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1 Introduction

Thivagar et al. [4] introduced a nano topological space with respect to a subset X
of an universe which is defined in terms of lower approximation and upper approx-
imation and boundary region. The classical nano topological space is based on an
equivalence relation on a set, but in some situation, equivalence relations are nor
suitable for coping with granularity, instead the classical nano topology is extend to
general binary relation based covering nano topological space

Bhuvaneswari et al. [3] introduced and investigated nano g-closed sets in nano
topological spaces. Recently, Parvathy and Bhuvaneswari the notions of nano gpr-
closed sets which are implied both that of nano rg-closed sets. In 2017, Rajasekaran
et al. [7] introduced the notion of nano πgp-closed sets in nano topological spaces.
In this paper, we define and study the properties of a nano πgα-closed set which is a
weaker form of a nano πg-closed set but strong than a nano πgp-closed sets and we
define a new class of sets called nano πgα-closed sets and some of their properties.
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2 Preliminaries

Throughout this paper (U, τR(X)) (or X) represent nano topological spaces on which
no separation axioms are assumed unless otherwise mentioned. For a subset H of a
space (U, τR(X)), n-cl(H) and n-int(H) denote the nano closure of H and the nano
interior of H respectively. We recall the following definitions which are useful in the
sequel.

Definition 2.1. [6] Let U be a non-empty finite set of objects called the universe and
R be an equivalence relation on U named as the indiscernibility relation. Elements
belonging to the same equivalence class are said to be indiscernible with one another.
The pair (U, R) is said to be the approximation space. Let X ⊆ U .

1. The lower approximation of X with respect to R is the set of all objects, which
can be for certain classified as X with respect to R and it is denoted by LR(X).
That is, LR(X) =

⋃
x∈U{R(x) : R(x) ⊆ X}, where R(x) denotes the equiva-

lence class determined by x.

2. The upper approximation of X with respect to R is the set of all objects, which
can be possibly classified as X with respect to R and it is denoted by UR(X).
That is, UR(X) =

⋃
x∈U{R(x) : R(x) ∩X 6= φ}.

3. The boundary region of X with respect to R is the set of all objects, which can
be classified neither as X nor as not - X with respect to R and it is denoted by
BR(X). That is, BR(X) = UR(X)− LR(X).

Property 2.2. [4] If (U,R) is an approximation space and X, Y ⊆ U ; then

1. LR(X) ⊆ X ⊆ UR(X);

2. LR(φ) = UR(φ) = φ and LR(U) = UR(U) = U ;

3. UR(X ∪ Y ) = UR(X) ∪ UR(Y );

4. UR(X ∩ Y ) ⊆ UR(X) ∩ UR(Y );

5. LR(X ∪ Y ) ⊇ LR(X) ∪ LR(Y );

6. LR(X ∩ Y ) ⊆ LR(X) ∩ LR(Y );

7. LR(X) ⊆ LR(Y ) and UR(X) ⊆ UR(Y ) whenever X ⊆ Y ;

8. UR(Xc) = [LR(X)]c and LR(Xc) = [UR(X)]c;

9. URUR(X) = LRUR(X) = UR(X);

10. LRLR(X) = URLR(X) = LR(X).

Definition 2.3. [4] Let U be the universe, R be an equivalence relation on U and
τR(X) = {U, φ, LR(X), UR(X), BR(X)} where X ⊆ U . Then by the Property 2.2,
R(X) satisfies the following axioms:

1. U and φ ∈ τR(X),
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2. The union of the elements of any sub collection of τR(X) is in τR(X),

3. The intersection of the elements of any finite subcollection of τR(X) is in
τR(X).

This means that τR(X) is a topology on U called the nano topology on U with
respect to X and (U, τR(X)) as a nano topological space. The elements of τR(X) are
called nano open sets (briefly n-open sets).

In the rest of the paper, we denote a nano topological space by (U,N ), where
N = τR(X). The nano-interior and nano-closure of a subset A of U are denoted by
n--int(A) and n--cl(A), respectively.

Remark 2.4. [4] If [τR(X)] is the nano topology on U with respect to X, then the
set B = {U, φ, LR(X), BR(X)} is the basis for τR(X).

Definition 2.5. A subset H of a space (U,N ) is called

1. nano regular-open [4] if H = n-int(n-cl(H)).

2. nano pre-open [4] if H ⊆ n-int(n-cl(H)).

3. nano α-open [4] if H ⊆ n-int(n-cl(n-int(H))).

4. nano π-open [1] if the finite union of nano regular-open sets.

The complements of the above mentioned sets is called their respective closed sets.

Definition 2.6. A subset H of a space (U,N ) is called;

1. nano g-closed [2] if n-cl(H) ⊆ G, whenever H ⊆ G and G is n-open.

2. nano gα-closed [9] if n-αcl(H) ⊆ G whenever H ⊆ G and G is nano α-open.

3. nano αg-closed set [9] if n-αcl(H) ⊆ G whenever H ⊆ G and G is n-open.

4. nano πg-closed [7] if n-cl(H) ⊆ G, whenever H ⊆ G and G is nano π-open.

5. nano gp-closed [3] if n-pcl(H) ⊆ G, whenever H ⊆ G and G is n-open.

6. nano gpr-closed [5] if n-pcl(H) ⊆ G, whenever H ⊆ G and G is nano regular
open.

7. nano πgp-closed [8] if n-pcl(H) ⊆ G, whenever H ⊆ G and G is nano π-open.

3 On Nano πgα-Closed Sets

Definition 3.1. A subset H of a space (U,N ) is nano πgα-closed if n-αcl(H) ⊆ G
whenever H ⊆ G and G is nano π-open.

The complement of nano πgα-open if Hc = U −H is nano πgα-closed.

Example 3.2. Let U = {a, b, c, d} with U/R = {{a}, {c}, {b, d}} and X = {c, d}.
Then the nano topology N = {φ, {c}, {b, d}, {b, c, d}, U}.
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1. then {a} is nano πgα-closed set.

2. then {b} is not nano πgα-closed set.

Remark 3.3. For a subset of a space (U,N ), we have the following implications:

n-closed ⇒ nano g-closed
⇓ ⇓

nano π-closed ⇒ nano πg-closed
⇓

nano regular-closed

None of the above implications are reversible.

Theorem 3.4. In a space (U,N ), every n-closed, every nano g-closed, every nano
πg-closed, every nano αg-closed and every nano gα-closed is nano πgα-closed.

Proof. Let H ⊆ G where G is nano π-open. By hypothesis. n-cl(H) = H ⊆ G.
Since every n-closed set is nano α-closed, n-αcl(H) ⊆ n-cl(H) ⊆ G. Therefore H is
nano πgα-closed.

Let H be nano g-closed and H ⊆ G where G is nano π-open. Since every nano
π-open set is n-open and H is nano g-closed, n-cl(H) ⊆ G. Hence n-αcl(H) ⊆
n-cl(H) ⊆ G implies H is nano πgα-closed.

Let H be a nano πg-closed set and H ⊆ G where G is nano π-open. By assump-
tion, n-cl(H) ⊆ G. Hence n-αcl(H) ⊆ n-cl(H) ⊆ G implies H is nano πgα-closed.

Let H be a nano αg-closed set and H ⊆ G where G is nano π-open. By Remark
3.3 and by assumption, it follows that n-αcl(H) ⊆ G and hence H is nano πgα-closed.

Obvious every nano π-open is nano α-open.

Remark 3.5. The converses of statements in Theorem 3.4 are not necessarily true
as seen from the following Examples.

Example 3.6. In Example 3.3, then {a, b} is nano πgα-closed set but not n-closed.

Example 3.7.

Let U = {a, b, c} with U/R = {{c}, {a, b}} and X = {c}. Then the nano topology
N = {φ, {c}, U}.

1. then {c} is nano πgα-closed set but not nano g-closed.

2. then {c} is nano πgα-closed set but not nano αg-closed.

3. then {a, c} is nano πgα-closed set but not nano gα-closed.

Theorem 3.8. In a space (U,N ), every nano πgα-closed is nano gpr-closed and
nano πgp-closed.

Proof. Let H be a nano πgα-closed set and H ⊆ G where G is nano regular open.
By Remark 3.3 and since H is nano πgα-closed set, we have n-αcl(H) ⊆ G. Every
nano α-closed set is nano pre-closed implies n-pcl(H) ⊆ G and hence H is nano
gpr-closed.

Let H be a nano πgα-closed set and H ⊆ G where G is nano π-open. By
hypothesis, n-αcl(H) ⊆ G. Now n-pcl(H) ⊆ n-αcl(H) ⊆ G implies that H is nano
πgp-closed.
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Theorem 3.9. In a space (U,N ), every nano gp-closed set is nano πgα-closed.

Proof. Obvious.

Remark 3.10. The converses of statements in Theorem 3.9 are not necessarily true
as seen from the following Examples.

Example 3.11. In Example 3.7, then {c} is nano πgα-closed but not nano gp-closed.

Theorem 3.12. In a space (U,N ), if H is nano regular open and nano πgα-closed,
then H is nano α-closed and hence n-clopen.

Proof. If H is nano regular open and nano πgα-closed, then n-αcl(H) ⊆ H. This
implies H is a nano α-closed. Since every nano α-closed and nano regular open set
is n-closed, H is n-clopen .

Theorem 3.13. In a space (U,N ), for x ∈ U , its complement U − {x} is nano
πgα-closed or nano π-open.

Proof. Suppose U − {x} is not nano π-open. Then U is the only nano π-open set
containing U − {x}. This implies n-αcl(U − {x}) ⊆ U . Hence U − {x} is nano
πgα-closed.

Theorem 3.14. In a space (U,N ), if H is nano πgα-closed and H ⊆ K ⊆ n-αcl(H),
then K is nano πgα-closed.

Proof. Let K ⊆ G where G is nano π-open. Then H ⊆ K implies H ⊆ G. Since H
is nano πgα-closed we have n-αcl(H) ⊆ G. Also K ⊆ n-αcl(H) implies n-αcl(K) ⊆
n-αcl(H). Thus n-αcl(K) ⊆ G and so K is nano πgα-closed.

Theorem 3.15. In a space (U,N ), let H be a nano πgα-closed set in U . Then
n-αcl(H)−H does not contain any non-empty nano π-closed set.

Proof. Let P be a non-empty nano π-closed set such that P ⊆ n-αcl(H)−H. Then
P ⊆ n-αcl(H) ∩ (U −H) ⊆ U −H implies H ⊆ U − P . H is nano πgα-closed and
U−P is nano π-open implies that nano n-αcl(H) ⊆ U−P . That is P ⊆ (n-αcl(H))c.
Now P ⊆ n-αcl(H) ∩ (n-αcl(H))c implies P is empty.

Theorem 3.16. In a space (U,N ), if H is a nano πgα-closed set, then n-πcl(x) ∩
H 6= φ holds for each x ∈ n-αcl(H).

Proof. Let H be a nano πgα-closed set. Suppose n-πcl(x) ∩ H = φ, for some x ∈
n-αcl(H). We have H ⊆ U − n-πcl(x). Since H is nano πgα-closed set, n-αcl(H) ⊆
U−n-πcl(x) implies x /∈ n-αcl(H) which is a contradiction. Hence n-πcl(x)∩H 6= φ
holds for each x ∈ n-αcl(H).

Corollary 3.17. Let H be nano πgα- closed in (U,N ). Then H is nano α-closed
⇐⇒ n-αcl(H)−H is nano π-closed.

Lemma 3.18. Let (U,N ) be a space and H is subset of U . Then the following
properties are equivalent.

1. H is n-clopen.

2. H is nano regular open and nano πgα-closed.
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3. H is nano π-open and nano πgα-closed.

Proof. Follows from Theorem 3.12 and Remark 3.3.

Proposition 3.19. In a space (U,N ), the union of two nano πgα-closed sets is nano
πgα-closed.

Proof. Let H∪K ⊆ G where G is nano π-open. Since H and K are nano πgα-closed
sets, n-αcl(H) ⊆ G and n-αcl(K) ⊆ G. Now n-αcl(H∪K) = n-αcl(H)∪n-αcl(K) ⊆
G. Hence H ∪K is nano πgα-closed.

Example 3.20. In Example 3.7, then H = {a} and K = {b} is nano πgα-closed
sets. Clearly H ∪K = {a, b} is nano πgα-closed.

Remark 3.21. In sa space (U,N ),

1. n-αcl(U −H) = U − n-int(H)

2. for any H ⊆ U , n-αint(n-αcl(H)−H) = φ.

Theorem 3.22. A subset H of a space (U,N ) is nano πgα-open⇐⇒ P ⊆ n-αint(H)
whenever P is nano π-closed and P ⊆ H.

Proof. Necessity. Let H be nano πgα-open. Let P be a nano π-closed set such that
P ⊆ H. Then U −H ⊆ U − P where U − P is nano π-open. Then U −H is nano
πgα-closed implies n-αcl(U−H) ⊆ U−P . By Remark 3.21. U−n-αint(H) ⊆ U−P .
That is P ⊆ n-αint(H).

Sufficiency. Suppose P is a nano π-closed set and P ⊆ H implies P ⊆ n-αint(H).
Let U − H ⊆ G where G is nano π-open. Then U − G ⊆ H and U − G is nano
π-closed. By hypothesis, U − G ⊆ n-αint(H). That is U − n-αint(H) ⊆ G implies
n-αcl(U−H) ⊆ G. This implies U−H is nano πgα-closed and H is nano πgα-open.

Remark 3.23. From the above Propositions, Examples and Remarks, we obtain the
following diagram, where A −→ B represents A implies B but not conversely.

nano π-closed
↓

nano g-closed ← nano closed → nano α-closed
↓ ↓ ↓

nano gp-closed ← nano gα-closed → nano αg-closed

↓ nano gpr-closed ↓
↗ ↖

nano πgp-closed ← nano πgα-closed
↖ ↗

nano πg-closed

None of the above implications are reversible
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