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ABSTRACT 

In this study, we present a general equation for Finite Difference Method Multi-group Diffusion (FDMMD) equations of 

a cylindrical nuclear reactor core. In addition, we developed an algorithm which we called TUNTOB for solving the 

FDMMD equations, determined the fluxes at each of the mesh points and calculated the criticality of the four energy 

group. This was with a view to using the four-group diffusion equations to estimate the criticality of a cylindrical reactor 

core that will be accurate and locally accessible for nuclear reactor design in developing countries. The multi-group 

diffusion equations were solved numerically by discretization using the Finite Difference Method (FDM) to obtain a 

general equation for a cylindrical reactor core. The fluxes at each mesh point and the criticality of the four energy group 

were then determined. From the results obtained, we observed that an increment in iteration led to an increase in the 

effective multiplication factor (𝒌𝒆𝒇𝒇) with a corresponding increase in the computation time. A maximum effective 

multiplication factor was reached when the number of iteration was 1000 and above. Having established the optimal 

number of iterations, the effects of the mesh sizes on the computation examined revealed that the values of 𝒌𝒆𝒇𝒇  

increases as the mesh sizes becomes smaller until an optimal mesh size of 1 x 1 cm2 was reached and further decrease in 

mesh sizes gave no further improvement in the value of 𝒌𝒆𝒇𝒇. The Study concluded that the accuracy in the values of 

𝒌𝒆𝒇𝒇 and the smoothness of the neutron distribution curves in 3-D representations depend on the number of mesh points. 
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1.  INTRODUCTION 
 

The criticality of a system containing fissionable 

materials is described by its effective multiplication 

factor (𝒌𝒆𝒇𝒇). The effective multiplication factor is the 

ratio of the number of neutrons in one generation to the 

number of neutrons in the previous generation as shown 

in Eq. (𝟏). A generation is essentially the lifetime of a 

neutron, in a finite system, the effective multiplication 

factor is denoted as 𝒌𝒆𝒇𝒇𝒆𝒄𝒕𝒊𝒗𝒆 or 𝒌𝒆𝒇𝒇, which is used to 

determine the stability of a nuclear reactor core. When a 

system is critical, it maintains a steady–state chain 

reaction of nuclear fissioning, and 𝒌𝒆𝒇𝒇 = 1. The average 

neutron population in a critical system stays constant in 

time. A sub-critical system has 𝒌𝒆𝒇𝒇 < 1 and the neutron 

population dies off in time. The neutron population in a 

super-critical system, where       𝒌𝒆𝒇𝒇  > 1, grows without 

bound in time (Urbatsch, 1995).   

 

𝒌𝒆𝒇𝒇 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑢𝑡𝑟𝑜𝑛𝑠 𝑖𝑛 𝑜𝑛𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑢𝑡𝑟𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑒𝑐𝑒𝑑𝑖𝑛𝑔 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 

(1) 

 

The knowledge of 𝒌𝒆𝒇𝒇  is necessary when designing 

nuclear reactors. However, numerical methods are used 

almost exclusively for criticality calculations (Urbatsch, 

1995). Different numerical methods have been proposed 

to solve the two group neutron diffusion equations with 

little attention to the other groups. Although, the two 

group neutron diffusion equations do not give a detailed 

explanation of neutron flux distribution in a practical 

nuclear reactor core, the four-group neutron diffusion 

equations are known to give a far better description of 

neutron distribution in a practical nuclear reactor core.  

Hence the study of the criticality of the cylindrical 

reactor core and its calculation using four-group 

diffusion equations by applying the finite difference 

method (FDM). 

The remainder of this paper is organized as follows. 

In Section 2, a review of related works is provided, 

while a detailed explanation of the discretization of the 

four group diffusion equations using finite difference 

method is given in Section 3. In Section 4, the results are 

presented and discussed and Section 5 concludes this 

paper. 

 

2.  NUCLEAR REACTOR CORE 
 

A nuclear reactor core is a part of a nuclear reactor 

which contains the nuclear fuel components where all 

the nuclear reactions takes place and consequently heat 

is generated from the reaction. In addition, a nuclear 

reactor produces and controls the release of energy in 

form of heat from the splitting of the atoms of uranium.  

 

2.1. Neutron-Nucleus Reactions 
 

It is important to recognize that since neutrons are 

electrically neutral, they are unaffected by the electrons 

in the atom or by the positive charge of the nucleus. As a 

consequence, neutrons pass through the atomic electron 

cloud and interact directly with the nucleus. Neutrons 

collide with nuclei, not with atoms (Larmash and 

Baratta, 2001). 

The operation of a reactor basically depends on how 

neutrons interact with nuclei in the reactor. There are 

various types of known neutron interactions which could 

be considered as shown in Fig. 1  (Arzhanov, 2010). All 

neutron reactions can be categorized as either elastic or 

inelastic collisions, on the condition that either the 

kinetic energy is conserved in the collision or not.  

(Burnham, 1967).  

 

2.1.1. Neutron Flux 

Neutron flux is defined as the product of the neutron 

density and the velocity, 

 

                                    𝜙 = 𝑛𝑣                                              (2)                                                                           

 

so that it is expressed in units of neutrons per 𝑐𝑚2 per 

second. It is equal to the total distance (sum of all the 

path lengths) travelled in one second by all the neutrons 

present in one 𝑐𝑚3.  

In a reactor, the values of neutron density and 

neutron flux are a function of location in the core. 

Because the neutron flux is an essential ingredient in the 

computation of reactor rates, the determination of the 

spatial distribution of the neutron flux in the core is an 

important part of reactor physics. The value of the 

neutron flux at a given point in the core will depend on 

the distribution of nuclear properties like the cross 

sections throughout the core, and on the position in 

relation to the central part of the core and to the external 

surface of the reactor. The neutron flux continually 

drops to zero at, or just beyond, the radial and axial 

boundaries of the core. The behavior of the flux in the 

core and its rate of decline towards the boundaries must 

be calculated by means of computer codes (AECBC, 

1993; Jayeola et al., 2018). 

 

2.1.2. The Neutron Diffusion Equation 
 

The neutron diffusion equations provide an essential 

exact description of the neutron distribution within a 

reactor. Its solution would contain essentially all the 

information we require concerning the nuclear behavior 

of the reactor (Duderstadt and Hamilton, 1976). 

The multi-group diffusion equation comprises of the 

groups of neutrons of different energies diffusing within 

a nuclear reactor. The basic diffusion equation for each 

group of neutrons is the same, but with absorption 

generalized to all processes that remove the neutron 

from the group that is absorption plus scattering to 

another group and with the source of neutrons for each 

group specialized to include the in-scattering of neutrons 

from the other groups, which is also diffusing within the 

reactor (Stacey, 2007). 

 

2.1.3. Numerical Methods used in neutron 

diffusion equation 
 

It is assumed that a uniform reactor has the shape of 

a cylinder of physical radius (R) and height (H). This 

finite cylindrical reactor has cylindrical geometry which 

have coordinates at its origin. In order to solve the 

diffusion equations, the Laplacian is replaced by its 
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cylindrical form: cylindrical coordinates - 3D, 2D. This 

is not dependent on angle Θ, therefore, the 3D Laplacian 

is replaced by its two-dimensional form (2D). This 

makes it practicable to solve the problem using radial 

and axial directions. This is because the flux is a 

function of radius – r and height – z only (Φ(r, z)). 

Furthermore, numerical solutions of neutron 

diffusion equations have been solved using a number of 

numerical methods such as the finite difference, finite 

element, nodal and boundary element methods.  These 

methods are all mesh-based in which the nodes that 

discretize the problem domain are related in a predefined 

manner (Tanbay and Bilge, 2013). However, numerical 

methods are used most exclusively for criticality 

calculations. Criticality calculations  𝒌𝒆𝒇𝒇  are based on 

power iteration procedures, where different multi-group 

diffusion equations with a number of iterations are used 

to estimate the effective multiplication factor (𝒌𝒆𝒇𝒇 ). 

This iteration process is repeated until the fission 

distribution has converged. 

 

3. METHODOLOY 

3.1. Calculation of the Four-Group Diffusion 

Equations 
 

To calculate the four-group diffusion equation, we 

use the finite difference discretization of steady state 

four-group neutron diffusion equation in a cylindrical 

coordinate. First, the finite difference discretization of 

one group differential equation was established and later 

extended to four-group differential equation. The 

boundary conditions introduced in this research are: the 

neutron flux vanishes at the extrapolated boundary of the 

core (r = R and z = 0, H). Where R = Extrapolated 

Radius and H = Extrapolated Height. The multi-group 

diffusion system in a cylindrical coordinate can be 

written as: 

 

1

𝑟

𝜕

𝜕𝑟
[𝐷(𝑟, 𝑧)𝑟

𝜕𝜑(𝑟, 𝑧)

𝜕𝑟
] +

𝜕

𝜕𝑧
[𝐷(𝑟, 𝑧)

𝜕𝜑(𝑟, 𝑧)

𝜕𝑧
]

− ∑ (𝑟, 𝑧)𝜑(𝑟, 𝑧) 
𝑡

= −𝑆(𝑟, 𝑧)                                       (3) 

The dependent variable in Eq. (3) is the neutron flux, 

D is the diffusion coefficient and S is the neutron fission 

source used to initiate the fission reaction. The third 

term in Eq. (3), (sigma subscript 't') is the total 

macroscopic cross section of the reactor core.  

 

Multiplying Eq. (3) through by r, we obtain: 

 

 
𝜕

𝜕𝑟
[𝐷(𝑟, 𝑧)𝑟

𝜕𝜑(𝑟,𝑧)

𝜕𝑟
] +

𝜕

𝜕𝑧
[𝑟𝐷(𝑟, 𝑧)

𝜕𝜑(𝑟,𝑧)

𝜕𝑧
] −

𝑟 ∑ (𝑟, 𝑧)𝜑(𝑟, 𝑧) 𝒕 = −𝑟𝑆(𝑟, 𝑧)                                      (4) 

 

The Eq. (4) was discretized using a finite difference 

method to obtain the four-group diffusion equations by 

considering the neutron flux varying along the radial and 

axial coordinate, hence the Fick’s law for the radial and 

axial coordinate can be written as Eqs. 
(5) and (6) respectively: 

 

  J = 𝐷(𝑟, 𝑧)𝑟
𝜕𝜑(𝑟,𝑧)

𝜕𝑟
                                         (5) 

and  

 

                      Y = 𝐷(𝑟, 𝑧)
𝜕𝜑(𝑟, 𝑧)

𝜕𝑧
                                  (6) 

where J and Y are the neutron current density for the 

radial and axial coordinates respectively.  

Substituting Eq. (5) and Eq. (6) into Eq. (4), we obtain 

Eq. (7). 

 
𝜕𝐽

𝜕𝑟
+ 𝑟

𝜕𝑌

𝜕𝑧
−  𝑟 𝛴𝑡(𝑟, 𝑧)𝜑(𝑟, 𝑧) = −𝑟𝑆(𝑟, 𝑧)              (7) 

 

The reactor is assumed to cover a special mesh of r and z 

dimensions as shown in the Fig. 2. Hence Eq. (7)  is 

solved by integrating over the mesh intervals, to obtain: 

∫ ∫
𝜕𝐽

𝜕𝑟

𝑧𝑗+1 2⁄

𝑧𝑗−1 2⁄

𝑟𝑖+1 2⁄

𝑟𝑖−1 2⁄
𝑑𝑟𝑑𝑧 + 𝑟 ∫ ∫

𝜕𝑌

𝜕𝑟

𝑧𝑗+1 2⁄

𝑧𝑗−1 2⁄

𝑟𝑖+1 2⁄

𝑟𝑖−1 2⁄
𝑑𝑟𝑑𝑧 − 𝑟 ∫ ∫ 𝛴𝑡𝜑(𝑟, 𝑧)𝑑𝑟𝑑𝑧

𝑧𝑗+1 2⁄

𝑧𝑗−1 2⁄

𝑟𝑖+1 2⁄

𝑟𝑖−1 2⁄
=  ∫ ∫ 𝑟𝑆𝑔𝑑𝑟𝑑𝑧

𝑧𝑗+1 2⁄

𝑧𝑗−1 2⁄
.

𝑟𝑖+1 2⁄

𝑟𝑖−1 2⁄
             (8)                                                                                                

Carrying out the integration in Eq. (8), we have: 

∫ (𝐽𝑖+1 2⁄ −𝐽𝑖−1 2⁄ )
𝑧𝑗+1 2⁄

𝑧𝑗−1 2⁄
𝑑𝑧 + ∫ (𝑌𝑗+1 2⁄ −𝑌𝑗−1 2⁄ )𝑑𝑟

𝑟𝑖+1 2⁄

𝑟𝑖−1 2⁄
 = ∫ ∫ (𝛴𝑡𝜑 − 𝑆)𝑑𝑟𝑑𝑧 .

𝑧𝑗+1 2⁄

𝑧𝑗−1 2⁄
    

𝑟𝑖+1 2⁄

𝑟𝑖−1 2⁄
                                              (9)                                                                                                
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                                                  Fig. 1. Types of neutron interaction with matter. 

 

 

 

 

 

 

 

 

 

Fig. 2. Spatial mesh used for the finite difference approximation. 

Each term in Eq. (9) can be written as Eqs. (10) and 

(11).  Putting Eqs. (10), (11) and (12) into Eq. (9), we 

obtain Eq. (13). Integrating Eq. (5) over the interval  

𝑟𝑖 < 𝑟 < 𝑟𝑖+1/2  ; 𝑧𝑗−1/2 < 𝑧 < 𝑧𝑗+1/2  eliminates J 

whilst an integration of Eq.(6) is performed over the 

limits 𝑟𝑖−1/2 < 𝑟 < 𝑟𝑖+1/2  ; 𝑧𝑗 < 𝑧 < 𝑧𝑗+1/2  eliminates 

Y. The simplified equation for the parameter J and Y 

can be written as Eq. (14), (15) and Eq. (16) and (17) 

respectively. P u t t i n g  E q s . (14) , (15),  (16)  a n d  

(17)  i n to  E q .  (13),  we  o b t a i n  E q . (18) .  On 

further simplification of Eq. (18)  and applying the 

boundary conditions, we obtain E q . (19) .  The finite 

difference equation for the four-group diffusion 

equations in a cylindrical geometry can be obtained 

from Eq. (19). This is written as Group 1 (Eq.  20),  

Group 2 (Eq.  22) ,  Group 3 (Eq.  23) a n d  Group 4 

 

𝑧𝑗+1 

𝑧𝑗−1 

𝑟𝑖+1 

𝑟𝑖−1
2
 

𝑟𝑖−1 
𝑟𝑖+1

2
 

𝑧𝑗−1
2

 

𝑧𝑗+1
2
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(Eq.  24) respectively .  Th e  o b t a in e d  four-group 

diffusion equations i s  t h e  numerical solution for four-

group diffusion equation in a cylindrical reactor core. 

Where,  

𝛴𝑠,𝑔→𝑔+1  (Macroscopic scattering cross section from 

energy group 𝑔 to 𝑔 + 1),  

𝐷𝑔 (Neutron diffusion coefficient in energy group g), 

 𝛴𝑎,𝑔 (Macroscopic absorption cross section in energy 

group g) and  

𝜐𝛴𝑓,𝑔  is the source term giving the rate at which source 

neutrons appear in the group. 

                                                                                     ∫ (𝐽𝑖+1 2⁄ −𝐽𝑖−1 2⁄ )
𝑧𝑗+1 2⁄

𝑧𝑗−1 2⁄

𝑑𝑧 =  (𝐽𝑖+1 2⁄ −𝐽𝑖−1 2⁄ )∆𝑧𝑗 ,                                 (10) 

                                                                        ∫ (𝑌𝑗+1 2⁄ −𝑌𝑗−1 2⁄ )𝑑𝑟
𝑟𝑖+1 2⁄

𝑟𝑖−1 2⁄

= (𝑌𝑗+1 2⁄ −𝑌𝑗−1 2⁄ )𝑟𝑖∆𝑟𝑖  ,                                          (11) 

                                                             ∫ ∫ (𝛴𝑡𝜑 − 𝑆)𝑑𝑟𝑑𝑧

𝑧𝑗+1 2⁄

𝑧𝑗−1 2⁄

  =   (∑𝑡𝑖,𝑗
∆𝑟∆𝑧)𝑖,𝑗𝜑𝑖,𝑗𝑟𝑖 −  (𝑆∆𝑟∆𝑧)𝑖,𝑗𝑟𝑖  ,           

𝑟𝑖+1 2⁄

𝑟𝑖−1 2⁄

         (12) 

               (𝐽𝑖+1 2⁄ −𝐽𝑖−1 2⁄ )∆𝑧𝑗 + (𝑌𝑗+1 2⁄ −𝑌𝑗−1 2⁄ )𝑟𝑖∆𝑟𝑖 − (∑𝑡𝑖,𝑗
∆𝑟∆𝑧)𝑖,𝑗𝜑𝑖,𝑗𝑟𝑖 =  − (𝑆∆𝑟∆𝑧)𝑖,𝑗𝑟𝑖  .                                   (13) 

                                                                                𝐽𝑖+1 2⁄ ,𝑗 =  
𝐷𝑖+1/2,𝑗𝑟𝑖+1/2 ∆𝑧𝑗  

∆𝑟𝑖+1/2∆𝑧𝑖+1/2,𝑗
[𝜑𝑖+1,𝑗 − 𝜑𝑖,𝑗]  ,                                              (14) 

                                                                        𝐽𝑖−1 2⁄ ,𝑗 =  

𝐷
𝑖−

1
2

,𝑗
𝑟

𝑖−
1
2

 ∆𝑧𝑗 

∆𝑟
𝑖−

1
2

∆𝑧
𝑖−

1
2

,𝑗

[𝜑𝑖,𝑗 − 𝜑𝑖−1,𝑗]  ,                                                             (15) 

                                                                        𝑌𝑖,𝑗+1 2⁄ =  
𝐷𝑖,𝑗+1 2⁄  ∆𝑟𝑖  

∆𝑟𝑖,𝑗+1 2⁄ ∆𝑧𝑗+1/2
[𝜑𝑖,𝑗+1 − 𝜑𝑖,𝑗]  ,                                                         (16) 

                                                            𝑌𝑖,𝑗−1 2⁄ =  
𝐷𝑖,𝑗−1 2⁄  ∆𝑟𝑖 

∆𝑟𝑖,𝑗−1 2⁄ ∆𝑧𝑗−1/2
[𝜑𝑖,𝑗 − 𝜑𝑖,𝑗−1]   ,                                                                    (17) 

𝐷𝑖+1/2,𝑗𝑟𝑖+1/2∆𝑧𝑗

∆𝑟𝑖+1/2∆𝑧𝑖+1/2,𝑗
(𝜑𝑖+1,𝑗 − 𝜑𝑖,𝑗) −

𝐷𝑖−1/2,𝑗𝑟𝑖−1/2∆𝑧𝑗

∆𝑟𝑖+1/2∆𝑧𝑖+1/2,𝑗
(𝜑𝑖,𝑗 − 𝜑𝑖−1,𝑗) +

𝐷𝑖,𝑗+1 2⁄  𝑟𝑖∆𝑟𝑖  

∆𝑟𝑖,𝑗+1 2⁄ ∆𝑧𝑗+1/2
(𝜑𝑖,𝑗+1 − 𝜑𝑖,𝑗)

−
𝐷𝑖,𝑗−1 2⁄  𝑟𝑖∆𝑟𝑖

∆𝑟𝑖,𝑗−1 2⁄ ∆𝑧𝑗−1/2
(𝜑𝑖,𝑗 − 𝜑𝑖,𝑗−1) − 𝑟𝑖,𝑗∑𝑡𝑖,𝑗

𝜑𝑖,𝑗∆𝑟𝑖∆𝑧𝑗 = −𝑟𝑖,𝑗𝑆𝑖,𝑗∆𝑟𝑖∆𝑧𝑗 .                                       (18) 

 

                                    𝜑𝑖,𝑗 =
2𝐷𝑟𝑖(𝜑𝑖+1,𝑗 + 𝜑𝑖−1,𝑗 + 𝜑𝑖,𝑗+1 + 𝜑𝑖,𝑗−1) + 𝑟𝑖[𝑆𝑖,𝑗]∆𝑟∆𝑧

4𝐷𝑟𝑖 + 𝑟𝑖𝛴𝑡
 .                                                          (19) 

 

   Group 1: 

                                                    𝜑𝑖,𝑗
1 =

2𝐷1𝑟𝑖(𝜑𝑖+1,𝑗
1 + 𝜑𝑖−1,𝑗

1 + 𝜑𝑖,𝑗+1
1 + 𝜑𝑖,𝑗−1

1) + 𝑟𝑖[𝑆𝑖,𝑗
1]

4𝐷1𝑟𝑖 + 𝑟𝑖𝛴𝑡𝑖,𝑗
1  ,                                     (20) 

                                                                                                   where                     𝛴𝑡𝑖,𝑗
1 =  𝛴𝑎1 ,                                                     (21) 

 

and where the subscript represents the group number, 

Group 2: 

                                                      𝜑𝑖,𝑗
2 =

2𝐷2𝑟𝑖(𝜑𝑖+1,𝑗
2 + 𝜑𝑖−1,𝑗

2 + 𝜑𝑖,𝑗+1
2 + 𝜑𝑖,𝑗−1

2) + 𝛴1→2𝜑𝑖,𝑗
1

4𝐷2𝑟𝑖 + 𝑟𝑖𝛴𝑡𝑖,𝑗
2  ,                               (22) 

 

                                                                         where                           𝛴𝑡𝑖,𝑗
2 =  𝛴𝑎2 + 𝛴1→2 ,                                                          (23) 
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Group 3: 

                                        𝜑𝑖,𝑗
3 =

2𝐷3𝑟𝑖(𝜑𝑖+1,𝑗
3 + 𝜑𝑖−1,𝑗

3 + 𝜑𝑖,𝑗+1
3 + 𝜑𝑖,𝑗−1

3) + 𝛴2→3𝜑𝑖,𝑗
2

4𝐷3𝑟𝑖 + 𝑟𝑖𝛴𝑡𝑖,𝑗
3                                                (24) 

 

                                                                                              where                 𝛴𝑡𝑖,𝑗
3 =  𝛴𝑎3 + 𝛴1→3 + 𝛴2→3 ,                                (25) 

 

Group 4: 

                                                  𝜑𝑖,𝑗
4 =

2𝐷3𝑟𝑖(𝜑𝑖+1,𝑗
4 + 𝜑𝑖−1,𝑗

4 + 𝜑𝑖,𝑗+1
4 + 𝜑𝑖,𝑗−1

4) + 𝛴3→4𝜑𝑖,𝑗
3

4𝐷4𝑟𝑖 + 𝑟𝑖𝛴𝑡𝑖,𝑗
4  ,                                   (26) 

                                                                                           where      𝛴𝑡𝑖,𝑗
4 =  𝛴𝑎4 +  𝛴1→4 + 𝛴2→4 + 𝛴3→4 .                                (27)    

     

 

Next, TUNTOB proceeds from the first group to 

the second, third and fourth group, iterating within each 

group until the criteria convergence is met. It evaluates 

the tolerance between the old and the new 𝒌𝒆𝒇𝒇 values. 

To calculate the new 𝒌𝒆𝒇𝒇, the program integrates the 

old and new source terms over space and essentially 

averages them. With the updated source and 𝒌𝒆𝒇𝒇, the 

iterations are performed again. The process continues 

until convergence is met. Next the program checks if 

the reactor is critical. If 𝒌𝒆𝒇𝒇 is very close to or equal to 

one (1), the system is critical. If the reactor is not 

critical, the program will again recommend an adjusted 

value for the core geometry, guessed multiplication 

factor (k) and flux. 

 

3.2. Design of the Algorithm (TUNTOB) 
 

The algorithm was designed using Matlab. Matlab 

was used because its algorithms can be developed in 

much shorter time than equivalent FORTRAN or 

C programs (Kiusalaas, 2005). The TUNTOB 

algorithm was developed for the criticality calculations 

of a homogenous cylindrical reactor core using four-

group diffusion equations. The flow chart of the 

proposed algorithm is shown in Fig. 3. 

 

4.  RESULTS AND DISCUSSION 
 

4.1. Iteration and Mesh Sizes Optimization  
 

4.1.1. Iteration optimization 
 

The calculations of the iteration optimization are 

shown in Table 1. A maximum of 1000 and a minimum 

of 600 iterations were performed. The 1000th iteration 

was performed for a 12 cm x 24 cm mesh size of the 

reactor core. The Table 1 shows the values of the 

effective multiplication factor of the same mesh size 

with the number of iterations (600-1000). It was 

observed that an increment in iteration leads to an 

increase in the effective multiplication factor obtained 

from 0.9983 to 0.9990 with a corresponding increase in 

the computation time. The maximum effective 

multiplication factor of (𝒌𝒆𝒇𝒇  = 0.9990) was reached 

when the number of iterations were 1000 and above. 

Therefore, it was concluded that the optimal number of 

iterations required for this calculation is 1000. 

 

 

Fig. 3. Flow chart of the proposed algorithm 

(TUNTOB). 
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Table 1. Iterations optimization and its corresponding 

maximum effective multiplication factor (𝒌𝒆𝒇𝒇 ) with 

constant mesh size (4 cm x 4 cm). 

 

Number of 

Iteration 

Effective 

Multiplication 

Factor (𝒌𝒆𝒇𝒇) 

Computation 

Time (Min) 

600 0.9983 2.818 

700 0.9988 3.102 

800 0.9989 3.592 

900 0.9990 3.729 

950 0.9990 3.845 

1000 0.9990 4.282 

 

4.1.2. Mesh size optimization  
 

Having established the optimal number of iteration, 

the effects of the mesh size on the computation is 

examined in this section. The Table 2 reveals that the 

values of 𝒌𝒆𝒇𝒇  increases as the mesh sizes becomes 

smaller until an optimal mesh size of 1 x 1 cm2 is 

reached and further decrease in mesh sizes gives no 

further improvement in the value of 𝒌𝒆𝒇𝒇. 

 

Table 2. Mesh size optimization and its corresponding 

maximum effective multiplication factor (𝒌𝒆𝒇𝒇 ) with 

constant 1000-iteration. 

 

Mesh Size 

Area 

(cm2) 

Effective 

Multiplication 

Factor (𝒌𝒆𝒇𝒇) 

Computation 

Time (Min) 

4 x 4 0.9990 4.282 

2.4 x 2.4 0.9992 6.015 

2 x 2 0.9996 6.751 

1 x 1 0.9998 7.393 

0.8 x 0.8 0.9998 8.491 

0.5 x 0.5 0.9998 9.553 

 

4.2. Neutron Flux Profile 
 

The neutron flux profile was considered for both 

the axial and radial (3D) directions. This approach gave 

a better understanding of the behaviour of the neutron 

flux in the cylindrical reactor core. Comparing the 

results of the neutron flux distribution in the radial and 

axial directions obtained from TUNTOB with that of 

the neutron flux distribution of THESIS Code (Harman, 

2001). It was observed that TUNTOB obtained better 

results than the THESIS Code, although, not all the 

THESIS source code parameters were accessible. In 

addition, we observed that the graphs of the THESIS 

Code follow the same trend with that obtained in this 

study. 

 

4.2.1 Neutron flux distribution in 3-D 

representation 

The color difference or variation in the neutron flux 

distribution for the 4 by 4 mesh from group 1 to group 

4 confirms that the centre of the core has the greatest 

amount of heat (and the neutron flux has the highest 

value at the centre of the core) and the heat gradually 

reduces as the neutron flux moves away from the centre 

of the core until it gets to the surface of the core (from 

color red, changes to color yellow and a light green 

color and then to color blue). The same trend occurs for 

other different mesh sizes for the four-group.  

The neutron flux distributions in 3-D representation 

are shown in Fig. (4-11). The figures describe the 

behavior of the neutron flux for the four groups in both 

the radial and axial directions. The neutron flux profile 

showed that all the group behave in the same manner 

having maximum values at the center of the reactor 

core, (r = 0, z = H/2). The neutron flux for the first 

group (Group 1) has the highest maximum value, 

followed by the second (Group 2) and third group 

(Group 3) while the fourth group (Group 4) has the 

lowest. This trend is expected because fission neutrons 

are produced directly into the first three groups and the 

scattering of neutrons from these three groups serves as 

the source of neutrons in the fourth group. In Fig. (4-

11), the 4 by 4 mesh showed that the trend of the flux 

in between the mesh points follows straight lines but 

when the number of mesh points is increased, the trend 

becomes a smooth curve as shown in Fig. (4-11) for a 1 

by 1 mesh.  It is expected that further increase in the 

number of mesh points will produce smoother curves 

with a corresponding increase in the computational 

time. 

 

 
Fig. 4. Neutron flux distribution in 3D for the first 

group of a 4 by 4 mesh. 

 
Fig. 5. Neutron flux distribution in 3D for the second 

group of a 4 by 4 mesh. 
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Fig. 6. Neutron flux distribution in 3D for the third 

group of a 4 by 4 mesh. 

 
 

Fig. 7. Neutron flux distribution in 3D for the fourth 

group of a 4 by 4 mesh. 

 
Fig. 8. Neutron flux distribution in 3D for the first 

group of a 1 by 1 mesh. 

 
Fig. 9. Neutron flux distribution in 3D for the second 

group of a 1 by 1 mesh. 

 

 
Fig. 10. Neutron flux distribution in 3D for the third 

group of a 1 by 1 mesh. 

 

 
Fig. 11. Neutron flux distribution in 3D for the fourth 

group of a 1 by 1 mesh. 
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In this work, we have derived four group diffusion 

equations for a cylindrical reactor core which gives a 

detailed description of neutron distribution in the core. 

We derived the discretized four group diffusion 

equations for a cylindrical reactor core because it gives 

an exact description of what takes place in a low water 

reactor (LWR). The results obtained for the criticality 

calculations were compared with criticality benchmarks 

and found to be very close. For instance, the 𝒌𝒆𝒇𝒇 

calculated by the code is found to be 1.246728 while 

the benchmark value is 1.246368 (Ganapol, 2014).  
 

CONCLUSION 
 

This study provides the criticality calculation and 

neutron flux distribution in a homogenous cylindrical 

reactor core in two dimensions (r, z) using four energy 

groups. From the results these studies further confirm 

that the centre of the core of the reactor has the greatest 

heat which is synonymous to the different colour 

variations relating to decrease in the amount of heat as 

it moves away from the centre of the core. The 

calculations were carried out for a reactor in a steady 

state. The developed algorithm (TUNTOB), calculates 

values of 𝒌𝒆𝒇𝒇  and the neutron distribution as a 

function of the mesh sizes. It was found that the 

accuracy in the value of 𝒌𝒆𝒇𝒇 and the smoothness of the 

neutron distribution curves in 3-D representations, 

depends on the number of mesh points. It allows the 

user to modify the reactor dimensions and see the 

impacts on the neutron distribution and criticality 

within the reactor core. 
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