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Abstract
We study in this work a class of h-Fourier integral operators with complex phase. These operators are
continuous on S (Rn) and on S′ (Rn).
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1. Introduction
A Fourier integral operator is an operator that can be written in the form

(I (a, φ) f) (x) =

∫
Rn

∫
RN

eiφ(x,θ,y)a (x, θ, y) f (y) dydθ, (1.1)

f ∈ S (Rn) (the Schwartz space). The function a (x, θ, y) ∈ C∞
(
Rn × RN × Rn

)
is called the amplitude, the function

φ (x, y, θ) ∈ C∞
(
Rn × RN × Rn;R

)
is called the phase function. The study of these operators, which are intimately

connected to the theory of linear partial differential operators, has a long history and there is a large body of
results made by a several authors (see, e.g.,[2, 5–12]). The first works on Fourier integral operators deal with local
properties. We note that, K. Asada and D. Fujiwara [2] have studied for the first time a class of Fourier integral
operators defined on Rn.

In this paper we consider one of the most important problems in the theory of differential equations which is
the study of the h-Fourier integral operators with a complex phase, this type of operator is represented by formula
of the type

(I (a, φ;h) f) (x) =

∫
Rn

∫
RN

e
i
hφ(x,θ,y)a (x, θ, y) f (y) dydθ, (1.2)

in which appear two C∞-functions, the phase function φ (x, y, θ) ∈ C∞
(
Rn × RN × Rn

)
and the amplitude

a (x, θ, y) ∈ C∞
(
Rn × RN × Rn

)
and a semiclassical parameter h ∈ ]0, h0].

The purpose of this work is to generalize the notion of h-Fourier integral operators defined in [8] by considering
the phase function φ with complex values, and appling the same technique of [2] to show that the h-Fourier integral
operators with complex phase are well defined and they are continuous on S (Rn) and on S′ (Rn) ( the space
of tempered distributions). We give also a result where it is shown that these types of operators are stable by
composition.

When the phase function φ (x, y, θ) = S (x, θ) − yθ, where S ∈ C∞ (Rnx × Rnθ ;C) , the operator (1.2) will be a
particular case of h-Fourier integral operators with complex phase. In this case we will also give some hypothesis
on the phase function φ and the amplitude a.

Let us now describe the plan of this article. In the second section we recall the continuity of some general class of
Fourier integral operators on S (Rn) and on S′ (Rn). The composition of h-Fourier integral operators with complex
phase is given in the third section. The last section is devoted to study the particular case.
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2. A general class of h-Fourier integral operators with complex phase

In this section we define the class of integral transformations of type

(I (a, φ;h) , f) (x) =

∫
Rn

∫
RN

e
i
hφ(x,θ,y)a (x, θ, y) f (y) dydθ, (2.1)

where f ∈ S (Rn) , x ∈ Rn, h ∈ ]0, h0] , and φ : Rn × RN × Rn → C.
In general the integral (2.1) is not absolutely convergent, so we can use the technique of oscillatory integral

developed by Hörmander in [10].

Notation 2.1. For (x, θ, y) ∈ Rn × RN × Rn, we set

λ (x, θ, y) =
(

1 + |x|2 + |y|2 + |θ|2
)1/2

.

The phase function φ = ϕ+ iψ and the amplitude a are assumed to satisfy the following conditions:

(H1) φ : Rn × RN × Rn → C is a C∞ application.

(H2) ∀ (α, β, γ) ∈ Nn × NN × Nn,∃Cαβγ ≥ 0 :∣∣∂αx ∂βy ∂γθ φ (x, θ, y)
∣∣ ≤ Cαβγ [λ (x, θ, y)]

2−(|α|+|β|+|γ|)
.

(H3) There exist real numbers K1,K2 > 0 such that

K1λ (x, θ, y) ≤ λ (∂yφ, ∂θφ, y) ≤ K2λ (x, θ, y) ,∀ (x, θ, y) ∈ Rnx × RNθ × Rny .

(H∗3 ) There exist real numbers K∗1 ,K∗2 > 0 such that

K∗1λ (x, θ, y) ≤ λ (x, ∂θφ, ∂xφ) ≤ K∗2λ (x, θ, y) ,∀ (x, θ, y) ∈ Rnx × RNθ × Rny .

(H4) ∀ (x, θ, y) ∈ Rn × RN × Rn : ψ (x, θ, y) ≥ 0.

For any open subset Ω of Rnx × RNθ × Rny , µ ∈ R and ρ ∈ [0, 1] , we set

Γµρ (Ω) =
{
a ∈ C∞ (Ω) :

∣∣∂αx ∂βy ∂γθ a∣∣ ≤ Cαβγ [λ (x, θ, y)]
µ−(|α|+|β|+|γ|)

}
.

For Ω = Rnx × RNθ × Rny , we denote Γµρ (Ω) = Γµρ .
Now if ϕ satisfies (H1) , (H2) , (H3) , (H4) and a ∈ Γµ0 , we can give a meaning to the right hand side of (2.1) , so

we consider g ∈ S
(
Rnx × RNθ × Rny

)
, g (0) = 1. If a ∈ Γµ0 , we define

aσ (x, θ, y) = g

(
x

σ
,
θ

σ
,
y

σ

)
a (x, θ, y) , σ > 0.

We have the following result concerning the boundedness of h-Fourier integral operators with complex phase
on S (Rn) and on S′ (Rn).

Theorem 2.1. If the phase function φ satisfies (H1) , (H2) , (H3) and (H4) and if a ∈ Γµ0 , then

1. For all f ∈ S (Rn) , limp→∞ [(I (ap, φ;h) , f)] (x) exists for every x ∈ Rn and is independent of the choice of the
function g. We set then

(I (a, φ;h) , f) = lim
p→∞

(I (ap, φ;h) , f)

2. I (a, φ;h) is a linear continuous operator from S (Rn) into itself.

3. Furthermore, if φ satisfies (H∗3 ) , so I (a, φ;h) ∈ L (S′ (Rn)) (here S′ (Rn) is the space of all tempered distributions on
Rn)
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Proof. Let δ ∈ C∞0 (Rn) such that suppδ ⊆ [−1, 2] and δ ≡ 1 on [0, 1] .
For all ε > 0, we set

ωε (x, θ, y) = δ

(
|∂yφ|2 + |∂θφ|2

ελ (x, θ, y)
2

)
.

From (H3) there exists C > 0 for which we have on the support of ωε

λ (x, θ, y) ≤ C
[(

1 + |y|2
) 1

2

+ ε
1
2λ (x, θ, y)

]
.

Choosing ε small enough we get that there exists a constant C0, such that the inequality

λ (x, θ, y) ≤ C0

(
1 + |y|2

) 1
2

holds in the support of ωε.
From this inequality we can see that I (ωεap, φ;h) f is an absolutely convergent integral and we have

lim
p→∞

I (ωεap, φ;h) f = I (ωεa, φ;h) f. (2.2)

The continuity of the operator I (ωεa, φ;h) f from S (Rn) into itself follows from (H2) .
Next we study the limit limp→∞ I ((1− ωε) ap, φ;h) f. Consider the operator

L =
h

i

(∑n
j=1

(
∂yjφ

)
∂
∂yj

+
∑N
j=1

(
∂θjφ

)
∂
∂θj

)
|∂yφ|2 + |∂θφ|2

.

One can show easily that
L
(
eiφ
)

= eiφ. (2.3)

Let Ω0 be the open subset of Rn × RN × Rn defined by

Ω0 =
{

(x, θ, y) , |∂yφ|2 + |∂θφ|2 >
ε

2
λ (x, θ, y)

2
}
.

By recurrence we prove that:
For all integers q ≥ 0, and b ∈ C∞

(
Rny × RNθ

)
, we have(

tL
)q

((1− ωε) b) =
∑

|α|+|β|≤q

gqα,β∂
β
y ∂

β
θ ((1− ωε) b) , (2.4)

where the gqα,β are in Γ−q0 (Ω0) and depend only on φ. In particular for q = 0, we have

tL =
∑
j

Fj
∂

∂yj
+
∑
j

Gj
∂

∂θj
+H, (2.5)

where Fj ∈ Γ−10 (Ω0) , Gj ∈ Γ−10 (Ω0) , H ∈ Γ−20 (Ω0) .
From (2.3) we have also for all integer q ≥ 0,

I ((1− ωε) ap, φ;h) f (x) =

∫
Rn

∫
RN

e
i
hφ(x,θ,y)

(
tL
)q

((1− ωε) ap, f) dydθ. (2.6)

But (
tL
)q

((1− ωε) apf) described (when p varies) a bound of Γµ−q0 , (2.7)

and
lim
p→∞

(
tL
)q

((1− ωε) apf) (x, θ, y) =
(
tL
)q

((1− ωε) af) (x, θ, y) , (2.8)

for all (x, θ, y) ∈ Rn × RN × Rn.
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To finish, we have for all s > n+N∫
Rn

∫
RN

λ−s (x, θ, y) dydθ ≤ γsλn+N−s (x) . (2.9)

From (2.6)-(2.9) and using the Lebesgue’s theorem we obtain

lim
p→∞

I ((1− ωε) ap, φ;h) f (x) =

∫
Rn

∫
RN

e
i
hφ(x,θ,y)

(
tL
)q

((1− ωε) a, f ;h) dydθ, (2.10)

where q satisfies q > n+N + µ.
The first assertion of the theorem can be proved from (2.2) and (2.10) .
Now let’s show the continuity of I ((1− ωε) a, φ;h). From (2.5) and (2.10), we have

I ((1− ωε) a, φ;h) f (x) =
∑
|γ|≤q

∫
Rn

∫
RN

e
i
hφ(x,θ,y)b(q)γ (x, θ, y) ∂γy f (y) dydθ, (2.11)

with b(q)γ ∈ Γµ−q0 . On the other hand, we have

xα∂βx

(
e

i
hφb(q)γ (x, θ, y)

)
∈ Γ

µ−q+|α|+|β|
0 . (2.12)

This property and (2.11) imply that, for all q > n+N + µ+ |α|+ |β| , there exists a constant Cα,β,q such that∣∣xα∂βx I ((1− ωε) a, φ;h) f (x)
∣∣ ≤ Cα,β,q sup

x∈Rn

|γ|≤q

|∂γxf (x)| ,

which proves the continuity of I ((1− ωε) a, φ;h) .
The last assertion of the theorem is an immediate consequence of the second one, indeed the matter is to show

that the operator tF is continuous from S (Rn) to itself, where F = I (a, φ;h) . But tF = I
(
ã, φ̃;h

)
, with

φ̃ (x, θ, y) = φ (y, θ, x) ,

ã (x, θ, y) = a (y, θ, x) .

Since φ satisfies (H∗3 ) , then φ̃ satisfies (H3) , so we can deduce the result.

Remark 2.1. We can obtain the same result if the hypothesis on φ are fulfilled only on the support of the amplitude a.

3. Composition of two h-Fourier integral operators with complex phase

In this section we prove that the composition of two h-Fourier integral operators with complex phase, have a
meaning, and give an operator of same type.

Theorem 3.1. Assume that the phase functions φ1 and φ2 satisfy (H1) , (H2) , (H3) and (H4) . Set

φ (x, θ, z) = φ1 (x, θ1, y) + φ2 (y, θ2, z) , (3.1)

with θ1 ∈ RN1 , θ2 ∈ RN2 , x ∈ Rn, y ∈ Rn, z ∈ Rn, θ = (θ1, y, θ2) . Then φ verifies (H1) , (H2) , (H3) and (H4), and for all
a1 ∈ Γµ1

0 , a2 ∈ Γµ2

0 , we have
I (a1, φ1;h) I (a2, φ2;h) = I (a1 × a2, φ;h) , (3.2)

where
(a1 × a2) (x, θ, z) = a1 (x, θ1, y) a2 (y, θ2, z) .

Proof. We first observe that (H1) , (H2) and (H4) are trivial. So we have to prove the condition (H3) .
We can see that the first inequality is evident, so it suffices to show that φ satisfies the following property:
there exists K > 0 such that

λ (x, θ1, y, θ2, z) ≤ Kλ (z, ∂zφ2, ∂yφ1 + ∂yφ2, ∂θ1φ1, ∂θ2φ2) . (3.3)
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Applying (H3) to φ1 and φ2 we get that there exists C > 0 such that

λ (x, θ1, y, θ2, z) ≤ Cλ (∂yφ1, ∂θ1φ1, y, ∂θ2φ2, ∂zφ2, z) , (3.4)

but we have also

λ (y) ≤ C
′
λ (∂θ2φ2, ∂zφ2, z) , (3.5)

from (H3) applied to φ2, and

|∂yφ2| ≤ C ′′λ (y, θ2, z) ≤ C ′′′ (λ (∂θ2φ2, ∂zφ2, z)) , (3.6)

from (H2) and (H3) applied to φ2.
Next we note that

|∂yφ1| ≤ |∂yφ1 + ∂yφ2|+ |∂yφ2| . (3.7)

The inequalities (3.4)-(3.7) imply (3.3).
It remains to show the composition formulas. Consider for i = 1, 2, the sequences of functions

χip (x, θi, y) = exp
(
−p−1

(
|x|2 + |θi|2 + |y|2

))
; (x, θi, y) ∈ Rn × RNi × Rn

We can show that (3.2) is satisfied for

a1p = a1χ
1
p, a

2
p = a2χ

2
p.

But

χ1
p (x, θ1, y)χ2

p (y, θ2, z) = exp
(
−p−1

(
|x|2 + 2 |y|2 + |θ1|2 + |θ2|2 + |z|2

))
.

Then it results that

lim
p→∞

(
I
(
a1pa

2
p, φ;h

)
f
)

(x) = (I (a1a2, φ) f ;h) (x) , (3.8)

for all f ∈ S (Rn).
On the other hand, we have seen in the proof of Theorem 2.1 that there exists, for all l ∈ N and j = 1, 2, an

integer Mj,l and a constant Cj,l > 0, such that, for all f in S (Rn) and p ≥ 1, we have∥∥I (ajp, φj ;h) f∥∥Bl ≤ Cl,j ‖f‖BMj,l , (3.9)

where Bl (Rn) =
{
u ∈ L2 (Rn) , xαDβ

xu ∈ L2 (Rn) , |α|+ |β| ≤ l
}
.

So, for all fixed f0 in S (Rn), gp = I
(
a2p, φ2;h

)
f0 describes a bounded subset of S (Rn) when p varies. Since S (Rn)

is a Montel space, we can extract a subsequence, denoting also gp, that converges in S (Rn) to g = I (a1, φ2;h) f0,
but we have ∥∥I (a1p, φ1;h

)
gp − I (a1, φ1;h) g

∥∥
Bl

≤
∥∥I (a1p, φ1;h

)
(gp − g)

∥∥
Bl +

∥∥(I (a1p, φ1;h
)
− I (a1, φ1;h)

)
g
∥∥
Bl . (3.10)

Even re-extract a subsequence, we can suppose that

I
(
a1p, φ1;h

)
g → I (a1, φ1;h) g, in S (Rn) . (3.11)

From (3.9)-(3.11), It follows so, that for all l, leaves to extract a subsequence, we have

I
(
a1p, φ1;h

)
I
(
a2p, φ2;h

)
f0 → I (a1, φ1;h) I (a2, φ2;h) f0 in Bl.



82 C.A. Aitemrar & A. Senoussaoui

4. The particular case

The purpose of this section is to study a particular case of the phase function φ which is very important in
Cauchy problems, see [13]. Consider φ of the form

φ (x, y, θ) = S (x, θ)− yθ,

and suppose that S satisfies:
(G1) S ∈ C∞ (Rnx × Rnθ ;C), where S = S1 + iS2.

(G2) For all (α, β) ∈ Nn × Nn, there exist Cα,β > 0, such that∣∣∣∂αx ∂βθ S (x, θ)
∣∣∣ ≤ Cα,βλ (x, θ)

(2−|α|−|β|)
.

(G3) There exists δ0 > 0 such that

inf
x,θ∈Rn

∣∣∣∣det
∂2S

∂x∂θ
(x, θ)

∣∣∣∣ ≥ δ0.
(G4)∀ (x, θ) ∈ Rn × RN , S2 (x, θ) ≥ 0.

Remark 4.1. From (G2) and (G3) and using the global inversion theorem we see that the mappings ϕ1 and ϕ2

defined by
ϕ1 : (x, θ)→ (x, ∂xS (x, θ)) , ϕ2 : (x, θ)→ (θ, ∂θS (x, θ)) ,

are global diffeomorphisms from R2n onto Rn × Cn. Indeed we have

Jϕ1
=

(
In 0
∂2S
∂x2

∂2S
∂x∂θ

)
, Jϕ2

=

(
0 In
∂2S
∂x∂θ

∂2S
∂θ2

)
,

and so

|Jϕ1 | = |Jϕ2 | =
∣∣∣∣det

∂2S

∂x∂θ

∣∣∣∣ ≥ δ0 6= 0, for all (x, θ) ∈ R2n.

Furthermore ∥∥∥(ϕ′1 (x, θ))
−1
∥∥∥ =

1∣∣det ∂2S
∂x∂θ (x, θ)

∣∣ ∥∥tA (x, θ)
∥∥ (4.1)

∥∥∥(ϕ′2 (x, θ))
−1
∥∥∥ =

1∣∣det ∂2S
∂x∂θ (x, θ)

∣∣ ∥∥tB (x, θ)
∥∥ , (4.2)

where A (x, θ) and B (x, θ) are respectively the cofactor matrix of ϕ′1 (x, θ) and ϕ′2 (x, θ) . By (G2) , we know that
‖tA (x, θ)‖ and ‖tB (x, θ)‖ are uniformly bounded.

Lemma 4.1. If S satisfies (G1) , (G2) , (G3) and (G4), then S satisfies the following inequalities:
(i) There exist C1, C2 > 0, such that{

|x| ≤ C1λ (θ, ∂θS) , for all (x, θ) ∈ R2n,
|θ| ≤ C2λ (x, ∂xS) , for all (x, θ) ∈ R2n.

(4.3)

(ii) There exists C3 > 0 such that for all (x, θ) , (x′, θ′) ∈ R2n,

|x− x′|+ |θ − θ′| ≤ C3 [|(∂θS) (x, θ)− (∂θS) (x′, θ′)|+ |θ − θ′|] . (4.4)

The proof of the Lemma is similar to that of [12, lemma 3.3]

Remark 4.2. When θ = θ′ in (4.4), we have for all (x, x′, θ) ∈ R3n,

|x− x′| ≤ C3 |(∂θS) (x, θ)− (∂θS) (x′, θ)| . (4.5)

Lemma 4.2. Assume that S satisfies (G1) , (G2) , (G3) and (G4) . Then the function φ (x, y, θ) = S (x, θ) − yθ satisfies
(H1) , (H2) , (H3) , (H∗3 ) and (H4) .
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Proof. It is clear that (H1) , (H2) and (H4) are satisfied. Let’s prove (H3) .
First observe that the second inequality in (H3) is a consequence of (4.3) . Also from (4.3) we have

λ (x, θ, y) ≤ λ (x, θ) + λ (y) ≤ C4 (λ (θ, ∂θS) + λ (y)) , C4 > 0.

Further ∂yjφ = −θj , and ∂θjφ = ∂θjS − yj , so

λ (θ, ∂θS) = λ (∂yφ, ∂θφ+ y) ≤ 2λ (∂yφ, ∂θφ, y) ,

which implies for some C5 > 0,

λ (x, θ, y) ≤ C4 (2λ (∂yφ, ∂θφ, y)) ≤ 1

C5
λ (∂yφ, ∂θφ, y) .

The condition (H∗3 ) can be shown in the same way.

Proposition 4.1. Assume that S satisfies (G1) , (G2) and (G4) , so there exists a constant ε > 0 such that the phase function
φ given in (4.3) belongs to Γ2

1 (Ωφ,ε) , where

Ωφ,ε =
{

(x, θ, y) ∈ R3n; |∂θS (x, θ)− y|2 < ε
(
|x|2 + |y|2 + |θ|2

)}
.

Proof. The matter is to show that:
there exists ε > 0, such that for all α, β, γ ∈ Nn, there exist Cα,β,γ > 0 :∣∣∣∂αx ∂βθ ∂γyφ (x, θ, y)

∣∣∣ ≤ Cα,β,γλ (x, θ, y)
(2−|α|−|β|−|γ|)

, (x, θ, y) ∈ Ωφ,ε. (4.6)

For |γ| = 1, (for some j ∈ {1, . . . , n} , γj = 1) we have∣∣∣∂αx ∂βθ ∂γyφ (x, θ, y)
∣∣∣ =

∣∣∣∂αx ∂βθ (−θ)
∣∣∣ =

{
0∣∣∣∂βθ (−θj)

∣∣∣ if |α| 6= 0
if α = 0

;

and for |γ| > 1, we have ∣∣∣∂αx ∂βθ ∂γyφ (x, θ, y)
∣∣∣ = 0.

Then the estimate (4.6) is satisfied. It remains the case |γ| = 0.
But for all α, β ∈ Nn with |α|+ |β| ≤ 1, and from (G2) there exists Cα,β > 0 such that∣∣∣∂αx ∂βθ φ (x, θ, y)

∣∣∣ =
∣∣∣∂αx ∂βθ S (x, θ)− ∂αx ∂

β
θ (yθ)

∣∣∣ ≤ Cα,βλ (x, θ, y)
(2−|α|−|β|)

.

If |α|+ |β| ≥ 2, one has ∂αx ∂
β
θ φ (x, θ, y) = ∂αx ∂

β
θ S (x, θ), and so in Ωφ,ε we have

|y| = |∂θS (x, θ)− y − ∂θS (x, θ)| ≤
√
ε
(
|x|2 + |y|2 + |θ|2

) 1
2

+ C6λ (x, θ) , (4.7)

with C6 > 0. Choosing ε small enough, to get a constant C7 > 0 such that

|y| ≤ C7λ (x, θ) , ∀ (x, θ, y) ∈ Ωφ,ε.

Which prove the equivalence
λ (x, θ, y) ' λ (x, θ) in Ωφ,ε. (4.8)

Therefore from the last property and (G2) we obtain (4.6) .

In virtue of the equivalence (4.8), we deduce the following result.

Proposition 4.2. If the amplitude a : (x, θ)→ a (x, θ) is in Γmk (Rnx × Rnθ ) , then the amplitude b : (x, θ, y)→ a (x, θ) is in
Γmk
(
Rnx × Rnθ × Rny

)
∩ Γmk (Ωφ,ε) , for k ∈ {0, 1} .

As a consequence of the previous calculus we obtain a result of boundedness of h-admissible Fourier integral
[1, 14, 15] operators with complex phase in S (Rn) and S′ (Rn) .

Theorem 4.1. Let Fh be an integral operator of the form

(Fhψ) (x) = (2πh)
−n
∫
Rn

∫
Rn

e
i
h (S(x,θ)−yθ)a (x, θ)ψ (y) dydθ.

where a ∈ Γmk

(
R2n
x,θ

)
, k = 0, 1 , h ∈ ]0, h0] and S satisfies (G1) , (G2) , (G3) and (G4) .Then Fh can be extended to a linear

continuous operator from S (Rn) into itself, and from S′ (Rn) into itself.
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