(x, \theta)\right\|$ are uniformly bounded.

Lemma 4.1. If S satisfies $\left(G_{1}\right),\left(G_{2}\right),\left(G_{3}\right)$ and $\left(G_{4}\right)$, then S satisfies the following inequalities:
(i) There exist $C_{1}, C_{2}>0$, such that

$$
\left\{\begin{array}{l}
|x| \leq C_{1} \lambda\left(\theta, \partial_{\theta} S\right), \text { for all }(x, \theta) \in \mathbb{R}^{2 n}, \tag{4.3}\\
|\theta| \leq C_{2} \lambda\left(x, \partial_{x} S\right), \text { for all }(x, \theta) \in \mathbb{R}^{2 n} .
\end{array}\right.
$$

(ii) There exists $C_{3}>0$ such that for all $(x, \theta),\left(x^{\prime}, \theta^{\prime}\right) \in \mathbb{R}^{2 n}$,

$$
\begin{equation*}
\left|x-x^{\prime}\right|+\left|\theta-\theta^{\prime}\right| \leq C_{3}\left[\left|\left(\partial_{\theta} S\right)(x, \theta)-\left(\partial_{\theta} S\right)\left(x^{\prime}, \theta^{\prime}\right)\right|+\left|\theta-\theta^{\prime}\right|\right] . \tag{4.4}
\end{equation*}
$$

The proof of the Lemma is similar to that of [12, lemma 3.3]
Remark 4.2. When $\theta=\theta^{\prime}$ in (4.4), we have for all $\left(x, x^{\prime}, \theta\right) \in \mathbb{R}^{3 n}$,

$$
\begin{equation*}
\left|x-x^{\prime}\right| \leq C_{3}\left|\left(\partial_{\theta} S\right)(x, \theta)-\left(\partial_{\theta} S\right)\left(x^{\prime}, \theta\right)\right| . \tag{4.5}
\end{equation*}
$$

Lemma 4.2. Assume that S satisfies $\left(G_{1}\right),\left(G_{2}\right),\left(G_{3}\right)$ and $\left(G_{4}\right)$. Then the function $\phi(x, y, \theta)=S(x, \theta)-y \theta$ satisfies $\left(H_{1}\right),\left(H_{2}\right),\left(H_{3}\right),\left(H_{3}^{*}\right)$ and $\left(H_{4}\right)$.

Proof. It is clear that $\left(H_{1}\right),\left(H_{2}\right)$ and $\left(H_{4}\right)$ are satisfied. Let's prove $\left(H_{3}\right)$.
First observe that the second inequality in $\left(H_{3}\right)$ is a consequence of (4.3). Also from (4.3) we have

$$
\lambda(x, \theta, y) \leq \lambda(x, \theta)+\lambda(y) \leq C_{4}\left(\lambda\left(\theta, \partial_{\theta} S\right)+\lambda(y)\right), C_{4}>0
$$

Further $\partial_{y_{j}} \phi=-\theta_{j}$, and $\partial_{\theta_{j}} \phi=\partial_{\theta_{j}} S-y_{j}$, so

$$
\lambda\left(\theta, \partial_{\theta} S\right)=\lambda\left(\partial_{y} \phi, \partial_{\theta} \phi+y\right) \leq 2 \lambda\left(\partial_{y} \phi, \partial_{\theta} \phi, y\right)
$$

which implies for some $C_{5}>0$,

$$
\lambda(x, \theta, y) \leq C_{4}\left(2 \lambda\left(\partial_{y} \phi, \partial_{\theta} \phi, y\right)\right) \leq \frac{1}{C_{5}} \lambda\left(\partial_{y} \phi, \partial_{\theta} \phi, y\right)
$$

The condition $\left(H_{3}^{*}\right)$ can be shown in the same way.
Proposition 4.1. Assume that S satisfies $\left(G_{1}\right),\left(G_{2}\right)$ and $\left(G_{4}\right)$, so there exists a constant $\varepsilon>0$ such that the phase function ϕ given in (4.3) belongs to $\Gamma_{1}^{2}\left(\Omega_{\phi, \varepsilon}\right)$, where

$$
\Omega_{\phi, \varepsilon}=\left\{(x, \theta, y) \in \mathbb{R}^{3 n} ;\left|\partial_{\theta} S(x, \theta)-y\right|^{2}<\varepsilon\left(|x|^{2}+|y|^{2}+|\theta|^{2}\right)\right\}
$$

Proof. The matter is to show that:
there exists $\varepsilon>0$, such that for all $\alpha, \beta, \gamma \in \mathbb{N}^{n}$, there exist $C_{\alpha, \beta, \gamma}>0$:

$$
\begin{equation*}
\left|\partial_{x}^{\alpha} \partial_{\theta}^{\beta} \partial_{y}^{\gamma} \phi(x, \theta, y)\right| \leq C_{\alpha, \beta, \gamma} \lambda(x, \theta, y)^{(2-|\alpha|-|\beta|-|\gamma|)},(x, \theta, y) \in \Omega_{\phi, \varepsilon} \tag{4.6}
\end{equation*}
$$

For $|\gamma|=1$, (for some $j \in\{1, \ldots, n\}, \gamma_{j}=1$) we have

$$
\left|\partial_{x}^{\alpha} \partial_{\theta}^{\beta} \partial_{y}^{\gamma} \phi(x, \theta, y)\right|=\left|\partial_{x}^{\alpha} \partial_{\theta}^{\beta}(-\theta)\right|=\left\{\begin{array}{cc}
0 & \text { if }|\alpha| \neq 0 \\
\left|\partial_{\theta}^{\beta}\left(-\theta_{j}\right)\right| & \text { if } \alpha=0
\end{array}\right.
$$

and for $|\gamma|>1$, we have

$$
\left|\partial_{x}^{\alpha} \partial_{\theta}^{\beta} \partial_{y}^{\gamma} \phi(x, \theta, y)\right|=0
$$

Then the estimate (4.6) is satisfied. It remains the case $|\gamma|=0$.
But for all $\alpha, \beta \in \mathbb{N}^{n}$ with $|\alpha|+|\beta| \leq 1$, and from $\left(G_{2}\right)$ there exists $C_{\alpha, \beta}>0$ such that

$$
\left|\partial_{x}^{\alpha} \partial_{\theta}^{\beta} \phi(x, \theta, y)\right|=\left|\partial_{x}^{\alpha} \partial_{\theta}^{\beta} S(x, \theta)-\partial_{x}^{\alpha} \partial_{\theta}^{\beta}(y \theta)\right| \leq C_{\alpha, \beta} \lambda(x, \theta, y)^{(2-|\alpha|-|\beta|)}
$$

If $|\alpha|+|\beta| \geq 2$, one has $\partial_{x}^{\alpha} \partial_{\theta}^{\beta} \phi(x, \theta, y)=\partial_{x}^{\alpha} \partial_{\theta}^{\beta} S(x, \theta)$, and so in $\Omega_{\phi, \varepsilon}$ we have

$$
\begin{equation*}
|y|=\left|\partial_{\theta} S(x, \theta)-y-\partial_{\theta} S(x, \theta)\right| \leq \sqrt{\varepsilon}\left(|x|^{2}+|y|^{2}+|\theta|^{2}\right)^{\frac{1}{2}}+C_{6} \lambda(x, \theta) \tag{4.7}
\end{equation*}
$$

with $C_{6}>0$. Choosing ε small enough, to get a constant $C_{7}>0$ such that

$$
|y| \leq C_{7} \lambda(x, \theta), \forall(x, \theta, y) \in \Omega_{\phi, \varepsilon}
$$

Which prove the equivalence

$$
\begin{equation*}
\lambda(x, \theta, y) \simeq \lambda(x, \theta) \text { in } \Omega_{\phi, \varepsilon} \tag{4.8}
\end{equation*}
$$

Therefore from the last property and $\left(G_{2}\right)$ we obtain (4.6).
In virtue of the equivalence (4.8), we deduce the following result.
Proposition 4.2. If the amplitude $a:(x, \theta) \rightarrow a(x, \theta)$ is in $\Gamma_{k}^{m}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\theta}^{n}\right)$, then the amplitude $b:(x, \theta, y) \rightarrow a(x, \theta)$ is in $\Gamma_{k}^{m}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{\theta}^{n} \times \mathbb{R}_{y}^{n}\right) \cap \Gamma_{k}^{m}\left(\Omega_{\phi, \varepsilon}\right)$, for $k \in\{0,1\}$.

As a consequence of the previous calculus we obtain a result of boundedness of h-admissible Fourier integral [1, 14, 15] operators with complex phase in $S\left(\mathbb{R}^{n}\right)$ and $S^{\prime}\left(\mathbb{R}^{n}\right)$.
Theorem 4.1. Let F_{h} be an integral operator of the form

$$
\left(F_{h} \psi\right)(x)=(2 \pi h)^{-n} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} e^{\frac{i}{h}(S(x, \theta)-y \theta)} a(x, \theta) \psi(y) d y d \theta
$$

where $\left.\left.a \in \Gamma_{k}^{m}\left(\mathbb{R}_{x, \theta}^{2 n}\right), k=0,1, h \in\right] 0, h_{0}\right]$ and S satisfies $\left(G_{1}\right),\left(G_{2}\right),\left(G_{3}\right)$ and $\left(G_{4}\right)$.Then F_{h} can be extended to a linear continuous operator from $S\left(\mathbb{R}^{n}\right)$ into itself, and from $S^{\prime}\left(\mathbb{R}^{n}\right)$ into itself.

References

[1] Aitemrar, C. A. and Senoussaoui, A., h-Admissible Foureir integral opertaors. Turk. J. Math., vol 40, 553-568, 2016.
[2] Asada, K. and Fujiwara, D., On some oscillatory transformations in $L^{2}\left(\mathbb{R}^{n}\right)$. Japanese J. Math., vol 4 (2), 299-361, 1978.
[3] Bekkara, B., Messirdi, B. and Senoussaoui, A., A class of generalized integral operators. Elec J. Diff. Equ., vol 2009, no.88, (2009), 1-7.
[4] Calderón, A.P. and Vaillancourt, R., On the boundedness of pseudodifferential operators. J. Math. Soc. Japan, 23, 1971, p374-378.
[5] Duistermaat, J.J., Fourier integral operators. Courant Institute Lecture Notes, New-York 1973.
[6] Egorov, Yu.V., Microlocal analysis. In Partial Differential Equations IV. Springer-Verlag Berlin Heidelberg, p1-147, 1993.
[7] Hasanov, M., A class of unbounded Fourier integral operators. J. Math. Anal. Appl., 225, 641-651, 1998.
[8] Harrat, C. and Senoussaoui, A., On a class of h-Fourier integral operators. Demonstratio Mathematica, Vol. XLVII, No 3, 596-607, 2014.
[9] Helffer, B., Théorie spectrale pour des opérateurs globalement elliptiques. Société Mathématiques de France, Astérisque 112, 1984.
[10] Hörmander, L., Fourier integral operators I. Acta Math., vol 127, 1971, p79-183.
[11] Hörmander, L., The Weyl calculus of pseudodifferential operators. Comm. Pure. Appl. Math., 32 (3), p359-443, 1979.
[12] Messirdi, B. and Senoussaoui, A., On the L^{2} boundedness and L^{2} compactness of a class of Fourier integral operators. Elec J. Diff. Equ., vol 2006, no.26, (2006), p1-12.
[13] Messirdi, B. and Senoussaoui, A., Parametrix du problème de Cauchy C^{∞} muni d'un système d'ordres de Leray-Voleviĉ. J. for Anal and its Appl., Vol 24, (3), 581-592, 2005.
[14] Robert, D., Autour de l'approximation semi-classique. Birkäuser, 1987.
[15] Senoussaoui, A., Opérateurs h-admissibles matriciels à symbole opérateur. African Diaspora J. Math., vol 4, (1), 7-26, 2007.

Affiliations

Chafika Amel Aitemrar

Address: University of Sciences and Technologies Mohamed Boudiaf, Faculty of Mathematics and Informatics. B.P. 1505 El M'naouar, Oran, Algeria.

E-MAIL: aitemrar.c.a@gmail.com
ORCID ID: $0000-0002-2015-2410$

Abderrahmane Senoussaoui
Address: Laboratory of Fundamental and Applied Mathematics of Oran (LMFAO), University of Oran 1, Ahmed BEN BELLA. B.P. 1524 El M'naouar, Oran, Algeria.
E-MAIL: senoussaoui_abdou@yahoo.fr or senoussaoui.abderahmane@univ-oran.dz
ORCID ID: $0000-0002$ - $1890-9736$

