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Öz 

İlaç-hedef etkileşimi (DTI) tahmini, ilaç keşfi sürecinin kritik bir aşamasıdır çünkü deneysel yöntemler 

genellikle zaman alıcı ve maliyetlidir. Bu görev için makine öğrenimi teknikleri etkili alternatifler olarak ortaya 

çıkmıştır. Ancak, DTI veri kümeleri genellikle ciddi bir sınıf dengesizliği sorunu yaşar; gerçek etkileşimlerin 

sayısı negatif örneklerden önemli ölçüde azdır ve bu durum model eğitimi için ciddi bir zorluk oluşturur.Bu 

çalışma, DTI tahmini için etkili bir çerçeve önermektedir. Model, protein özelliklerini çıkarmak için amino asit 

kompozisyonu (AAC) ve dipeptit kompozisyonu (DPC) yöntemlerini kullanırken, ilaç özelliklerini temsil etmek 

için FP2 moleküler parmak izlerinden yararlanır. Sınıf dengesizliği sorununu ele almak amacıyla, destek vektör 

makineleri (SVM) tabanlı sentetik azınlık çoğaltma yöntemi olan SVM-SMOTE tekniği uygulanmıştır. Modelin 

eğitimi için Lineer Destek Vektör Makineleri (LSVM) algoritması kullanılmıştır. Önerilen model, Enzyme, 

GPCR, Ion Channel ve Nuclear Receptor gibi standart veri kümeleri kullanılarak mevcut ileri düzey 

yöntemlerle karşılaştırılmış ve üstün performans sergilediği görülmüştür. Model tasarımının çeşitli 

aşamalarında geniş kapsamlı deneyler gerçekleştirilmiş ve AUC, doğruluk, F1 skoru ve hatırlama (recall) gibi 

değerlendirme metrikleri kullanılarak önerilen yaklaşımın etkinliği doğrulanmıştır. 

Anahtar Kelimeler: İlaç hedef etkileşimi, Özellik çıkarımı, Veri dengeleme, SVM_SMOTE, Doğrusal SVM. 

 

Abstract 

Drug–target interaction (DTI) prediction is a critical step in the drug discovery process, as experimental 

methods are often time-consuming and expensive. Machine learning techniques have emerged as effective 

alternatives for this task. However, DTI datasets commonly suffer from severe class imbalance, where the 

number of true interactions is significantly lower than negative ones—posing a serious challenge for model 

training. This study proposes an effective framework for DTI prediction. The model utilizes amino acid 

composition (AAC) and dipeptide composition (DPC) methods to extract protein features, while FP2 molecular 

fingerprints are used to represent drug features. To address the class imbalance problem, the SVM-SMOTE 

technique—an SVM-based synthetic minority oversampling method—is employed. For model training, a Linear 

Support Vector Machine (LSVM) algorithm is used. The proposed model was evaluated against several state-

of-the-art methods using benchmark datasets, including Enzyme, GPCR, Ion Channel, and Nuclear Receptor. 

The results demonstrate that the proposed framework achieves superior performance. Extensive experiments 

were conducted at various stages of model design, using evaluation metrics such as AUC, accuracy, F1-score, 

and recall, all of which confirm the effectiveness of the proposed approach. 

Keywords: Drug target interaction, Feature extraction, Data balancing, SVM_SMOTE, Linear SVM. 
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1. INTRODUCTION 

The process of drug discovery is fundamental to advancements in both the pharmaceutical and 

medical fields. A fundamental part of this process is the prediction of drug-target interactions (DTIs), 

which is critical for the discovery of potential drug candidates. In DTI studies, drugs are typically 

chemical compounds, whereas targets refer to specific proteins that interact with them. Accurate DTI 

prediction not only facilitates drug discovery but also contributes to the efficiency and cost-

effectiveness of pharmaceutical research(Gao et al., 2018). 

Given the critical importance of uncovering drug-target interactions, computational prediction 

methods—such as molecular docking and machine learning—have garnered increasing attention for 

their ability to identify novel drug-target pairs with remarkable accuracy (Gao et al., 2018)  .These 

approaches encompass ligand-based, target-based, network-based, and machine learning strategies, 

each distinguished by unique advantages and inherent limitations. For instance, ligand-based methods 

offer speed and efficiency but are constrained in their ability to generalize; target-based approaches 

rely heavily on high-quality biological data; while network-based techniques provide a holistic view 

yet demand complex interpretation(Ikechukwu & Kumar, 2023 ; Moesgaard, 2024;Vlasiou, 2024 ; S. 

Gao et al., 2022) . Ultimately, machine learning—particularly through deep neural networks and 

transformer architectures—excels at deciphering vast and intricate datasets to uncover rare 

interactions, albeit at the cost of substantial computational power and extensive data requirements (L. 

Wang et al., 2023).   

Machine learning approaches for predicting drug-target interactions (DTI) are broadly 

categorized into two main types: similarity-based and feature-based methods. Similarity-based 

approaches detect interaction patterns by evaluating various similarity criteria between drugs and 

analogous proteins (An & Yu, 2021; Bagherian, Kim, et al., 2021; Sorkhi et al., 2021)   . In contrast, 

feature-based methods frame the problem as a binary classification task, extracting meaningful 

features from drug and protein data and employing algorithms such as support vector machines, 

random forests, XGBoost, and deep neural networks to make predictions (Mousavian et al., 2016; 

Shi et al., 2019a; T. Chen & Guestrin, 2016; Hu et al., 2019). Due to  their capacity for rapid processing 

and comprehensive analysis of large datasets, these techniques enable extensive screening of drug 

candidates and streamline the discovery of novel interactions, establishing themselves as a vital pillar 

in computer-aided drug discovery (El-Behery et al., 2022; K. Y. Gao et al., 2018). 

The field of pharmacology data analysis, particularly in the detection of drug-target interactions, 

has undergone a significant transformation with advances in machine learning (ML), opening new 

avenues for improvement and development in this domain (Padhi et al., 2023). One of the 

fundamental challenges in computational biology is the imbalance between positive (interactive) and 

negative (non-interactive) classes, where the number of interactive drug-target pairs is significantly 

lower than that of non-interactive pairs. This imbalance leads to bias in machine learning models. A 

major challenge in drug-target interaction prediction is managing this data imbalance. This issue often 

causes models to favor classifying pairs as non-interactive, as they are more abundant, making the 

accurate identification of interactive pairs more difficult (Redkar et al., 2020). 

The objectives of this study focus on addressing the challenges associated with drug-target 

interaction (DTI) prediction, with an emphasis on data imbalance and increasing the accuracy of 

machine learning models. One of the fundamental issues in this field is the unequal distribution of 

positive and negative interactions, which leads to a bias in machine learning models toward the 

majority class (non-interactive pairs). This issue can reduce the accuracy of real interaction 

predictions and pose challenges to the drug discovery process. The key objectives of this study are as 

follows: 

• Emphasizing the importance of DTI prediction before drug development to reduce costs and 

enhance efficiency in the drug discovery process. 
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• Enhancing the discriminatory power of predictive models by extracting effective features 

from drugs and proteins, leading to improved accuracy in identifying real interactions. 

• Balancing imbalanced data in DTI prediction using advanced techniques, particularly SVM-

SMOTE, to reduce bias in machine learning models. 

• Increasing the speed and accuracy of drug-target interaction predictions through an efficient 

computational framework that facilitates the identification of novel interactions. 

By presenting a comprehensive and effective approach to DTI prediction, this study aims to 

contribute to the improvement of the drug discovery process and the development of more efficient 

methods in biomedical research. 

The organization of this paper is as follows: Section 2 provides an overview of previous studies 

and different approaches to predict drug-target interactions. Section 3 describes the proposed method, 

which includes the steps of feature extraction for drugs and proteins, data preprocessing, class 

balancing using SVM-SMOTE, and training a linear SVM model. In Section 4, the proposed model's 

performance is assessed using standard evaluation metrics and compared with various machine 

learning algorithms and other approaches. Finally, Section 5 presents the conclusion and suggestions 

for future research. 

 

2. RELATED WORKS 

Drug-target interaction (DTI) prediction plays a key role in drug development. It can reduce 

experimental trials, accelerate drug discovery, and lower costs(Abbasi et al., 2020). Machine learning 

(ML) and deep learning (DL), which have been successful in various fields, are also used in 

bioinformatics for analyzing genetic and pharmaceutical data(Bian et al., 2023). Machine learning is 

generally categorized into supervised and unsupervised learning (Lo et al., 2018). In supervised 

learning, models utilize labeled data for training and prediction. Some of the most widely used 

algorithms in this domain include Naïve Bayes (NB), Random Forest (RF), Support Vector Machines 

(SVM), and k-Nearest Neighbors (KNN), all of which are extensively employed in drug discovery, 

particularly for predicting drug-target interactions (Lo et al., 2018; Mitchell B.O., 2014).In contrast, 

unsupervised machine learning algorithms, such as k-Means clustering and hierarchical clustering, 

can identify hidden patterns in data without requiring labeled datasets, playing a significant role in 

DTI prediction. Due to their high flexibility and ability to detect previously unknown clusters, these 

methods have gained considerable attention as effective approaches in this field (Lo et al., 2018). 

Machine learning techniques have gained importance in the pharmaceutical industry due to 

their ability to accelerate the analysis of large datasets and have now become the primary technique 

for predicting drug-target interactions(Charoenkwan et al., 2021a).In this context, Faulon et al. 

combined chemoinformatics data with SVM to predict drug-target interactions without requiring 

explicit binding information, successfully identifying unknown interactions at the genomic scale 

using signature kernels (Faulon et al., 2008).Wang et al. employed a random forest model to predict 

drug-target interactions, utilizing features derived from molecular vibrations and selected through the 

Boruta algorithm. However, the model's performance suffered due to its sensitivity to noise and the 

limited effectiveness of manually engineered features (X. rui Wang et al., 2021).Ezzat et al. proposed 

EnsemDT, a hybrid learning model for DTI prediction that integrates multiple decision tree 

classifiers. Drug features were extracted from SMILES and target features via PROFEAT, enabling 

accurate prediction using combined feature vectors (Ezzat et al., 2019).   

Deep learning has proven highly effective in predicting drug-target interactions (DTIs) by 

extracting complex features from large-scale biomedical data. Models like CNN and MLP have been 

widely applied for this purpose (Azlim Khan & Ahamed Hassain Malim, 2023a).For instance, Li et 

al. introduced DeepConv-DTI, which uses 1D-CNN to extract protein sequence features and 

processes drug representations via ECFP and fully connected layers(I. Lee et al., 2019). Expanding 
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on the concept of feature interaction, Huang et al. proposed MolTrans, which leverages Transformers 

to encode SMILES and protein sequences, generating 2D interaction maps subsequently processed 

by CNNs and FCNs (K. Huang et al., 2021).However, most of these models either ignore the explicit 

interaction context between drug-target pairs or rely heavily on large, balanced datasets, which are 

rare in real-world scenarios. 

In the healthcare domain, data imbalance—often due to the relatively small number of positive 

cases (e.g., infected individuals) compared to negative ones—poses a major challenge to the 

effectiveness of machine learning models. To address this, resampling techniques have been widely 

employed to improve predictive accuracy. For instance, Latief et al. tackled the class imbalance issue 

in lung cancer diagnosis by combining SMOTE and ENN, which significantly enhanced classification 

performance when used with the Random Forest model (Latief et al., 2024). Similarly, Huang et al. 

focused on breast cancer prediction by integrating feature selection methods—Information Gain (IG) 

and Genetic Algorithm (GA)—with the SMOTE oversampling technique, leading to notable 

improvements in model accuracy on imbalanced datasets (M. W. Huang et al., 2021).In another study, 

to enhance the early detection of heart disease, Akkaya et alemployed a combination of the SMOTE-

Tomek Links technique to address class imbalance and the XGBoost and k-NN algorithms for model 

training, achieving notable results(Akkaya et al., 2022).In this context, drug-target interaction (DTI) 

prediction, which inherently suffers from severe data imbalance, particularly in the class of true 

interactions, can benefit from oversampling techniques such as ROS and undersampling methods like 

RUS to enhance model accuracy and improve the detection of real interactions(Hasanin et al., 2019) 

. Therefore, the strategic use of these techniques in DTI prediction is not only reasonable but also 

aligned with their proven success in other medical applications. 

Building on the success of resampling techniques in general healthcare applications, Chen et 

al.  proposed a novel computational model for predicting drug–protein interactions, incorporating 

dimensionality reduction through Random Projection, data balancing via the NearMiss (NM) method, 

and model training using the Random Forest algorith(F. Chen et al., 2025)m.Khojasteh et al. 

introduced a novel multi-step approach called SRX-DTI for predicting drug–protein interactions, 

which employs diverse protein descriptors and FP2 drug fingerprints for feature extraction, utilizes 

the One-SVM-US method to address data imbalance, and applies the XGBoost algorithm for model 

training(Khojasteh et al., 2023).Liyaqat et al. proposed a method for predicting drug–protein 

interactions, utilizing PSSM for protein feature extraction, PubChem fingerprints for drug features, 

the NearestCUS technique to address class imbalance, and the CatBoost algorithm for model 

training(Liyaqat & Ahmad, 2023). Puri et al. proposed a new hybrid model for predicting drug–

protein interactions (DTI), utilizing AM-PseAAC for protein representation and MSF for drug 

features. To address class imbalance, they applied the SMOTE-ENN resampling technique, and 

employed a combination of Random Forest and XGBoost algorithms for model training (Puri et al., 

2022). 

 

3. MATERIALS AND METHODS 

In this study, an advanced method for predicting drug-target interactions (DTI) is introduced. 

First, the chemical structures of drugs in SMILE format and protein sequences in FASTA format are 

obtained from reliable sources using unique access identifiers. Then, different feature extraction 

techniques are used to identify unique characteristics from both drug compounds and protein 

sequences. These extracted features, along with known interaction data, are used to create drug-target 

pair vectors. 

In the preprocessing stage, the data is first normalized using the MinMaxScaler method to 

ensure a consistent scale for all features. Then, principal component analysis (PCA) is applied to 

process high-dimensional feature vectors. This technique reduces the dimensionality of the data while 
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preserving essential information, preventing irrelevant or redundant features from negatively 

impacting subsequent tasks. 

To address the issue of class imbalance in the DTI dataset, we employed the SVM-SMOTE 

technique, which creates synthetic minority class samples close to the support vectors, thereby 

emphasizing the decision boundary. This approach enhances the model's generalization ability, 

particularly in DTI prediction, where positive samples are significantly underrepresented. 

After balancing and refining the dataset, a Linear Support Vector Machine (LSVM) classifier 

is trained on the final dataset. A comprehensive evaluation was conducted to identify the most suitable 

learning algorithm, considering methods such as Nearest Neighbors, Linear SVM, Decision Tree, 

Random Forest, Neural Network, AdaBoost, Naive Bayes, QDA, LDA, EEC, RSC, and BBC. Among 

these algorithms, the Linear SVM classifier demonstrated the best and most reliable performance and 

was selected for training the model. 

All stages, including data preprocessing, feature extraction, data balancing, and classification, 

have been implemented in an integrated system. This system optimizes the performance of the 

proposed model and provides a robust approach for predicting drug-target interactions. Figure 1 

shows a diagram depicting the structure of our proposed model. 

Figure 1. The Process Flow of The Proposed Model for Predicting Drug-Target Interactions. 

 
3.1. Drug–Target Datasets 

In this study, the drug-target interaction datasets were obtained from the collections curated by 

Yamanishi et al. (Yamanishi et al., 2008) . These datasets were sourced from reputable and publicly 

accessible databases such as KEGG BRITE (Kanehisa et al., 2012; Schomburg et al., 2004) , 

BRENDA(Schomburg et al., 2004)  , SuperTarget  (Günther et al., 2008) , and DrugBank (Wishart et 

al., 2006) , and are regarded as the "gold standard" in the field. The gold standard dataset is widely 

recognized for its reliability and is considered the most authoritative reference for evaluating other 

datasets. It includes four distinct categories of human drug-target interaction networks: enzymes 

(EN), ion channels (IC), G-protein-coupled receptors (GPCRs), and nuclear receptors (NR). The 

known interactions within these categories are 2,926 for enzymes, 1,476 for ion channels, 635 for 

GPCRs, and 90 for nuclear receptors. There is a notable relationship observed between the structural 

similarity of drugs, the sequence similarity of target proteins, and the interaction network topology. 

A summary of the gold standard dataset used in this research is presented in Table 1. The datasets 

can be publicly accessed at http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/. 

Table 1: Summary Of Gold Standard Dataset 
 EN GPCR IC NR 

Drug 445 223 210 54 

Target 664 95 204 26 

Interaction 2926 635 1476 90 
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3.2. Feature Extraction Methods 

To identify drug-target interactions using machine learning algorithms, extracting statistical 

features  from drugs and proteins can play a crucial role in improving the accuracy and efficiency of 

the models. These features, derived from the distribution of molecular structural and chemical 

characteristics, are  used as input data for machine learning algorithms. Statistical features enable 

machine learning models to simulate the complex relationships and patterns  between the 

characteristics of drugs and proteins, allowing for more accurate predictions of potential  interactions. 

In other words, these features assist algorithms in extracting meaningful patterns and useful 

information  from raw data, thereby enhancing the accuracy of drug-protein interaction prediction 

models in simulation and drug screening processes. 

In the final step of feature extraction, a total of 256 statistical features were extracted from the 

drugs, 20 features from AAC, and 400 features from the DPC of target proteins. As a result, after 

completing this process, a combined dataset with 676 features was obtained, encompassing both drug 

and target-related features. All extracted features are organized into a matrix, where the columns 

represent the features of both the drug and target protein, and the rows correspond to different drug-

target protein samples. The last column of the matrix is dedicated to indicating known and unknown 

interactions. Details regarding the number of known and unknown interactions and datasets size in 

each dataset are presented in Table 2. 

Table 2: Summary of Known Interaction - Unknown Interaction and Dataset Size in each 

Datasets 

Datasets Size Unknown 

interaction 

Known 

Interaction 

 

1404*678 1314 90 NR 

42840*678 41364 1476 IC 

21185*678 20550 635 GPCR 

295480*678 292554 2926 EN 

 

3.2.1. Drug features 

With the continuous progress in medicinal and synthetic organic chemistry, the variety of drug 

molecules has grown significantly. Cheminformatics, through the use of molecular fingerprints, 

enables quick comparisons and plays a pivotal role in structure-activity relationship (SAR) studies 

and virtual screening processes(Caron et al., 2020; Naveja & Medina-Franco, 2017; Naveja & 

Medina-Franco, 2017).  Molecular fingerprints are binary representations that capture a range of 

characteristics with different complexities, such as the count of hydrogen atoms or the presence of 

specific molecular substructures(Alpay et al., 2022). Within the pharmaceutical domain, descriptors 

like FP2, FP3, FP4, and MACCS are commonly employed to represent the molecular structure of 

drugs(Dong et al., 2018). In this research, the FP2 format is chosen to depict the pharmaceutical 

compounds. The process of extracting a molecular fingerprint for a drug involves several steps: 

Initially, a Mol file containing the chemical structure of the drug is obtained using the drug’s code 

from the KEGG database (Source: http://www.kegg.jp/kegg/). Then, the open-source software 

OpenBabel (downloadable from [http://openbabel.org/]) is used to convert and process the chemical 

data in various formats. Finally, the Mol files of the drug are transformed into the FP2 molecular 

fingerprint format using OpenBabel software. The resulting FP2 fingerprint is a 256-character 

hexadecimal string, which can be converted into decimal values ranging from 0 to 15, resulting in a 

256-dimensional vector that represents the drug molecule (Shi et al., 2019a). 

3.2.2. Target features 

A) AAC (Amino acid composition (AAC)) 
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Amino acid composition (AAC) is an important characteristic in the analysis of protein 

sequences, focusing on the frequency of each of the 20 standard amino acids found in proteins. This 

feature is represented as a 20-dimensional vector, in which each dimension shows the occurrence rate 

of a specific amino acid. The 20 amino acids included in this composition are 

ACDEFGHIKLMNPQRSTVWY(Charoenkwan et al., 2021b; Guo et al., 2020; Sun et al., 2020; D. 

Wang et al., 2011).  The frequency of the occurrence of each amino acid is calculated using the 

following formula: 

𝑓𝑡 =
𝑁(𝑡)

𝑁
   , 𝑡 ∈ {𝐴, 𝐶, 𝐷, … , 𝑌}        (1)   

In this formula (1), N(t) explains the number of occurrences of amino acid type t in the protein 

sequence, while N stands for the total length of the protein sequence. AAC has been proven to be 

effective for identifying distinct patterns within proteins and is an essential feature in predictive tasks, 

such as differentiating thermophilic proteins from mesophilic ones. The use of tools like iLearnPlus 

for feature extraction and model building based on such compositions has been demonstrated in 

various research works(Ai et al., 2018; Guo et al., 2020) . 

B) Dipeptide composition (DPC): 

Dipeptide Composition (DPC) is a technique employed to calculate the frequency of dipeptide 

pairs within peptide sequences without considering the specific order of the amino acids. This method 

is highly valuable in protein sequence analysis, particularly for homologous data, and can generate 

as many as 400 distinct features to balance dipeptide occurrences. The calculation of DPC follows 

this formula: 

𝐷𝑃𝐶(𝑠, 𝑡) =  
𝑁(𝑠,𝑡)

𝐿−1
  ,   𝑠, 𝑡 ∈ {𝐴, 𝐶, 𝐷, … , 𝑌}                (2) 

In this formula (2), N(s,t) refers to the count of dipeptides formed from the amino acid pair s 

and t, and L defines the length of the peptide sequence(Z. Chen et al., 2018; Saravanan & Gautham, 

2015). Utilizing this feature improves the accuracy and efficiency of the analysis, transforming 

peptide sequences into meaningful numerical representations. Additionally, amino acids are divided 

into different groups based on their physical and chemical properties, such as aliphatic (G1: A, G, L, 

I, M, V), aromatic (G2: F, W, Y), positively charged (G3: H, R, K), negatively charged (G4: D, E), 

and uncharged (G5: C, N, P, Q, S, T) groups, which are incorporated as supplementary factors in the 

analysis(T. Y. Lee et al., 2011). This methodology is widely used in fields such as drug discovery, 

protein engineering, and identifying protein functional regions, ultimately providing valuable insights 

into protein functionality and biological activities. 

 

3.3. Data Balancing Technique 

Data imbalance biases machine learning models toward predicting non-interacting pairs, 

reducing their accuracy in identifying true interactions. Therefore, developing data balancing methods 

and more accurate models is crucial for improving drug-target interaction prediction.(Bekkar et al., 

2013; Ezzat et al., 2016) . To address the class imbalance problem, three approaches have been 

developed: the cost-sensitive approach, the algorithm-based approach, and the data-based approach. 

In the cost-sensitive approach, misclassification costs are adjusted based on the importance of the 

class and the degree of data imbalance. In the algorithm-based approach, classification algorithms are 

modified to account for the issue of data imbalance (Elreedy & Atiya, 2019). The data-based approach 

aims to balance the classes by modifying the data distribution, which is achieved through under-

sampling or over-sampling techniques. Under-sampling involves removing less important samples 

from the majority class, which potentially leads to the loss of valuable information. On the other hand, 

over-sampling, which is typically more effective, generates new data for the minority class. One of 

the successful over-sampling methods is SMOTE (Synthetic Minority Over-sampling Technique) 

(Yin et al., 2022). Consequently, integrating SMOTE with other model adjustment strategies, such as 
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feature selection, class-weight adjustment, and deep learning algorithms, can enhance model 

performance and improve the accuracy of drug-target interaction predictions(Li et al., 2024) 

In this study, the SVM-SMOTE (Support Vector Machine-Synthetic Minority Over-sampling 

Technique) method has been used to balance the dataset. SVM-SMOTE is an advanced version of 

SMOTE that utilizes Support Vector Machines (SVM) to enhance the sampling process and generate 

synthetic data. Unlike standard SMOTE, which creates new samples without considering decision 

boundaries, SVM-SMOTE leverages support vectors to generate synthetic samples in regions that 

have the greatest impact on class separation. In this method, the SVM algorithm is first trained on the 

training data to determine the decision boundary between classes (Fiifi et al., 2024). Then, new 

samples from the minority class are generated near this boundary. This process not only improves the 

quality of synthetic data but also reduces data overlap and mitigates the risk of overfitting by focusing 

on critical decision-making regions  (Azlim Khan & Ahamed Hassain Malim, 2023b). Placing new 

samples near decision boundaries makes these boundaries more precise and well-defined, allowing 

the model to better distinguish between classes. This approach improves the model's performance, 

especially when dealing with imbalanced data and cases where class boundaries are complex and 

non-linear(H. Aljawazneh, 2021).  

Imagine that SVi is a support vector from the minority class. To generate a new synthetic 

sample, the nearest k neighbors of SVi from the same minority class are first identified, and one of 

these neighbors is selected as SVni. Then, a new synthetic sample, SVnew, is created using the 

following formula: 

𝑆𝑉𝑛𝑒𝑤 = 𝑆𝑉𝑖  + λ × (𝑆𝑉𝑛𝑖 + 𝑆𝑉𝑖)                                                                    (3) 

In this formula (3), λ is a random number between 0 and 1. This formula ensures that the new 

synthetic sample, SVnew, lies along the linear segment between SVi and SVni, which helps strengthen 

the decision boundary between classes(Zheng, 2020). 

In summary, SVM-SMOTE emphasizes generating synthetic data near support vectors, which 

ensures that the model’s decision boundaries become more accurate and well-defined. This targeted 

approach helps the model perform better, especially when the data is imbalanced or when class 

boundaries are not easily distinguishable. 

3.4. Classification Method 

In machine learning, binary pattern separation is one of the most important tasks, which 

involves classifying observations into two distinct classes. This challenge is applicable in many fields 

such as robotics, environmental engineering, medical image analysis, and computer security. 

Methods such as decision trees, logistic regression, and nearest neighbors are used for this task, but 

Support Vector Machines (SVM) are regarded as one of the best methods due to their high accuracy 

and ability to separate complex data (Faccini et al., 2022). The goal of the SVM algorithm is to 

identify a hyperplane (decision boundary) that effectively separates the data into two distinct classes. 

In a two-dimensional space, the hyperplane is a line that divides the data points. The SVM algorithm 

seeks to choose this line in such a way that the distance between the data points and the line is 

maximized. This distance is referred to as the margin, and the objective of SVM is to enlarge this 

margin as much as possible to improve classification accuracy. During the learning process, SVM 

identifies the support vectors—data points that are closest to the decision boundary and have a 

significant influence on the positioning of the hyperplane. These points act as boundary markers, and 

the model strives to find an optimal hyperplane using them(Herle et al., 2020). One of the most 

commonly used versions of this algorithm is the Linear Support Vector Machine (Linear SVM), 

which divides data into two separate classes using a line or hyperplane, attempting to maximize the 

margin between these classes(Jailani et al., 2022). 
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In drug-target interaction (DTI) prediction, the Support Vector Machine (SVM) is a strong tool 

that identifies potential interactions by constructing hyperplanes or decision boundaries. This 

algorithm creates a hyperplane that divides the data into two sections, effectively separating 

interacting and non-interacting pairs. Essentially, SVM aims to find a boundary that increases the 

separation between data points of the two classes (interaction and non-interaction). With this 

capability, SVM can effectively recognize complex interactions present in biological data (Bagherian, 

Sabeti, et al., 2021; Lo et al., 2018).One of the key reasons for the widespread use of SVM in DTI 

prediction is its high accuracy in identifying real interactions and its ability to handle complex and 

noisy data. In addition to its high precision, SVM has a relatively low computational cost, making it 

highly suitable for large-scale and complex analyses. As a result, SVM is widely employed as an 

effective method for drug-target interaction prediction in various biomedical and pharmaceutical 

studies (Xu et al., 2021).  

 

4. RESULT 

This section addresses the evaluation and optimization of the proposed model for predicting 

drug–target interactions (DTIs). All modeling steps—including feature extraction, data balancing, 

and model training—were implemented using Python (version 3.10) and established libraries such as 

Scikit-learn and TensorFlow. To address class imbalance, the SVM-SMOTE method was employed 

with default settings, including sampling_strategy='auto', k_neighbors=5, m_neighbors=10, 

out_step=0.5, and a default RBF SVM as the internal classifier. To assess model performance, we 

employed 5-fold cross-validation, ensuring that all data were equally utilized for both training and 

testing by randomly partitioning the dataset in each iteration. Additionally, to optimize the SVM 

classifier, we conducted a grid search over a defined parameter space (e.g., C ∈ [0.1, 100] and γ ∈ 

[0.001, 1]). Model performance was evaluated based on the AUC score, and the parameter 

configuration yielding the highest average AUC across all folds was selected.We evaluated the 

proposed model on four benchmark datasets—Enzyme, Ion Channel, Nuclear Receptor, and GPCR—

and compared its performance against a variety of machine learning algorithms, sampling strategies, 

and other leading DTI prediction approaches. 

 

4.1. Evaluation of SVM-SMOTE-Based Models Using ROC and Precision-Recall Curves 

Figures 2 and 3 present the ROC and Precision-Recall curves used to evaluate the performance 

of various machine learning models in predicting drug-target interactions across four benchmark 

datasets: EN, GPCR, IC, and NR. These curves are powerful tools for assessing a model’s ability to 

distinguish between positive and negative samples, and their interpretation provides valuable insights 

into both the accuracy and discriminative capacity of the models. The Linear SVM demonstrated 

consistently strong and stable performance among the evaluated models. In most cases, it achieved 

high Precision and Recall while maintaining a favorable balance between them. This robustness is 

largely attributed to the SVM’s capacity to identify optimal decision boundaries, particularly in high-

dimensional feature spaces and complex biological data. 

In the ROC plots, both the Random Forest and Linear SVM models exhibited very high Area 

Under the Curve (AUC) values across all datasets, indicating near-ideal performance. An AUC close 

to 1 reflects a model’s strong ability to accurately distinguish between positive and negative classes. 

The selection of Linear SVM as the final model in this study was based on its stability and 

generalizability. While Random Forest achieved perfect AUC and F1 scores (1.00) in several datasets, 

these results may indicate potential overfitting. Due to its ensemble nature, Random Forest can 

become overly tailored to the training data, especially when the data contains repetitive patterns or 

dominant features. In such cases, its performance may deteriorate on unseen data. In contrast, the 

SVM model, with its linear and margin-maximizing approach, tends to maintain a better balance 

between accuracy and generalizability, making it more reliable for real-world applications. 

In contrast, models such as Naïve Bayes and AdaBoost typically exhibited lower AUC values, 

especially on more complex datasets like IC and NR. The decreased performance of Naïve Bayes is 
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often attributed to its assumption of feature independence, which rarely holds true in biological data. 

Additionally, AdaBoost frequently struggled to generalize well due to its high sensitivity to noise and 

imbalanced data. 

A similar trend is evident in the Precision-Recall plots. Models such as Random Forest, Linear 

SVM, and to some extent Neural Networks and BBC have demonstrated a commendable balance 

between Precision and Recall. Achieving this balance is crucial for accurately identifying true 

positives while minimizing the occurrence of false positives. In this regard, Linear SVM—whose 

performance approaches the ideal—stands out as a dependable choice for modeling under complex 

and imbalanced conditions. 

Conversely, models like RSC, QDA, and EEC performed less favorably, likely due to their 

limited capacity to handle nonlinear relationships and heterogeneous feature sets typical of biological 

data. This limitation is particularly pronounced in smaller datasets, such as NR. Specifically, QDA’s 

assumption of normal distribution within each class often undermines its effectiveness when dealing 

with such data. 

In the IC dataset, which contains information about ion channels, models such as AdaBoost and 

RSC exhibited a significant decline in performance. This highlights the difficulty these models face 

in capturing the complex and nonlinear patterns inherent in biological data. In contrast, models like 

Linear SVM and Random Forest demonstrated more stable performance by leveraging greater 

flexibility or structural robustness. Overall, the application of the SVM-SMOTE method for data 

balancing played a crucial role in enhancing the accuracy of most models and, notably, provided a 

strong foundation for the Linear SVM model to achieve precise drug-target interaction detection 

while maintaining its generalizability. 

 

Figure 2. ROC Curves of SVM-SMOTE Models on EN, GPCR, IC, and NR Datasets 
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Figure 3. Precision-Recall Curves of SVM-SMOTE Models on EN, GPCR, IC, and NR Datasets 

 

4.2. Comparison of Machine Learning Models Enhanced with SVM-SMOTE  on Four Different 

Data Sets 

In this section, the performance of machine learning models improved with the SVM-SMOTE 

technique for predicting drug-target interactions is evaluated on four different datasets. The analysis 

shows that some models performed well on all datasets, while other models struggled to identify 

positive interactions.  The performance of different SVM-SMOTE-based machine learning methods 

in DTI prediction is shown in Table 3. 

In the analysis of the Enzyme (EN) dataset, the Random Forest and Linear SVM models 

performed best in predicting enzyme-protein interactions. Random Forest achieved 100% accuracy 

across all metrics, while Linear SVM performed well with an F1 score of 0.996. The BBC model also 

showed high accuracy. The neural network model had a lower recall (0.916), indicating that it missed 

some positive interactions. The AdaBoost, RSC, and BRFC models performed worse, with their lower 

recall indicating challenges in identifying positive examples. 

In the analysis of the G-protein-coupled receptors (GPCRs) dataset, the random forest and linear 

SVM models performed best, achieving 100% accuracy. The BBC model also showed strong 

performance with an F1 score of 0.995. The QDA model performed well, with an F1 score of 0.983. 

In contrast, the Naive Bayes, AdaBoost, and RSC models performed poorly. In particular, Naive 

Bayes had a recall value of 0.825, indicating its weakness in identifying real interactions. The neural 

network model also performed well but was slightly weaker compared to the top models. 

In the analysis of the ion channel (IC) dataset, the Random Forest, Linear SVM, and BBC 

models performed very well, showing high generalization ability and achieving F1 scores close to 

1.00. In contrast, the Naive Bayes, AdaBoost, RSC, and QDA models performed poorly in identifying 
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positive interactions. The LDA model showed stable performance with an F1 score of 0.916. The 

neural network model also achieved a good balance, but its low recall value (0.848) indicates 

difficulty in identifying some real interactions. 

In the analysis of the nuclear receptor (NR) dataset, the random forest, decision tree, EEC, and 

BBC models achieved 100% accuracy across all metrics, indicating strong performance, although 

overfitting may be a concern. In contrast, the KNN, QDA, and AdaBoost models had low recall and 

did not effectively identify true interactions. The linear SVM achieved a good balance between 

precision and generalization with an F1 score of 0.975. The neural network model also performed 

well, but its low recall value (0.904) suggests that some interactions were missed. 

Table 3. Performance of Machine Learning Models Enhanced with SVM-SMOTE in Drug-

Target Interaction Prediction 

Dataset Machine Learning Models model’s performance 

precision recall f1-score accuracy ROC 

EN Nearest Neighbors 0.996429 0.970435 0.98326 0.983775 0.98354 

Linear SVM 0.998255 0.994783 0.996516 0.996584 0.996552 

Decision Tree 0.992565 0.928696 0.959569 0.961571 0.960992 

Random Forest 1 1 1 1 1 

Neural Net 1 0.916522 0.956443 0.959009 0.958261 

AdaBoost 0.955307 0.892174 0.922662 0.926558 0.925953 

Naive Bayes 0.935428 0.932174 0.933798 0.935098 0.935047 

QDA 0.985481 0.944348 0.964476 0.965841 0.965463 

LDA 0.998106 0.916522 0.955576 0.958155 0.957422 

EEC 0.987296 0.946087 0.966252 0.967549 0.967171 

RSC 0.955307 0.892174 0.922662 0.926558 0.925953 

BBC 1 0.998261 0.99913 0.999146 0.99913 

BRFC 0.96929 0.878261 0.921533 0.926558 0.925708 

GPCR Nearest Neighbors 0.983051 0.966667 0.97479 0.976378 0.975871 

Linear SVM 1 1 1 1 1 

Decision Tree 1 0.916667 0.956522 0.96063 0.958333 

Random Forest 1 1 1 1 1 

Neural Net 0.975207 0.983333 0.979253 0.980315 0.980473 

AdaBoost 0.944444 0.85 0.894737 0.905512 0.902612 

Naive Bayes 0.9 0.825 0.86087 0.874016 0.871455 

QDA 1 0.966667 0.983051 0.984252 0.983333 

LDA 0.982456 0.933333 0.957265 0.96063 0.959204 

EEC 1 0.925 0.961039 0.964567 0.9625 

RSC 0.944444 0.85 0.894737 0.905512 0.902612 

BBC 1 0.991667 0.995816 0.996063 0.995833 

BRFC 0.974359 0.95 0.962025 0.964567 0.963806 

IC Nearest Neighbors 0.981481481 0.977859779 0.979667283 0.981387479 0.981117389 

Linear SVM 1 0.988929889 0.994434137 0.994923858 0.994464945 

Decision Tree 0.971428571 0.878228782 0.92248062 0.932318105 0.928176891 

Random Forest 1 1 1 1 1 

Neural Net 0.974576271 0.848708487 0.90729783 0.920473773 0.914979244 

AdaBoost 0.978378378 0.667896679 0.793859649 0.840947547 0.827698339 

Naive Bayes 0.770212766 0.667896679 0.71541502 0.756345178 0.749573339 

QDA 0.974025974 0.830258303 0.896414343 0.912013536 0.905754151 

LDA 0.945098039 0.889298893 0.91634981 0.925549915 0.922774446 

EEC 0.957528958 0.915129151 0.935849057 0.942470389 0.940377076 

RS 0.978378378 0.667896679 0.793859649 0.840947547 0.827698339 

BBC 0.996296296 0.992619926 0.994454713 0.994923858 0.994747463 

BRFC 0.93442623 0.841328413 0.885436893 0.900169205 0.895664207 

NR Nearest Neighbors 0.933333333 0.666666667 0.777777778 0.777777778 0.8 

Linear SVM 1 0.952380952 0.975609756 0.972222222 0.976190476 

Decision Tree 1 1 1 1 1 

Random Forest 1 1 1 1 1 

Neural Net 1 0.904761905 0.95 0.944444444 0.952380952 

AdaBoost 0.933333333 0.666666667 0.777777778 0.777777778 0.8 

Naive Bayes 1 0.714285714 0.833333333 0.833333333 0.857142857 

QDA 1 0.619047619 0.764705882 0.777777778 0.80952381 
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4.3. Evaluating the generalizability and stability of the model in different data sets  

To critically assess the generalizability and stability of the proposed model’s performance 

across different datasets, experiments were conducted using five repetitions of 5-fold cross-validation 

(5-Fold CV) on four datasets: EN, GPCR, IC, and NR. Alongside the proposed model, several other 

machines learning algorithms, including Nearest Neighbors, Linear SVM, Decision Tree, Random 

Forest, Neural Network, AdaBoost, and Naive Bayes, were also evaluated under identical conditions. 

The results, based on the mean AUROC and standard deviation (Std), revealed no significant variance 

in the performance of the proposed model across the repeated runs, nor in comparison to the other 

models. These findings demonstrate the robustness and stability of the proposed model, indicating its 

resistance to data noise and fluctuations resulting from random data partitioning. Table 4 presents the 

performance of various classifiers with SVM-SMOTE evaluated using 5-fold cross-validation on the 

enzyme, ion channel, GPCR, and nuclear receptor datasets 

Furthermore, a more detailed examination of model performance across each dataset revealed 

that, while the proposed method consistently achieved superior AUROC scores in all datasets, the 

other evaluated algorithms also generally yielded acceptable results. This observation suggests that 

the datasets employed are of high quality, enabling most algorithms to extract meaningful patterns 

effectively. Nevertheless, the consistently high stability of the proposed model across all datasets and 

cross-validation folds highlights not only its strong predictive capability but also its superior 

generalizability and robustness compared to the other models. These findings further emphasize the 

significance of the proposed method as an effective and reliable framework for predicting drug-target 

interactions. 

Table 4. Performance (5-fold CV) of Different Classifiers with SVM-SMOTE on Enzyme, 

Ion Channel, GPCR and Nuclear Receptor Datasets. 

 5-Fold Cross-Validation 
Data Set 

Std Mean 5 4 3 2 1 ML 

0.0015 0.9965 0.9964 0.9968 0.9962 0.9965 0.9966 Linear SVM 

 

 

EN 

0.0050 0.9609 0.9570 0.9640 0.9635 0.9580 0.9620 Decision Tree 

0.0027 0.9582 0.9555 0.9600 0.9595 0.9560 0.9600 Neural Net 

0.0042 0.9259 0.9220 0.9300 0.9260 0.9280 0.9245 AdaBoost 

0.0084 0.9350 0.9280 0.9380 0.9320 0.9390 0.9380 Naive Bayes 

0.0057 0.9944 0.9955 0.9940 0.9945 0.9942 0.9947 Linear SVM 

GPCR 

0.0270 0.9583 0.9500 0.9660 0.9590 0.9600 0.9565 Decision Tree 

0.0335 0.9804 0.9700 0.9870 0.9820 0.9810 0.9820 Neural Net 

0.0033 0.9026 0.9000 0.9040 0.9050 0.9025 0.9015 AdaBoost 

0.0075 0.8714 0.8640 0.8760 0.8700 0.8750 0.8705 Naive Bayes 

0.0355 0.9761 0.9750 0.9770 0.9745 0.9760 0.9780 Linear SVM 

IC 

0.0060 0.9281 0.9220 0.9300 0.9240 0.9280 0.9365 Decision Tree 

0.0112 0.9149 0.9100 0.9180 0.9160 0.9125 0.9180 Neural Net 

0.0067 0.8276 0.8220 0.8340 0.8280 0.8300 0.8250 AdaBoost 

0.0104 0.7495 0.7400 0.7580 0.7450 0.7520 0.7520 Naive Bayes 

0.0355 0.9761 0.9940 0.9770 0.9750 0.9785 0.9760 Linear SVM 

NR 

0.0044 0.9970 0.9900 1 1 1 0.9950 Decision Tree 

0.0380 0.9523 0.9400 0.9600 0.9550 0.9500 0.9565 Neural Net 

0.0300 0.8000 0.7900 0.8100 0.8050 0.7950 0.8000 AdaBoost 

0.0488 0.8571 0.8500 0.8650 0.8600 0.8540 0.8570 Naive Bayes 

 

 

 

 

LDA 0.95 0.904761905 0.926829268 0.916666667 0.919047619 

EEC 1 1 1 1 1 

RS 0.888888889 0.761904762 0.820512821 0.805555556 0.814285714 

BBC 1 1 1 1 1 

BRFC 1 0.80952381 0.894736842 0.888888889 0.904761905 
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4.4. Comparative Analysis of SVM-SMOTE and Data Balancing Methods for DTI Prediction 

In this study, a comprehensive comparative analysis was conducted between the proposed 

SVM-SMOTE method in drug-target interaction (DTI) prediction and other data balancing methods. 

The comparison covered a wide range of UnderSampling, OverSampling, Hybrid techniques as well 

as Adaptive Synthetic Sampling (ADASYN) method. The evaluations were performed on four 

reference DTI-related datasets and at each stage, the data were trained using the Linear SVM (LSVM) 

algorithm after applying different balancing methods. The performance of the models was measured 

based on F1 score and area under the ROC curve (ROC-AUC). The main objective of this analysis 

was to highlight the capabilities and potential advantages of the SVM-SMOTE method compared to 

conventional methods, especially in dealing with the challenges associated with data imbalance in 

DTI prediction tasks. Table 5 presents the performance evaluation of various sampling methods 

applied to four DTI datasets (NR, IC, GPCR, EN), assessed using ROC-AUC and F1-score metrics. 

The results showed that the combined SVM-SMOTE method outperformed other techniques 

and achieved significant results across all datasets. This superiority stems from its use of the Support 

Vector Machine (SVM) algorithm to accurately identify the decision boundary between classes and 

generate synthetic samples in critical regions, where the likelihood of misclassification is highest. 

Unlike methods such as RandomOverSampler or SMOTE, which generate samples without 

considering class boundaries, SVM-SMOTE enhances model accuracy by producing more targeted 

and diverse data. Furthermore, in contrast to data deletion methods like ClusterCentroids or 

OneSideSelection—which risk discarding valuable information—SVM-SMOTE maintains the 

original data while strategically augmenting the minority class, leading to better overall 

performance.RandUnderSampler, as an undersampling method, has performed very closely to— and 

in some cases even on par with—advanced oversampling methods such as SMOTENC and 

SMOTEN. In contrast, neighborhood-based methods like EditNearNeighb and ReEditNearNeighb 

showed very poor results on the NR dataset (ROC = 0.63 and 0.64, respectively). Additionally, 

although ADASYN performed well on some datasets, it exhibited a significant drop in F1-score on 

the IC and GPCR datasets, performing worse than other oversampling techniques. 

Table 5. Performance of Various Sampling Methods across Four DTI Datasets (NR, IC, GPCR, 

EN) Using ROC-AUC and F1-Score Metrics. 

NR IC GPCR EN 

Sampling Method ROC F1-

Score 

ROC F1-

Score 

ROC F1-

Score 

ROC F1-

Score 

0.94 0.945 0.9551 0.955 0.955 0.9552 0.9536 0.9538 ClusterCentroids 

UnderSampling 

 

Method 

0.915 0.922 0.9701 0.971 0.9774 0.978 0.9892 0.9894 ConNearNeigh 

0.63 0.72 0.9679 0.969 0.96 0.961 0.9785 0.9789 EditNearNeighb 

0.64 0.73 0.9789 0.979 0.956 0.951 0.9784 0.9788 ReEditNearNeighb 

0.755 0.8 0.9836 0.983 0.982 0.982 0.9857 0.9859 NeighbCleanRule 

0.795 0.828 0.9715 0.971 0.975 0.9752 0.9755 0.9755 OneSideSelection 

0.973 0.974 0.9939 0.9939 0.9992 0.999 0.9955 0.9956 RandUnderSampler 

0.963 0.964 0.9839 0.9839 0.9892 0.989 0.9866 0.9865 BorderlineSMOTE 

OverSampling 

Method 

0.973 0.974 0.9739 0.9739 0.9792 0.979 0.9755 0.9756 RandOverSampler 

0.963 0.964 0.9639 0.9639 0.9692 0.969 0.9655 0.9656 SMOTE 

0.973 0.974 0.9939 0.9939 0.9992 0.999 0.9955 0.9956 SMOTENC 

0.973 0.974 0.9939 0.9939 0.9992 0.999 0.9955 0.9956 SMOTEN 

0.977 0.977 0.9949 0.995 0.9995 0.9993 0.9966 0.9965 SVMSMOTE 

0.795 0.828 0.9939 0.9939 0.9915 0.992 0.9955 0.9956 SMOTETomek Hybrid 

0.9706 

 

0.88 

 

0.9962 

 

0.9230 

 

0.976 

 

0.970 

 

0.9536 

 

0.9542 

 
ADASYN 

Adaptive Synthetic 

Sampling 

 

4.5. Comparison of SVM-SMOTE-Based Model with Other Methods 



Uluslararası Yönetim Bilişim Sistemleri ve Bilgisayar 

Bilimleri Dergisi, 2025, 9(1): 10-28 

International Journal of Management Information Systems 

and Computer Science, 2025, 9(1): 10-28 

 

24 

 

The aim of this section is to compare our proposed method with other existing approaches in 

the field of drug-target interaction (DTI) prediction. To this end, we evaluated four different methods 

using the AUC metric across four standard benchmark datasets, with the results presented in Table 6. 

All these studies primarily focus on data balancing and enhancing the accuracy of DTI prediction. 

Mahmud et al.  introduced the iDTi-CSsmoteB model, which leverages protein sequence features and 

the chemical structure of drugs. To address data imbalance, they employed the SMOTE technique 

and used the XGBoost algorithm for classification(Mahmud et al., 2019). Chen et al.  applied a variety 

of descriptors and utilized Random Projection for dimensionality reduction and NearMiss for data 

balancing, followed by classification using the Random Forest algorithm  (F. Chen et al., 2025). 

Mahmud et al.  proposed the pdti-EssB model, which integrates chemical structure features of drugs 

with sequence-based, structural, and evolutionary information of proteins. They applied 

undersampling techniques for data balancing and trained the final model using XGBoost  (Mahmud 

et al., 2020). Lastly, Shi et al.  developed the LRF-DTIs method, which demonstrated highly accurate 

DTI prediction performance by extracting features using PsePSSM and FP2, reducing dimensionality 

via the Lasso method, balancing data with SMOTE, and applying Random Forest for 

classification(Shi et al., 2019). 

Table 6 compares the performance of five drug-target interaction (DTI) prediction methods, 

showing that the proposed method has a very impressive performance compared to other methods. 

This method recorded the best possible result in the GPCR dataset with an AUC of 1.0000, and in the 

NR dataset with an AUC of 0.9761, it had the highest performance among competitors. Also, in the 

EN and IC datasets, it had a performance very close to the best existing method (Shi et al., with values 

of 0.9965 and 0.9944), which indicates the high stability and generalizability of the model. This 

superiority is the result of using a precise combination of structural, sequence, and evolutionary 

features of proteins, optimal use of molecular fingerprints of drugs, the use of effective data balancing 

techniques, and finally the use of a powerful classification algorithm such as LSVM. Therefore, the 

proposed method not only provides better performance numerically, but also provides a 

comprehensive, accurate, and adaptable approach to common challenges in predicting drug-target 

interactions in terms of technical design. 

Table 6. A Comparison of The Proposed Model with Existing Methods across Four Datasets. 
drug-target interaction methods Dataset 

EN GPCR IC NR 

Mahmud et al. )2019 ( 0.9534 0.8797 0.9320 0.8350 

F. Chen et al.  ) 2025 ( 0.9933 0.9765 0.9821 0.9226 

Mahmud et al. )2020 ( 0.9234 0.8797 0.9220 0.9226 

Shi et al. )2019 ( 0.9982 0.9918 0.9965 0.9559 

Proposed method 0.9965 1 0.9944 0.9761 

 

 

5. CONCLUSION 

 In this study, an effective framework for drug–target interaction (DTI) prediction was 

proposed, achieving strong performance across four benchmark datasets—Enzyme, GPCR, Ion 

Channel, and Nuclear Receptor. The model integrates protein features (AAC and DPC), FP2 

molecular fingerprints, and the SVM-SMOTE technique for addressing class imbalance. Trained 

using the Linear Support Vector Machine (LSVM) algorithm, the proposed approach demonstrated 

competitive, and in many cases superior, performance compared to commonly used methods. 

One of the key distinguishing aspects of this framework is the integration of LSVM with SVM-

SMOTE, a resampling technique that is aware of the decision boundary. Unlike conventional methods 

such as SMOTE or ADASYN, SVM-SMOTE leverages the geometric structure of the SVM model 

to generate more realistic minority class samples, thereby improving data balance without distorting 

the original feature space. Additionally, LSVM, as a model based on margin maximization and 

convex optimization, is theoretically guaranteed to converge to the optimal solution. The presence of 
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the C parameter also allows for precise control over the trade-off between training error and model 

complexity. Together, these characteristics lead to greater robustness to noise, reduced risk of 

overfitting, enhanced interpretability, and improved computational efficiency compared to models 

like Random Forest. 

However, it is worth noting that on certain datasets, the Random Forest algorithm outperformed 

in terms of metrics such as AUC and F1-score. This suggests that in scenarios involving complex 

patterns or pronounced nonlinear relationships, tree-based models may offer distinct advantages. 

Nevertheless, LSVM was selected as the primary method due to its theoretical strengths—such as 

margin maximization and convex optimization—as well as its simplicity, computational efficiency, 

interpretability, and robustness to noise. 

Beyond its predictive performance, the proposed model holds practical value in the early stages 

of the drug discovery pipeline. It can serve as a pre-screening tool to efficiently filter potential drug 

candidates before moving to costly and time-consuming experimental validation. Given its high recall 

and AUC scores, the model is particularly well-suited to identifying true positive interactions, 

including rare or previously unknown drug-target pairs. Furthermore, the availability of open-source 

code and datasets allows researchers to fine-tune or retrain the model on specific targets or chemical 

spaces, making it a flexible and useful tool in real-world biomedical research and pharmaceutical 

development. 

Overall, the proposed framework demonstrated strong performance in predicting drug–target 

interactions. However, certain limitations remain, including the absence of evaluation on real-world 

datasets, limited biological diversity, and a reliance on hand-crafted features. Future research could 

address these challenges by incorporating multi-omics data, applying transfer learning techniques, 

and leveraging graph-based models to enhance both accuracy and generalizability. predictions, such 

as identifying key amino acid or dipeptide features and analyzing their biological relevance in drug–

target interactions. This would significantly enhance the model’s utility and interpretability for 

biomedical researchers. 
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