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Abstract— The Minimum Dominating Set (MDS) problem is a fundamental challenge in graph theory, with wide-

ranging applications across various domains. This study proposes a novel three-phase approach for solving the 

MDS problem, generating solutions at each stage of the process. The proposed method leverages three 

interconnected centrality metrics, offering an effective way to address the MDS problem at different problem 

scales. These centrality measures capture the prominence of a target node in relation to its neighbors. In the initial 

iterations, the algorithm prioritizes nodes with high dominance and clustering, gradually incorporating those with 

lower clustering into the dominating set in subsequent phases. Notably, the computational cost (node selection 

cost) is higher during the early iterations and decreases over time. The empirical evaluation of the study 

encompasses a variety of problem scenarios, including synthetic datasets generated by specific strategies, 

networks based on the Erdős–Rényi model, and authentic datasets from network science applications. The results 

show that the proposed algorithm consistently produces robust solutions under various constraints. In many cases, 

its performance surpasses that of existing algorithms. The findings of this study contribute to the evolving 

landscape of MDS problem-solving techniques and offer valuable insights for future research and practical 

applications in areas such as network design and resource allocation. 
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1. Introduction 

The Minimum Dominating Set (MDS) problem entails the quest for a dominant set within a network or graph, 

while minimizing the number of elements required for domination. The identification of dominant nodes represents 

a prominent domain of study within graph theory and constitutes a classic combinatorial optimization challenge.  

Fast and effective access to all network nodes is crucial, especially since some nodes can significantly influence 

the network and reflect its topological structure. Identifying such influential nodes is essential in network analysis, 

as they can be used to improve network performance through various strategies. Moreover, efficiently reaching 

the entire network through direct communication with a small group of key individuals is a crucial problem. The 

challenge lies in finding the most effective way to connect with all nodes using as few intermediaries as possible 

(Truta et al., 2020). Solving the MDS problem within a finite number of steps and polynomial time is widely 

recognized as a formidable challenge (Wang et al., 2011). Consequently, common strategies for addressing this 

problem encompass the utilization of greedy, heuristic, and metaheuristic algorithms (Potluri & Singh, 2013; 

Sanchis, 2002). However, existing methods, while useful, do not always provide exact solutions for all network 

types. There is a need for algorithms that can deliver optimal results across different network structures. This study 

aims to present an effective and optimal algorithm for MDS to fill this gap. 

The MDS problem is important for solving various real-world challenges. It helps identify the most critical 

nodes in a network, allowing for better protection and faster access to the entire system. In communication or 

energy networks, MDS can reveal nodes vulnerable to attacks, improving security. It also supports efficient 
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resource allocation and strengthens the network’s ability to withstand failures. These benefits are especially 

relevant for social networks like Facebook, Twitter, or Instagram, which play a key role in modern communication 

and information sharing. Online social networks are rapidly growing and have a strong impact on daily life. One 

important feature of these networks is the ability to enable fast communication between users, which can be 

achieved using MDS. 

This study aims to produce an effective solution based on Malatya centrality values (Karcı et al., 2022). It also 

supports and continues the study previously done with Malatya centrality for MDS (Okumuş & Karcı, 2024). A 

solution to the Minimum Dominating Set problem is proposed using Malatya Centrality approaches. A greedy 

heuristic method was chosen, although it does not guarantee finding the exact Minimum Dominating Set. The 

method selects nodes through a three-stage calculation based on newly introduced centrality metrics. In each 

iteration, the node with the highest Malatya centrality among the unselected nodes is chosen to dominate the 

network. The algorithm was tested on various scenarios, including synthetic graphs generated by a specific 

algorithm, large random graphs created with the Erdös-Renyi model, and real-world graphs. The results show that 

the algorithm produces consistent outcomes when run multiple times on the same graph. 

Casadoa et al. proposed the Iterative Greedy algorithm to reach the minimum dominating set and low 

dominance number. They presented a meta-heuristic approach that aims to provide high-quality solutions in short 

computational times. Iterative Greedy uses heuristic procedures to obtain an initial solution, an efficient local 

search method to refine it, and strategies to destroy and reconstruct a solution during the search (Casado et al., 

2023). 

Karcı obtained a special spanning tree to solve the problem of obtaining the minimum dominating set and 

called it Kmax tree. The fundamental cut sets of the graph are obtained using this spanning tree. The dominance 

of each node is calculated based on these basic cut sets, node degrees in the graph, and the corresponding Kmax 

tree. The method proposed in this study confirmed that this problem can be solved with deterministic algorithms 

(Karci, 2020). 

Chalupa introduced a novel row-based random local search algorithm (RLSo) designed to address the 

Minimum Dominating Set problem in large graphs. The algorithm underwent testing across diverse scenarios, 

including a wireless network model, unit disk graphs representing arbitrary scale-free networks, and real-world 

graphs. RLSo demonstrated superior performance when compared to both the classical greedy approximation 

algorithm and two metaheuristic algorithms based on ant colony and local search. (Chalupa, 2018). 

A polynomial time approximation algorithm for the MDS problem was proposed by Mira et al. The algorithm 

works in two stages. In the first stage, a dominant set is created by a greedy algorithm. In the second stage, this 

dominant set is purified (reduced). The reduction is achieved by analyzing the flowchart of the algorithm in the 

first stage and a special type of set of the dominating set created in the first stage (Hernández Mira et al., 2022). 

Li et al. conducted a performance assessment of several approximation algorithms for computing the Minimum 

Dominating Set of a graph. Their evaluation encompassed a comparison of the standard greedy algorithm, 

contemporary Linear Programming (LP) rounding algorithms, and a hybrid algorithm they formulated by 

combining the greedy and LP rounding techniques. The results of their experiments demonstrated that each of 

these approaches holds distinct advantages depending on the characteristics of the dataset. (Li et al., 2020). 

Connolly et al. calculated the minimum dominating set of a random graph using edge probabilities. By 

examining the dominance numbers of dense random graphs; Studies have been conducted to obtain one or two 

point concentrations (Connolly et al., 2016). 

An algorithm for minimum dominating set was developed by Zhou et al. This proposed algorithm presented a 

4-stage method. They included results comparing their own algorithms with the fastest algorithms known in the 

literature (Zhou et al., 2014). 

Jovanovic and Tuba proposed the ant colony algorithm to solve the minimum dominating set problem. With 

the help of this new approach, a strategy for regulating the amount of pheromone has been developed. Thus, they 

solved the problem of the one-step ant colony algorithm getting stuck in local optimum (Jovanovic & Tuba, 2013) 

Abdel-Rahman and Rashad proposed a new hybrid method based on genetic algorithm to solve the minimum 

dominating set problem. The proposed method uses local search and condensation schemes along with genetic 

algorithm search methodology to achieve better performance (Hedar & Ismail, 2010). 

Potluri et al. presented a hybrid genetic algorithm that incorporates local search techniques along with an ant 

colony optimization algorithm for addressing the Minimum Dominating Set problem. The study conducted a 

performance comparison between these two hybrid algorithms and the solutions derived from a greedy heuristic 

approach and another hybrid genetic algorithm previously proposed in the literature. (Potluri & Singh, 2011). 
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Albuquerque and Vidal introduced a hybrid metaheuristic method that combines tabu search and integer 

programming to tackle the Minimum Dominating Set problem. This approach fuses tabu search techniques with 

an integer programming solver to provide a comprehensive solution. (Albuquerque & Vidal, 2018). 

Abed and Rais proposed a stochastic search methodology that leverages a hybrid swarm intelligence algorithm 

for identifying the minimum node set capable of dominating a given graph. The approach incorporates a 

population-based technique known as the bat algorithm, which facilitates an extensive exploration of the search 

space, thereby enhancing the diversification process (Abed & Rais, 2017). 

The content of this study begins with an introduction to the Minimum Dominating Set problem, followed in 

the second section by the explanation of centrality and the proposed Malatya Centrality techniques. The third 

section of the study is devoted to a comprehensive evaluation of these methods on various data sets. Finally, the 

results obtained, and relevant recommendations are presented. 

1.1 Minimum Dominating Set Problem (MDSP)   

The dominant set problem is the problem of finding the smallest set of nodes that dominates all nodes in a 

graph. Minimum Dominating Set (MDS) problem is the problem of finding a dominant minimum set in a graph 

(Hedar & Ismail, 2010). Let 𝐺 = (𝑉, 𝐸) be a graph. 𝑉 is the set of nodes, 𝐸 is the set of edges. Let 𝑛 = |𝑉| be the 

number of nodes and 𝑚 = |𝐸| be the number of edges. In a graph, each node in the dominating set is expressed as 

𝑉𝐷 ⊆ 𝑉 . If all the remaining nodes in the graph called 𝑉𝑁 (VN - Vertex Neighbors - vertice(s) of dominating set 

neighbors) can be reached by the elements of the 𝑉𝐷 (VD - Vertex Dominating - vertice(s) of dominating set) set, 

𝑉𝐷  can be called the dominant set. If the 𝑉𝐷  set is created to contain the minimum number of elements, this 

dominant set is called the minimum dominating set (Kapoor et al., 2013) (Casado et al., 2023).  

MDS problem: a minimum-dimensional subset in a graph. The elements in this subset have at least one 

neighbor, and this subset is created to include all graph nodes together with their neighbors (Nguyen et al., 2020). 

There is no deterministic effective algorithm in the literature to find the minimum dominating set. Algorithms that 

try to find an exact solution generally use the greedy algorithm. The downside of this approach is that the solution 

time is long (Karcı et al., 2022). 

The size of G's minimum dominating set is called the domination number (𝛾(𝐺)). The minimum achieved 

domination number of a graph is the minimum size of the dominant node set. It can also be said to be in the 

minimally dominating set. In a graph with 𝑛 nodes and maximum node degree ∆, the domination number value is 
𝑛

1+∆
≤ 𝛾(𝐺) ≤ 𝑛. In a fully connected star or wheel graph, the number of dominating set elements is 1. In graphs 

that do not have isolated nodes, that is, nodes with a minimum node degree of 1, this value is 𝛾(𝐺) ≤
𝑛

2
 (Bujtás & 

Klavžar, 2016; Ore, 1962). 

The aim is to reach all elements outside the dominating set in a graph. The problem of identifying a good 

minimum dominating set consists of finding the smallest group of nodes such that nodes not in that group have a 

person in that group with whom they are in a known relationship. The solution is a dominant set with the smallest 

cardinality. MDS is a difficult process to find and has entered the literature as an NP-hard problem (Li et al., 2020). 

A fixed algorithm does not produce a healthy solution for all kinds of graphs. For large and complex examples, it 

is necessary to be willing to find approximate results rather than exact results. Algorithms developed for MDS 

problem solution are mostly based on heuristic or greedy approaches (Casado et al., 2023). 

 

  

(a) (b) 

 
Figure 1. Example of dominating set and minimum dominating set 
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Figure 1 (a) is an example of a dominating set, Figure 1 (b) is an example of MDS. In (a), the dominating set 

nodes are 1, 3, 6, 8. In (b), the minimum dominating set nodes are 4, 7, 8. Although all nodes are covered in both, 

in the MDS this coverage process is carried out with a minimum number of elements. 

2.Methods 

2.1. Centrality 

The selection of nodes for the Minimum Dominating Set (MDS) problem is based on their centrality values. 

Centrality measures how important or effective a node is within a network. These metrics help reveal the position, 

influence, and overall importance of nodes, making it easier to identify key nodes in large and complex networks. 

Centrality also helps understand how information flows through the network. Therefore, centrality values provide 

valuable insights for solving many real-world problems (Estrada, 2011; Newman, 2003; İ. Tuğal & Karcı, 2019; 

İhsan Tuğal & Karcı, 2020). There are many different proposed methods used for centrality calculations.  

This study employed degree centrality and neighbor node degree as centrality measurement methods. Degree 

centrality serves as the fundamental and widely applied centrality metric. It quantifies the degree of a node, 

representing the count of edges directly linked to that specific node. Nodes characterized by higher degrees are 

typically perceived as more central, owing to their increased number of connections within the network (Gao et 

al., 2013; Hu et al., 2016). 

In addition to the node's degree, the degrees of its neighboring nodes represent another critical parameter 

influencing centrality. While originally designed as an algorithm to rank web pages, PageRank has found 

applications as a centrality metric in network analysis. Its fundamental principle revolves around assessing a node's 

importance based on its connections with other influential nodes. PageRank computes a node's centrality through 

a process involving link traversal. Each node commences with a predefined initial value, and at each iteration, it 

updates its value by calculating a weighted average of the PageRank values of its neighboring nodes, with the 

weighting determined by the number of connections. This iterative process continues until equilibrium is achieved 

(Brin & Page, 1998; Page et al., 1998). In this study, an algorithm that finds the minimum dominating set according 

to PageRank centrality values was used. Comparison was made with the proposed method. 

2.2. First Malatya Centrality 

In the first step of the proposed algorithm, the First Malatya Centrality (FMC) values of the nodes in the graph 

are used. In the FMC calculation, the degree of each node and the degrees of its neighboring nodes are used. FMC 

values of nodes in any graph are the sum of the ratio of the degree of the node to the degrees of the neighboring 

nodes for each node. The degree of a node is the number of edges (i.e. number of neighbors) connected to it. In 

determining the FMC values, the degree of the neighboring nodes is as effective as the degree of the node. The 

main factor affecting the centrality of a node is that its degree is higher than the degrees of its neighboring nodes. 

In the first stage, how central each node is evaluated by looking at this value. 

In Equation 1, 𝛹1(𝑣𝑖), is the FMC value of the node 𝑖. 𝑑(𝑣𝑖), is the number of neighbors of the node 𝑖, that is, 

its degree. 𝑁(𝑣𝑖), is the set of neighbors of the node 𝑖. 𝑣𝑗 is one of the neighbor nodes of the node 𝑖 (Karcı et al., 

2022; Yakut et al., 2023).  

𝛹1(𝑣𝑖) = ∑
𝑑(𝑣𝑖)

𝑑(𝑣𝑗)
∀𝑣𝑗∈𝑁(𝑣𝑖)

     (1) 

 

2.3. Second Malatya Centrality 

In the Second Malatya Centrality (SMC) calculation, as shown in Equation 2, the FMC values we obtained in 

the first step are used. 𝛹2(𝑣𝑖), is the second Malatya centrality value of the node i. Flowchart of FMC and SMC 

are given in Figure 2. 

𝛹2(𝑣𝑖) = ∑
𝛹1(𝑣𝑖)

𝛹1(𝑣𝑗)

1

𝑑(𝑣𝑖)
 

∀𝑣𝑗∈𝑁(𝑣𝑖)

 (2) 
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First Malatya Centrality Second Malatya Centrality 

 
Figure 2. Flowchart of FMC and SMC 

 

 2.4. Third Malatya Centrality 

As shown in Equation 3, in the Third Malatya centrality (TMC) calculation, the SMC values are used. 𝛹3(𝑣𝑖), 

is the TMC value of the node 𝑖. The 𝑘 value is the number of nodes that are neighbors with 𝑣𝑖 but are not in the 

𝑉𝐷 ∪ 𝑉𝑁 set. The nodes in the graph are classified as the set of 𝑉𝐷-dominant nodes and the set of 𝑉𝑁-non-

dominant nodes. In this way, the weight of such nodes is increased when calculating the TMC value. Flowchart of 

TMC is given in Figure 3. 

𝛹3(𝑣𝑖) = ∑
𝛹2(𝑣𝑖)

𝛹2(𝑣𝑗)

𝑘

𝑑(𝑣𝑖)
∀𝑣𝑗∈𝑁(𝑣𝑖)

 (3) 

 

2.5. Malatya Minimum Dominating Set (MMDS) 

The core of node selection for building the MDS is a key focus of the proposed algorithm. This method uses a 

three-step Malatya centrality to identify the MDS in the graph. The algorithm starts by taking the input graph 𝐺. 

For each node, it calculates the FMC and SMC values. These first two centrality values are computed only once 

for all nodes in the graph. The algorithm initializes the sets 𝑉𝐷 and 𝑉𝑁 as empty sets. 

Subsequently, in the following iterations of the algorithm, an evaluation ensues to ascertain whether the 

combination of 𝑉𝐷 and 𝑉𝑁 equates to the total number of nodes in the graph. If this condition is met, the algorithm 

terminates. If not, the algorithm continues to execute. In the process of selecting the initial elements for 𝑉𝐷 and 

𝑉𝑁, the selection is contingent upon the node harboring the highest SMC value. Then, in the subsequent iterations, 

nodes are chosen iteratively based on the highest TMC value. This process entails the addition of the neighbors of 

the node with the highest TMC value to 𝑉𝑁, while the selected node itself is added to the 𝑉𝐷 set. 

Following the addition of nodes into the 𝑉𝐷 and 𝑉𝑁 sets, these selected nodes are subsequently removed from 

the graph. After each removal, TMC values are recomputed. In cases where these recalculated TMC values are 

equivalent, nodes that have a greater number of neighbors within the combined set of 𝑉𝑁 and 𝑉𝐷  are afforded 

priority during the selection process. This iterative procedure persists until the number of nodes encompassed by 

𝑉𝐷 and 𝑉𝑁 equals the total number of nodes in the graph. A visual representation of the algorithm's workflow is 

depicted in Figure 3, while the pseudocode for MMDS is presented in Algorithm 1. 

Greedy algorithms work by repeatedly choosing the best option at each step to build the solution set. For the 

MDS problem, finding the exact optimal solution is often very difficult or sometimes impossible. Greedy methods, 

like the one proposed here, aim to find a near-optimal solution by always picking the most promising node, but 
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they don’t guarantee the absolute best result. Although this approach can have high time complexity, it is often 

preferred because it provides solutions that are close to optimal. 

 

Algorithm1: Pseudocode of MMDS 

1.  MalatyaMinimumDominatingSet(G) 

2.  n=number of nodes in G 

3.  degrees=degree of nodes 

4.  first_malatya_values=FMV(G) 

5.  second_malatya_values=SMV(G, FMV) 

6.  VD = Empty Set     //Vertices of MDS 

7.  VN = Empty Set      //Neighbors of MDS elements  

8.  While (|VD ∪ VN| ≠ n): 

9.      If |VD| = 0: 

10.           node = max(second_malatya_values) 

11.      Else: 

12.           G2 = G - (VD ∪ VN) 

13.           remaining_nodes = G - VN - VD 

14.           If remaining_nodes is empty: 

15.               VD = G - VN 

16.               Exit Loop 

17.           TMV (G2, second_malatya_values, VD, VN, n) 

18.           node = max([third_malatya_values[x] for x in remaining_nodes])  

19.       VN = VN ∪ neighbors(node) 

20.       VD = VD ∪ {node} 

21.  End Loop 

22.  return VD 

 

 

  
Third Malatya Centrality Malatya Minimum Dominating Set 

 

Figure 3. Flowchart of TMC and MMDS 

 

To address time constraints, one option is to reduce the number of steps required from the default three. The 

MDS identification can be executed with either FMC or TMC. The fundamental operational principles of the 

proposed MMDS algorithm are encapsulated in Figure 4. 
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Figure 4. Malatya Minimum Dominating Set Algorithm 

 

2.6. Sample Application 

The Zachary Karate Club dataset was used as a case study to demonstrate the steps of the proposed algorithm. 

This dataset, originally compiled by Wayne W. Zachary in the 1970s, encapsulates the interrelationships among 

members of a Karate Club (Batool & Niazi, 2014). The dataset clearly shows how internal conflicts in the club 

caused a split, changing the relationships among members in the new groups. It is a foundational study often 

referenced by researchers in social network analysis and graph theory. 

  
Zachary Karate Club 1. iteration 

 

 
 

2. iteration 3. iteration 4. iteration 

Figure 5. MMDS for Zachary Karate Club 

 

When the algorithm is applied to the Zachary Karate Club as shown in Figure 5., the first node to be selected 

for the 𝑉𝐷 set according to the SMC value is node 33. The SMC value of node 33 is 156.555. The closest value to 

this is 148.258, which is the SMC value of node 0. The neighbors of node 33 are added to the 𝑉𝑁 set. These are 

{ 8, 9, 13, 14, 15, 18, 19, 20, 22, 23, 26, 27, 28, 29, 30, 31, 32 }  nodes. When node 33 and its 

neighbors are removed from the graph, the resulting graph is as shown in the second iteration of Figure 5. 

In the second iteration, calculations will be made according to the TMC values. As can be seen in the Figure 

5., the node with the highest TMC value is node 0. It is added to the 𝑉𝐷  set. Its neighbors are 

{1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 17, 21} nodes. These nodes are added to the 𝑉𝑁 set.  Node 0 and its neighbors are 

removed from the graph. 
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In the third iteration, 3 nodes remain. TMC values for these nodes are calculated. This iteration was examined 

in a little more depth to understand the functioning of the algorithm. The neighbors of 24 are the set {25, 27, 31}. 

The neighbors of 25 are the set {23, 24, 31}. Its different neighborhoods are nodes 23 and 27. When the neighbors 

of node 23 { 25, 27, 29, 32, 33 } and the neighbors of node 27 { 2, 23, 24, 33 } are examined, node 27 is associated 

with the first selected dominant node 33 and its neighbors, as well as with the neighbors of the second selected 

dominant node 0. The neighbors of 23 are only associated to the first selected dominated node 33 and its neighbors. 

That is, it is less associated with dominant nodes. Therefore, the algorithm prioritizes node 24 and adds it to the 

𝑉𝐷 set. Node 25 is also added to the 𝑉𝑁 set.  

In the fourth iteration, only node 16 remains single in the graph. Since it remains single and has no relationship, 

node 16 is added to the 𝑉𝐷 set.  

After the fourth iteration, the algorithm is terminated since the number of 𝑉𝑁 union and 𝑉𝐷 set elements is equal 

to the number of nodes in the graph. The number of iterations actually equals the number of 𝑉𝐷 sets.  The 𝑉𝐷 set 

consisted of {33, 0, 24, 16} nodes. 𝑉𝑁 set consisted of {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20,
21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32} nodes. 

The algorithm quickly identifies nodes with high clustering values in its early iterations. As a result, the nodes 

selected in the first two steps often have a dominant influence over most members. While this pattern may vary 

depending on the graph structure, the algorithm often solves a significant part of the problem at these early stages. 

3. Results and Discussions  

In a fully connected graph, the proposed algorithm effectively establishes the 𝑉𝐷 and 𝑉𝑁 sets within a single 

iteration. The size of the 𝑉𝐷  set, which corresponds to the number of set elements, as well as the number of 

iterations, plays a pivotal role in the algorithm's performance. The duration of each iteration is predominantly 

influenced by the number of neighbors associated with the node newly incorporated into the 𝑉𝐷 set. 

Consequently, as nodes with a greater number of neighbors are typically chosen in the initial iterations, the 

processing time for these initial phases tends to be more prolonged. 

In the context of exceptionally large graphs, the algorithm's time complexity assumes a pivotal role. This 

complexity can exhibit variation contingent upon the unique structural attributes of the graph and the distribution 

of its edges. Since every node and edge is subject to processing, the algorithm's time complexity is inherently 

dependent on the specific characteristics of the graph under consideration. 

The time complexity associated with the calculation of centralities predominantly stems from the necessity to 

iterate over all nodes (n iterations) and, within each iteration, to iterate over the neighboring nodes (𝑎𝑣𝑔_𝑑𝑒𝑔𝑟𝑒𝑒). 

The exact time complexity is contingent on the distinctive properties inherent to the graph. Consequently, the 

average time complexity for each iteration pertaining to each Malatya centrality metric can be approximated as 

𝑂(|𝑉𝐷|  ∗  𝑛 ∗  𝑎𝑣𝑔_𝑑𝑒𝑔𝑟𝑒𝑒). In cases where there is no alteration in the graph structure, the algorithm yields 

consistent results across multiple applications, devoid of any inherent randomness. 

When assessing algorithmic computational costs, a thorough analysis takes into account critical elements such 

as the selected data structures, procedural sequences, and the inherent intricacies of the algorithm's core 

components. In the pursuit of our primary research objective, which centers on enhancing performance and 

achieving superior outcomes, the proposed algorithms naturally evolve towards greater complexity. This evolution 

leads to an increase in computational overhead that is commensurate with the sophistication of the algorithms. 

It is worth noting that the calculation of TMC values imposes a higher computational demand compared to 

SMC values. In the case of SMC computations, the process entails the utilization of FMC values for the neighbors 

of each node, with the computational intensity contingent upon the number of neighbors associated with each node. 

Conversely, the complexity of Malatya Centrality exhibits a pronounced correlation with the number of edges 

present in the graph. 

In contrast, the calculation of TMC values involves the consideration of nodes that are adjacent to the neighbors 

of a given node, resulting in more intricate computational processing and necessitating interaction with a greater 

number of nodes. Consequently, the complexity of TMC is significantly heightened. It is imperative to highlight 

that the computational cost of the algorithm tends to be elevated in graphs characterized by a substantial node 

count, a limited number of edges, and a reduced network diameter. 

3.1. Results with Synthetic Graphs 

In this section, graphs with approximately known dominance numbers were created and the proposed method 

was tested. The algorithm in (Sanchis, 2002) was used to generate a graph with a certain number of nodes, density 

and dominance number. The graph generation algorithm steps are as follows: The set 𝑉 was created.  The total 
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number of nodes is equal to 𝑛 in 𝑉. To create the graph, 𝑉 nodes were divided into 𝑑 subsets: 𝑉1, 𝑉2, … . . , 𝑉𝑑. Each 

subset 𝑉1, 𝑉2, … . . , 𝑉𝑑 represents the dominance number of the graph. For each 𝑖, 𝑥i and 𝑦i were selected from the 

nodes in the set 𝑉i. These nodes will represent the edges of the graph to be created with 𝑥i and 𝑦i. For each 𝑖, edges 

with 𝑥i were added to all other nodes in 𝑉i. This step helps identify dominant nodes by connecting nodes in each 

subset 𝑉i with 𝑥i. Finally, for each 𝑖, we ensure that 𝑦i is not connected to any node other than 𝑉i. If not, additional 

edges are added to achieve the desired density.  

The graph's dominance number precisely corresponds to the value denoted as '𝑑'. Furthermore, to introduce an 

element of uncertainty and complexity, a controlled level of noise was introduced by randomly adding edges to 

the generated graph. This was done with the intent of enhancing variability in the domination number across the 

graph, thereby facilitating a comprehensive evaluation of the applied methodologies. The noise ratio was 

deliberately set at 0.2 . This algorithm holds potential utility within the realm of graph theory applications, 

particularly when the objective is to modulate crucial properties such as the dominance number and network 

density. 

 

Figure 6. A sample generated graph 

 

Figure 6 illustrates a graph characterized by specific parameters, namely 𝑛 = 18, 𝑝 = 0.01, and 𝑑 = 3, in the 

absence of any noise. It is established that the domination number in this instance is 3. This setup served as the 

basis for testing the efficacy of the various methods on graphs created with differing values of 𝑛, 𝑝, and 𝑑. The 

findings, summarized in Table 1, encompass the results obtained from graphs generated under diverse parameter 

settings. It is notable that, in accordance with the results, the value of 𝑑 remained relatively high; however, it's 

worth noting that introducing noise into the graphs tends to diminish this parameter. 

Our proposed method's results were subjected to a comparative analysis against values generated through 

several established approaches, including the maximum degree, PageRank, a networkx library function, and 

minimum weighted method. The maximum node degree and PageRank methodologies entail the iterative selection 

of nodes with the highest centrality values, subsequently incorporating them into the 𝑉𝐷 set, along with the addition 

of their neighbors to the 𝑉𝑁 set. The dominating_set function employed in the Python networkx library is based on 

the 7th algorithm described in (Esfahanian, 2013). In practice, node selection is random. In the method called 

minimum weight dominating set proposed by Vazirani (Vazirani, 2003), the cost of selecting a node is calculated. 

This selection cost is inversely proportional to the weight of the node and the number of nodes dominated by its 

neighbors. At each step, the iteration selects the most cost-efficient among the non-dominated nodes and adds 

them to the 𝑉𝐷 set. 

Upon analyzing the outcomes of the techniques applied to the generated graphs, it became evident that 

Min_weighted, FMC, SMC, and TMC produced comparable results. Notably, the most favorable outcomes were 

consistently achieved with SMC and TMC, both of which yielded highly similar results. Furthermore, our methods 

exhibited superior performance, particularly on networks characterized by high density. 
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Table 1. Results of methods for generated graphs 

n p d Max 

degree 

Pagerank Networkx Min 

Weighted  

FMC SMC TMC 

100 0.2 5 8.3 9.3 13.6 5.0 7.7 6.9 7.1 

400 0.2 20 15.9 15.4 17.4 11.5 12.0 11.2 11.6 

800 0.2 40 17.6 18.4 20.6 14.0 14.3 13.2 13.3 

1000 0.2 50 19.2 19.0 22.0 14.7 15.3 14.5 14.4 

1500 0.2 75 19.9 20.9 23.2 16.0 16.2 15.7 15.5 

2000 0.2 100 21.7 20.8 23.9 16.8 16.8 16.3 16.5 

100 0.3 5 7.2 7.0 9.4 5.2 5.9 5.4 5.9 

400 0.3 20 10.7 10.6 12.9 8.7 8.4 8.5 8.4 

800 0.3 40 12.6 12.8 14.2 10.0 10.3 9.9 9.8 

1000 0.3 50 13.1 13.1 14.5 10.3 10.4 10.1 10.6 

1500 0.3 75 14.0 14.2 16.0 11.4 11.9 11.3 11.4 

2000 0.3 100 15.1 15.2 16.6 12.3 12.1 11.6 11.7 

 

3.2. Results with Erdos-Renyi Graphs 

In order to better understand the behavior of the proposed method, the model was tested on large-scale, dense 

datasets produced with Erdös-Renyi. The Erdös-Renyi graph generator creates a graph by randomly connecting 

nodes according to the specified number of nodes and probability. Each edge is included in the graph with 

probability 𝑝, independent of the other edges. The probability 𝑝 determines the density of the graph (Erdös & 

Rényi, 1959). 

Understanding the characteristics and structure of a network requires a grasp of fundamental network 

properties. Table 2 presents an array of network properties pertaining to graphs generated using the Erdős-Rényi 

model, which prove invaluable in comprehending how the proposed methodology behaves within diverse network 

contexts. These network attributes offer insights into the algorithm's performance in terms of time complexity, 

computational costs, and the challenges posed by attaining optimal results. Among these properties, the number 

of nodes and edges assumes paramount importance, with the former signifying the network's overall size. The 

density quantifies the ratio of actual edges between nodes to the maximum potential edges in the network, 

providing an indicator of network compactness. The average degree shows how well-connected the network is by 

indicating how many edges a node has on average. The network diameter measures the shortest path between the 

most distant nodes, affecting how easily and quickly information can travel. The clustering coefficient reflects 

how likely nodes are to form tightly knit groups, and the average clustering coefficient gives an overall measure 

of this tendency across the network. Together, these properties impact the algorithm’s performance and results. 

As the quantity of edges diminishes, so too do the interconnections between nodes. Consequently, there are 

fewer nodes available for inclusion in the 𝑉𝑁 set at any given iteration. This scenario necessitates a greater number 

of algorithmic iterations and traversal of a larger number of nodes.  

 

Table 2. Properties for Erdös-Renyi Graphs with different edges 

n m p Average 

degree 

(m / n) 

Density Diameter Average 

Clustering 

Time 

(minute) 

1000 499500 1 499.5 1 1 1 0.05721 

1000 99375 1/5 99.375 0.1989 2 0.1990 0.05376 

1000 50103 1/10 50.103 0.1003 3 0.1004 0.05981 

1000 24874 1/20 24.874 0.0498 3 0.0500 0.05664 

1000 10082 1/50 10.082 0.0202 4 0.0202 0.06851 

1000 6262 1/80 6.262 0.0125 5 0.0130 0.08877 

2000 1999000 1 999.5 1 1 1 0.25643 

2000 399622 1/5 199.811 0.1999 2 0.1999 0.46925 

2000 199912 1/10 99.956 0.1000 2 0.0999 0.47112 

2000 100102 1/20 50.051 0.0501 3 0.0502 0.48024 

2000 39913 1/50 19.956 0.0200 3 0.0202 0.50723 

2000 24792 1/80 12.396 0.0124 4 0.0123 0.58904 

 
In order to comprehend the time complexity of the MMDS algorithm, we conducted experiments utilizing 

Erdős-Rényi graphs containing 1000 and 2000 nodes while varying the number of edges. We meticulously 



111 

 

 

 

 

recorded the computational time required to execute these calculations. It is evident from Table 2 that both the 

number of nodes and edges significantly influence the computational overhead of the algorithm. Specifically, as 

observed in the table, a decrease in the number of edges, while keeping the number of nodes constant, results in 

an increase in processing costs. Furthermore, we observed that reductions in the average number of connections, 

graph density, diameter, and average clustering coefficient correspond to an elevated computational cost. 

While density is recognized as an insufficient determinant for assessing MDS instances, it is generally expected 

that dense graphs tend to exhibit fewer MDS domination number, whereas sparse graphs are more likely to yield 

a greater number of MDS domination number. Each graph possesses unique characteristics that may influence this 

aspect, necessitating a separate analysis of the MDS problem for each specific graph. The structure of the graph, 

its density, and the size of the MDS are intricately linked, albeit devoid of a universal guiding principle. Notably, 

density emerges as a pivotal parameter governing the prevalence of dominating sets within the generated datasets. 

As depicted in Figure 7, under a consistent number of nodes, an increase in the number of edges leads to a decrease 

in the count of MDS domination number. 

 
 

 

 

 

 
 

 

 

 

 

Figure 7. MMDS with Erdös-Renyi graphs 

 

3.3. Results with Real Datasets  

In this section of the study, results were obtained on real data sets (Aggarwal et al., 2014)(Kunegis, 2013). The 

characteristics of the graphs are given in Table 3. 

The algorithm operates by selecting nodes based on their TMC values, affording priority to those nodes with 

the highest TMC values. In the initial stages of the algorithm, as the high-value nodes are incorporated into the 𝑉𝐷 

set and their neighboring nodes are added to the 𝑉𝑁 set, there is a rapid expansion in the number of elements within 

the 𝑉𝑁  set. Consequently, nodes characterized by both high dominance and clustering properties are typically 

selected during the initial iterations. In contrast, nodes appended to the dominating set towards the conclusion of 

the algorithm exhibit lower clustering characteristics. In scenarios where time constraints are pertinent, it is feasible 

to terminate the iterations prematurely to swiftly identify the most dominant nodes. While this may not encompass 

all nodes as in the case of a MDS, it ensures the inclusion of the most pivotal set elements. For instance, this 

approach can be effectively employed to address tasks such as identifying the 'k' most dominant elements. 

Importantly, the algorithm commences its iterative process from the node of utmost dominance. 
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Table 3. Properties of graphs 

 
 

Node 
numbers  
(n) 

Edge 
numbers 
(m) 

Average 
degree  
(m / n) 

Density Diameter Average 
Clustering 

Karate 34 78 2.29 0.139037 5 0.5706 

Dolphins 62 159 2.56 0.084082 8 0.2590 

Lesmiserable 77 254 3.30 0.086808 5 0.5731 

Adjnoun 112 425 3.80 0.068372 5 0.1728 

Football 115 613 5.33 0.093516 4 0.4032 

Netscience 1589 2742 1.73 0.002173 17 0.6378 

ego-Facebook 4039 88234 21.85 0.010819 8 0.6056 

Power 4941 6594 1.33 0.000540 46 0.0801 

Hep-th 8361 15751 1.88 0.000451 19 0.4420 

As-22july06 22963 48436 2.11 0.000184 11 0.2304 

Email-Enron 36692 183831 5.01 0.000273 11 0.4970 

 
When the Figure 8 is examined, it is seen that the proposed method generally obtains smaller values. 

 
Figure 8. Domination numbers with real dataset 

 

When we analyze the as-22july06 dataset, our method consistently yields solutions in regions characterized by 

high node connectivity with a notably small number of set elements. In a network structure featuring 48,436 edges, 

the majority of nodes, save for a limited subset, are reachable with the inclusion of approximately 1,400 nodes into 

the 𝑉𝐷 set. This quantity increases progressively as we augment the algorithm by incorporating nodes lacking direct 

connections into the 𝑉𝐷 set. Thus, when the objective is to identify the initial 1,400 most dominant nodes, it is 

indeed feasible to efficiently span a significant portion of the network while keeping the count of dominant set 

elements at a minimum. By employing this judicious approach, a substantial portion of the network's intended 
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tasks can be effectively achieved. Ultimately, our method provides a solution that optimizes the trade-off between 

computational costs and benefits. 

4. Conclusions 

This study introduces an efficient algorithm designed to deliver approximate solutions for the Minimum 

Dominating Set (MDS) problem. The approach herein leverages a three-step computation of Malatya centrality 

values, initiating from node degrees and neighbor node degrees, all while eliminating the element of randomness. 

The algorithm's accuracy and efficacy are rigorously examined through comparative evaluations across various 

datasets and methodologies. Upon reviewing the results, it is evident that the proposed algorithm consistently 

generates a robust solution set that remains resilient under diverse constraints. These outcomes underscore the 

method's effectiveness. Although the algorithm may incur higher time costs in sparse networks, its ability to 

produce near-optimal results affirms its practical value and effectiveness. 

When selecting the most suitable algorithm for the efficient computation of the MDS, it is imperative to 

consider both graph properties and the time required to identify such a set. Throughout the quest for a solution, 

key factors that influence time complexity include the graph's connectivity density and the clustering 

characteristics of its nodes. Notably, the algorithm demonstrates expedited performance in the context of dense 

graphs, thus mitigating issues pertaining to memory constraints. 

Building upon the current findings, future research can explore strategies to reduce the algorithm's time 

complexity, particularly in sparse and large-scale networks. This may involve the integration of parallel computing 

techniques or the development of hybrid methods that combine Malatya centrality with other heuristic or machine 

learning-based approaches to accelerate node selection. Additionally, adapting the algorithm for dynamic networks 

could significantly enhance its applicability to real-world scenarios such as social media, transportation, and 

communication systems. Investigating the trade-offs between solution quality and computational cost in resource-

constrained environments also remains a promising direction. Lastly, further analytical work can be conducted to 

formalize performance bounds and deepen the theoretical understanding of the algorithm’s behavior across 

different graph topologies. 
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