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Abstract: Heegard, Little and Saints introduced in [8] an encoding algorithm for a class of AG codes via Gröbner
basis more compact compared with the usual encoding via generator matrix. So, knowing that the
main drawback of Gröbner basis is the high computational cost required for its calculation, in [12],
the same authors introduced the concept of root diagram that allows the construction of an algorithm
for computing a Gröbner basis with a lower complexity for one-point Hermitian codes. In [4], Farrán,
Munuera, Tizziotti and Torres extended the results obtained in [12] for codes on norm-trace curves.
In this work we generalize these results by constructing the root diagram for codes arising from certain
curves with separated variables that has certain special automorphism and a Weierstrass semigroup
generated by two elements. Such family of curves includes the norm-trace curve, among other curves
with recent applications in coding theory.
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1. Introduction

In the early 1980s, V.D. Goppa constructed error-correcting codes using algebraic curves, the called
algebraic geometric codes (AG codes), see [6] and [7]. The introduction of methods from algebraic
geometry to construct good linear codes was one of the major developments in the theory of error-
correcting codes. From that moment many studies and applications on this theory have emerged. In [8],
Little, Saints and Heegard noted that any linear code with a nontrivial automorphism has the structure
of a module over a polynomial ring and so that the theory of Gröbner bases for modules gives a compact
description and implementation of a systematic encoder, which is similar to the usual one for cyclic codes.
This encoding method is efficient and also interesting from a theoretical point of view. It is known that
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the main drawback of Gröbner basis is the high computational cost required for its calculation. Indeed,
it is well known that the complexity of computing a Gröbner basis is doubly exponential in general.
But, in [12], using an appropriate automorphism of the Hermitian curve, Little et al. introduced the
concept of root diagram that allows construction of an algorithm for computing a Gröbner basis with
a lower complexity for one-point Hermitian codes. In other words, the root diagram is the key to the
construction of the algorithm given in [12, Proposition 4.4]. In [4], the results of [12] were extended
to codes arising from the norm-trace curve, which is a generalization of the Hermitian curve. In this
work, using the same techniques used in [12] and [4], we will construct the root diagram for codes
arising from certain curves, which we will denote by X ?, with separated variables that has certain special
automorphism and a Weierstrass semigroup generated by two elements (see (1), (2) and (3) in Section
3). In addition to Hermitian and norm-trace curves, we have important examples of such curves X ? with
recent applications in coding theory, namely: the maximal curve with plane model yq + y = xq

r+1, see
[11]; a quotient of the Hermitian curve with plane model yq + y = xm, see [13]; and curves on Kummer
extensions, see [2].

This paper is organized as follows. In Section 2 we recall some background on Gröbner basis for
modules, AG codes and root diagram. In Section 3 we present a way to construct the root diagram for
one-point AG codes C arising from X ?. Finally, in Section 4 we present examples of those curves and
the necessary information to construct the root diagram studied in the previous section.

2. Background

We will denote a finite field with q elements by Fq. Let X be a projective, non-singular, geometrically
irreducible algebraic curve of genus g > 0 over Fq; throughout the paper we will refer to this simply as
curve. If ]X (Fq) is the number of Fq-rational points on X , then ]X (Fq) ≤ q + 1+ 2g

√
q. This inequality

is so-called Hasse-Weil bound and if ]X (Fq) = q + 1 + 2g
√
q the curve X is called a maximal curve.

Let Fq(X ) be the field of rational functions on X . For a Fq-rational point P on X let

H(P ) := {n ∈ N0 ; ∃f ∈ Fq(X ) with div∞(f) = nP},

where N0 is the set of nonnegative integers and div∞(f) denotes the divisor of poles of f . The set H(P )
is a numerical semigroup, called Weierstrass semigroup of X at P and its complement G(P ) = N0 \H(P )
is called Weierstrass gap set of P . As an important result, the cardinality of the set G(P ) is equal to
genus g of X , see Theorem 1.6.8 in [15].

2.1. Gröbner basis for Fq[t]-modules

We will introduce some notations about Gröbner basis for Fq[t]-modules that are needed later. For
a complete treatment on this topic see [1] and [3]. A monomial m in the free Fq[t]-module Fq[t]r is
an element of the form m = tiej , where i ≥ 0 and e1, . . . , er is the standard basis of Fq[t]r. Fixed a
monomial ordering, for all element f ∈ Fq[t]r, with f 6= 0, we may write f = a1m1 + · · · + a`m`, where,
for 1 ≤ i ≤ `, 0 6= ai ∈ Fq and mi is a monomial in Fq[t]r satisfying m1 > m2 > . . . > m`. The term
a1m1 is called leading term of f and denoted by LT (f), the coefficient a1 and the monomial m1 are called
leading coefficient, LC(f), and leading monomial, LM(f), respectively. A Gröbner basis for a submodule
M ⊆ Fq[t]r is a set G = {g1, . . . ,gs} such that {LT (g1), . . . , LT (gs)} generates the submodule LT (M)
formed by the leading terms of all elements inM . The monomials in LT (M) are called nonstandard while
those in the complement of LT (M) are the standard monomials for M . We recall that every submodule
M ⊆ Fq[t]n has a Gröbner basis G, which induces a division algorithm: given f ∈ Fq[t]r there exist
a1, . . . ,as,RG ∈ Fq[t]r such that f = a1g1 + . . .+ asgs+RG (see [1, Algorithm 1.5.1] or [3, Theorem 3]).

In this work we will use the POT (position over term) ordering over Fq[t]r which is defined as follows.
Let {e1, . . . , er} be the standard basis in Fq[t]r, with e1 > . . . > er. The POT ordering on Fq[t]r is defined
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by

tiej > tke`

if j < `, or j = ` and i > k.

We say that f ∈ Fq[t]r is reduced with respect to a set P = {p1, . . . ,pl} of non-zero elements in Fq[t]r
if f = 0 or no monomial in f is divisible by a LM(pi), i = 1, . . . , l. A Gröbner basis G = {g1, . . . ,gs} is
reduced if gi is reduced with respect to G − {gi} and LC(gi) = 1 for all i, and non-reduced otherwise.
Every submodule of Fq[t]r has a unique reduced Gröbner basis (see [1], Theorem 3.5.22).

2.2. Linking AG codes and Fq[t]-modules

Let P1, . . . , Pn, Q1, . . . , Q` be n+ ` distinct Fq-rational points on X and let m1, . . . ,m` be integers.
Consider the divisors D = P1 + · · ·+Pn and G = m1Q1 + · · ·+m`Q`. The algebraic geometry code (AG
code) CX (D,G) arising from the curve X is defined as

CX (D,G) := {(f(P1), . . . , f(Pn)) ∈ Fnq : f ∈ L(G)} , (1)

where L(G) is the space of rational functions f on X such that f = 0 or div(f) + G ≥ 0, where div(f)
denote the (principal) divisor of the function f ∈ L(G). The number n is the length of CX (D,G),
and the dimension of CX (D,G) is its dimension as an Fq-vector space, which is generally denoted by
dim(CX (D,λP )) := k. The elements in CX (D,G) are called codewords. If G = m1Q1 the AG code
CX (D,m1Q1) is called one-point AG code. For more details about AG codes, see e.g. [10].

Let Supp = {P1, . . . , Pn} the support of the divisor D. Since |Supp(D)| = n, we have that the
permutation group P(Supp(D)) on Supp(D) is isomorphic to the symmetric group Sn, and each σ ∈
P(Supp(D)) induces a Fq-linear mapping σ̂ of the code CX (D,G) to Fnq by setting

σ̂(f(P1), . . . , f(Pn)) := (f(σ(P1)), . . . , f(σ(Pn))).

The mapping σ̂ is an automorphism of the code CX (D,G)) if σ̂(CX (D,G)) = CX (D,G).

In [7], Goppa already observed that the underlying algebraic curve induces automorphism of the
associated AG codes as follows.

Proposition 2.1. Let Aut(X ) = {σ : X → X ; σ is birational } be the automorphism group of X over
Fq and, for divisors D and G, consider the subgroup

AutD,G(X ) = {σ ∈ Aut(X ) : σ(D) = D and σ(G) = G} .

Then, each σ ∈ AutD,G(X ) induces an automorphism of CX (D,G) by

σ̂(f(P1), . . . , f(Pn)) = (f(σ(P1)), . . . , f(σ(Pn))) .

Assume that X has a nontrivial automorphism σ ∈ AutD,G(X ) and let H be the cyclic subgroup of
Aut(X ) generated by σ. Let Supp(D) = O1 ∪ . . . ∪ Or be the decomposition of the support of D into
disjoint orbits under the action of σ. Then, by Proposition 2.1, the entries of the codewords in CX (D,G)
will be cyclically permuted in several blocks by σ. We will denote σ0 = Id, where Id is the identity
automorphism, and, for a positive integer j, σj = σ ◦ σ ◦ . . . ◦ σ︸ ︷︷ ︸

j

. In this way, for each i = 1, . . . , r, pick

any one point Pi,0 ∈ Oi and enumerate the other points on Oi as Pi,j = σj(Pi,0), where j runs from 1 to
|Oi| − 1. Using this fact, we get the following result.

Lemma 2.2. Let CX (D,G) be an AG code arising from X over Fq and let σ ∈ AutD,G(X ) be a nontrivial
automorphism. If Supp(D) = O1 ∪ . . . ∪ Or is the decomposition of the support of D into disjoint orbits
under the action of σ, then there is a one-to-one correspondence between CX (D,G) and a submodule C
of the free module Fq[t]r.
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Proof. Suppose that Supp(D) = O1 ∪ . . . ∪ Or is the decomposition of the support of D into disjoint
orbits under the action of σ. For each i = 1, . . . , r, let Oi = {Pi,0, . . . , Pi,|Oi|−1}, where Pi,j = σj(Pi,0)

for each j = 1, . . . , |Oi| − 1, and let hi(t) =
∑|Oi|−1
j=0 f(Pi,j)t

j .

The r-tuples (h1(t), . . . , hr(t)) can be seen also as an element of the Fq[t]-module A =⊕r
i=1 Fq[t]/〈t|Oi| − 1〉. So, the collection C̃ of r-tuples obtained from all f ∈ L(G) is closed under

sum and multiplication by t. Define C := π−1(C̃), where π is the natural projection from Fq[t]r onto⊕r
i=1 Fq[t]/〈t|Oi|− 1〉. Thus, we get a one-to-one correspondence between CX (D,G) and C ≤ Fq[t]r.

By the previous lemma, an AG code CX (D,G) can be identified with a submodule C ≤ Fq[t]r and
thus the standard theory of Gröbner basis for modules may be applied.

Suppose that CX (D,G) has length n and dimension k. A Gröbner basis G = {g(1), . . . ,g(r)}
for C ≤ Fq[t]r with exactly r elements allows us to obtain a systematic encoding of C. Since
{LT (g(1)), . . . , LT (g(r))} generates LT (C), it follows that the nonstandard monomials appearing in the
r-tuples (h1(t), . . . , hr(t)) can be obtained from the g(i)’s. By ordering these monomials in decreasing
order we obtain the so-called information positions of (h1(t), . . . , hr(t)), which are the first k mono-
mials ml = tilejl , l = 1, . . . , k. Let V C(h1(t), . . . , hr(t)) be the vector of coefficients of the terms of
(h1(t), . . . , hr(t)) listed in the POT order. We have the following systematic encoding algorithm:

Algorithm 2.3.
Input: A Gröbner basis G, monomials {m1, . . . ,mk} and w = (w1, . . . , wk) ∈ Fkq .
Output: c(w) ∈ C = C(X , D,G).
1. Set f := w1m1 + · · ·+ wkmk.
2. Compute f = a1g

(1) + . . .+ arg
(r) +RG.

3. Return c(w) := V C(f −RG).

This method is more compact compared with the usual encoding via generator matrix. The total
amount of computation is roughly the same and the amount of necessary stored data is lower in this
method, of order r(n− k) against k(n− k) when encoding via generator matrix. More details about this
encoding algorithm can be found in [8].

2.3. The root diagram

Consider the one-point AG code C = CX (D,λP ) and suppose that X has an automorphism σ fixing
the divisors D and G = λP . Suppose also that the order of σ is a factor of q−1. Let C be the submodule
of Fq[t]r associated to C by the automorphism σ. Using the POT ordering we can get a Gröbner basis
G = {g1, . . . ,gr} for C such that gi = (0, . . . , 0, g

(i)
i (t), g

(i+1)
i (t), . . . , g

(r)
i (t)), for all i = 1, . . . , r, see [[8],

Proposition II.B.4].

Note that, if deg(g(i)i (t)) = di, then g
(i)
i (t) has di distinct roots in F∗q = Fq \ {0}. In fact, let

qi = (t|Oi| − 1)ei. Note that qi ∈ π−1(0, . . . , 0) and we have that qi ∈ C. Since |Oi| divides the
order of σ, it follows that t|Oi| − 1 divides tq−1 − 1 =

∏
a∈F∗

q
(t − a). Now, LT (g(i)) = g

(i)
i (t) divides

LT (qi) = t|Oi| − 1, and the claim follows from the fact that tq−1 − 1 has q − 1 distinct roots in Fq.

For i = 1, . . . , r, let Ri ⊆ F∗q be the set of roots of t|Oi| − 1. By a root diagram DC for the code C,
we mean a table with r rows. For each i, the boxes on the i-th row correspond to the elements of Ri.
We mark the roots of g(i)i (t) on the i-th row with a X in the corresponding box.

By Proposition II.C.1 in [8], there is a Fq-basis for C in one-to-one correspondence with the non-
standard monomials in C. That is, terms of the form t`ej appearing as leading terms of some element
of C, with ` ≤ |Oj | − 1. Now, if there are mj empty boxes on row j of the root diagram, then g(i)j (t) has
|Oj | −mj roots and LT (g(j)) = t|Oj |−mj . So, we obtain mj nonstandard monomials t`ej . This fact gives
us the following important result.
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Proposition 2.4. ([12], Proposition 2.3) The dimension of the code C is equal to the number of empty
boxes in the root diagram DC .

3. The root diagram for certain one-point AG codes

Let X ? be the curve defined over Fq by affine equation f(y) = g(x) and that has the following
conditions:

1. f(T ), g(T ) ∈ Fq[T ], deg(f) = a and deg(g) = b, with gcd(a, b) = 1;

2. there exists a point P on X ? such that div∞(x) = aP , div∞(y) = bP , and H(P ) = 〈a, b〉;

3. there exists σ ∈ AutD,G(X ?), where G = λP for some positive integer λ, given by σ(x) = αx and
σ(y) = αty, for some positive integer t and some α ∈ F∗q .

We observe that if the order of α is equal to ord(α) := ν, then, by the definition of σ, it follows that
the order of σ is equal to ν which divides q − 1.

We can ask if curves with such conditions do exist or if there are a large number of them. By [15,
Prop. 6.4.1] and [9, Lemma 12.2 and Th. 12.9], we have that the curves defined over a finite field Fqs
by the affine equation yq

n

+ y = xm, with gcd(q,m) = 1, are examples of curves that satisfy the above
conditions ifm(qn−1) divides qs−1. We note that it is hard to study automorphisms of curves in general,
especially without giving the equation that defines it. In particular, with the results on automorphisms
known to date, we can not present general examples of curves satisfying the above conditions. For a
study on automorphism of algebraic curves we refer the reader to [9, Ch. 11 and 12], particularly in the
Section 12.1 results on automorphisms of curves given by separated polynomials can be found.

Let D = P1 + . . . + Pn, with Pi 6= P for all i = 1, . . . , n, a divisor on X ? and let Supp(D) =
O1 ∪ . . .∪Or ∪Or+1 ∪ . . .∪Or+s be the decomposition of the support of D into disjoint orbits under the
action of σ. In this section we will describe the root diagram for one-point AG codes CX?(D,λP ).

Note that, by definition of σ, if Q = (0, η) ∈ Oi, for some η ∈ Fq, then Oi =

{(0, η), (0, αtη), . . . , (0, αt.tiη)}, where ti is the smallest nonnegative integer such that αt.(ti+1) = 1.
Analogously, if Q = (ω, 0) ∈ Oi, for some ω ∈ Fq, then Oi = {(ω, 0), (αω, 0), . . . , (αν−1ω, 0)}. Let
Or+1, . . . , Or+s be the orbits that contains Fq-rational points on X ? of the form (0, η) or (ω, 0). We
will work with the first r rows of the root diagram DC for the code CX?(D,λP ), the results for
the last s rows are similar can be obtained in particular cases. For each i = 1, . . . , r, suppose that
Oi = {Pi,0, Pi,1, . . . , Pi,|Oi|−1}, where Pi,0 = (xi, yi), with xi 6= 0 and yi 6= 0, and Pi,j = σj(Pi,0) =

(αjxi, α
jtyi). So, from the definition of σ it follows that |O1| = . . . = |Or| = ord(α) = ν.

Associated with the decomposition of the support of D into disjoint orbits under the action of σ as
above, let us assume the following conditions:

(I) for each i = 1, . . . , r, there exists a polynomial Mi(y) such that the orbit Oi is the intersection of
Supp(D) with the curve Mi(y) = 0 and, for all i, Mi(y) is a non-zero constant when restricted to
each of the orbits Ok, k 6= i;

(II) for each 1 ≤ i ≤ r and 0 ≤ j ≤ |Oi| − 1 = ν − 1, there exists a polynomial Bi,j(x, y) such that
Bi,j(x, y) vanishes at each point of Oi except Pi,j .

In the Proposition 3.3 and the Theorem 3.4 below, the reader will see that the existence of these
polynomials is fundamental to obtain the root diagram for one-point AG codes CX?(D,λP ).

Let κ be the smallest positive integer such that ακt = 1. The next result gives us a way to getMi(y).

Proposition 3.1. Let κ, Oi and Pi,j = σj(Pi,0) = (αjxi, α
jtyi) be as above. If

(∗) α`tyi 6= α`tyk, for all ` = 0, 1, . . . , κ− 1 and k 6= i,
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then Mi(y) =
∏κ−1
`=0 (y − α`tyi) satisfies the condition (I) above.

Proof. By the definition of κ, it follows that the orbit Oi is the intersection of Supp(D) with the curve
Mi(y) = 0. The condition (∗) implies that Mi(y) is a non-zero constant when restricted to each of the
orbits Ok, k 6= i.

Note that the condition (∗), which is the key to getting a polynomial Mi(y) as in (I), depends on
the decomposition of the support of D and the coordinates of the points on such support.

We obtain Bi,j(x, y) in a similar way by using a solution of an interpolation problem.

Lemma 3.2. For i = 1, . . . , r and j = 0, . . . , |Oi| − 1, let Mi(y) and Bi,j(x, y) be as (I) and (II) above.
Then, div∞(Mi) = (ρ1b)P and div∞(Bi,j) = (ρ2a+ ρ3b)P , where ρ1, ρ2 and ρ3 are nonnegative integers.

Proof. We have that div∞(x) = aP and div∞(y) = bP . Then, the result follows from the fact that
Mi(y) and Bi,j(x, y) are polynomials.

Let ρ1, ρ2 and ρ3 be as the previous lemma. So, for λ ≤ (ρ2a+ρ3b)+r(ρ1b), we can get the following
information about the root diagram DC .

Proposition 3.3. Let CX?(D,λP ) and σ be as above. Let DC be the root diagram for CX?(D,λP ). Fix
i, 1 ≤ i ≤ r, and let ρ1, ρ2 and ρ3 be as above.

1. If λ ≥ (i − 1)(ρ1b), then the i-th row of DC is not full, in the sense that not every box in the i-th
row are marked with X;

2. If λ ≥ (ρ2a+ ρ3b) + (i− 1)(ρ1b), then the row is empty, in the sense that none of the boxes in the
i-th row is marked with X.

Proof. Let C ≤ Fq[t]r be the submodule associated to CX?(D,λP ), where D = P1 + . . . + Pn and
Pi 6= P for all i = 1, . . . , n.

1. Suppose that λ ≥ (i− 1)(ρ1b). By Lemma 3.2, the function

Fi(x, y) =M1(x, y) · · ·Mi−1(x, y)

belongs to L(λP ) and hence (Fi(P1), . . . , Fi(Pn)) ∈ CX?(D,λP ). By computing
(Fi(P1), . . . , Fi(Pn)), we observe that C contains an element of the form (0, . . . , 0, hi(t), . . . , hr(t))

with i− 1 zeroes and hi(t) =
∑|Oi|−1
j=0 Fi(Pi,j)t

j . Since

Fi(Pi,j) =M1(Pi,j) · · ·Mi−1(Pi,j) = constant c 6= 0 ,

we have hi(t) = c.
∑|Oi|−1
j=0 tj and thus h(1) 6= 0 as |Oi| divides q − 1. Therefore the i-th row of DC

is not full, since g(i)i (t) divides hi(t).

2. Now, suppose λ ≥ (ρ2+ρ3b)+(i−1)(ρ1b). So, by Lemma 3.2, Gi(x, y) = Bi,0(x, y)Fi(x, y) ∈ L(λP )
and Gi(Q) = 0 for Q ∈ O1 ∪ O2 ∪ . . . ∪ Oi−1. Moreover, Gi(Q) = 0 for all Q ∈ Oi \ {Pi,0}. Then
the element of C corresponding to (Gi(P1), . . . , Gi(Pn)) verifies h1(t) = h2(t) = . . . = hi−1(t) = 0
and hi(t) = Gi(Pi,0) = c 6= 0. Thus, C contains the element (0, . . . , 0, c, hi+1(t), . . . , hr(t)). So, the
i-th row of DC is empty.

Let N be the number of Fq-rational points on X ?. By Riemann-Roch Theorem, it follows that
if λ < N , then the dimension of the one-point AG code CX?(D,λP ) is equal to the dimension of the
Riemann-Roch space L(λP ). In this case, we complete the information about the root diagram DC .
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Theorem 3.4. Let DC be the root diagram for CX?(D,λP ). If there is i ∈ {1, . . . , r} such that

(i− 1)(ρ1b) ≤ λ < (ρ2a+ ρ3b) + (i− 1)(ρ1b),

then the i-th row of DC is neither full, nor empty, and the complement of the set of roots marked on
row i of the diagram is the set

Ei = {α−(β+γb) ∈ F∗q | 0 ≤ β ≤ b− 1, 0 ≤ γ ≤ ρ1 − 1, (i− 1)(ρ1b) + βa+ γb ≤ λ}.

Proof. Let C ≤ Fq[t]r be the submodule associated to CX?(D,λP ). Let Di ⊂ F∗q be the set of non-
marked boxes in row i, where 1 ≤ i ≤ r. We will show that Di = Ei. Let Fi(y) be as in the previous
proposition and consider fi(x, y) = Fi(y)x

βyγ . By Lemma 3.2 and the conditions over β and γ given
in the definition of Ei, we have that fi(x, y) ∈ L(λP ). So, associated to fi(x, y) we get an element
h = (h1(t), . . . , hr(t)) ∈ C. Since Fi(Q) = 0 for all Q ∈ O1 ∪ . . . ∪ Oi−1, it follows that hk(t) = 0,
for k = 1, . . . , i − 1. Let Pi,j = σ(Pi,0) = (αjxi, α

`jyi) ∈ Oi. Thus, fi(Pi,j) = Fi(Pi,j)α
jβxβi α

`jγyγi =

Fi(Pi,j)x
β
i y

γ
i α

j(β+`γ), for all j = 0, 1, . . . , |Oi| − 1. Now, Fi(Pi,j), x
β
i and yγi are all non-zero constants

and independent of j. Taking bi = Fi(Pi,j)x
β
i y

γ
i 6= 0, we have

hi(t) =

|Oi|−1∑
j=0

fi(Pi,j)t
j = |Oi| · bi

|Oi|−1∑
j=0

(α(β+`γ)t)j whose roots are all distinct from α−(β+`γ). Con-

sequently, α−(β+`γ) is not a root of g(i)i (t) and hence Ei ⊆ Di.

By Proposition 2.4, dim(CX?(D,λP )) =
∑
]Di. Since H(P ) = 〈a, b〉 and λ < N , we have that

dim(CX?(D,λP )) = ]{(β, γ) ∈ N2
0 ; 0 ≤ β ≤ b− 1 and βa+ γb ≤ λ}.

Let Êi = {(β, γ) ∈ N2
0 | 0 ≤ β ≤ b − 1, 0 ≤ γ ≤ ρ1 − 1, (i − 1)(ρ1b) + βa + γb ≤ λ}. Thus,

]{(β, γ) ∈ N2
0 ; 0 ≤ β ≤ b − 1 and βa + γb ≤ λ} =

∑
]Êi and, since

∑
]Êi = ]

∑
Ei, it follows that∑

]Di =
∑
]Ei. Therefore, Ei = Di.

Let Fi(y) be as above. Then, we have that Fi(Q) = ci ∈ F∗q , for all Q ∈ Oi. With the conditions
of the above theorem, fix an index i, 1 ≤ i ≤ r, where the row i of DC is neither full, nor empty. Let
αk1 , αk2 , . . . , αk` be the roots marked on the row i and let p(t) =

∏`
j=1(t − αkj ) be the unique monic

polynomial of degree ` with these roots. Note that, including zeroes for powers of t higher than the
number of roots, we can write p(t) =

∑|Oi|−1
j=0 ajt

j , where aj = 0 for j > `. Consider the function

fi(x, y) =
Fi(y)

ci

|Oi|−1∑
j=0

aj
Bi,j(x, y)

Bi,j(Pi,j)


Then, by the definition of Fi(y) and Bi,j(x, y), it is clear that fi(x, y) ∈ L(λP ) and its associated

module element h ∈ C has i− 1 leading zero components and i-th component hi(t) equal to p(t). Using
this fact and the same procedures used in [12, Section 4, pp. 306] and [4, Section 4, pp. 60], namely

• RootDiagram[i]: returns a list of the roots corresponding to the marked boxes in line i of DC ;

• Boxes[i]: the number of boxes in row i of DC , that is Boxes[i] = |Oi|;

• Evaluate[i, point]: a procedure which takes as input the coefficients {ak} of the unique monic
polynomial over Fq having the marked elements on a row number i as roots and a point Pi,j on Oi,
and evaluates the function fi(x, y) as above at a point Pi,j ;

we have the following algorithm, which is completely analogous to Proposition 4.4 in [12] and Algorithm
4.2 in [4].
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Algorithm 3.5.

Input: the root diagram DC , the N Fq-rational points Pi,j of Supp(D) = O1∪. . .∪Or∪Or+1∪Or+s.
Output: a non-reduced Gröbner basis G = {g(1),g(2), . . . ,g(r+s)} of C.

1. G := {}
2. for i from 1 to r + s do
3. if |RootDiagram[i]|< Boxes[i] then
4. for k from 1 to r + s do
5. g

(i)
k := 0

6. if k ≥ i then
7. for j from 0 to Boxes[k]− 1 do
8. g

(i)
k := g

(i)
k + Evaluate[i,Pk,j ] tj ek

9. end for
10. end if
11. end for
12. else
13. g(i) := (tBoxes[i] − 1) ei
14. end if
15. G := G ∪ {g(i)}
16. end for
17. return G

Remark 3.6. Note that this algorithm makes use only of interpolation and function evaluation problems.
As studied in [12] and [4], it has a computational complexity much lower than the complexity of general
Gröbner basis algorithms. In particular, it does not use divisions or reductions that would increase the
complexity, as in the case of Buchberger’s algorithm.

4. Examples

4.1. The maximal curve yq + y = xqr+1

Let Xq,qr+1 be the curve defined over Fq2r by the affine equation

yq + y = xq
r+1,

where q is a prime power and r an odd integer. Note that when r = 1 the curve is just the Hermitian
curve. The curve Xq,qr+1 has genus g = qr(q − 1)/2, one single singular point P∞ = (0 : 1 : 0) at infinity
and other q2r+1 Fq2r -rational points. Thus, this curve is a maximal curve over Fq,qr+1 because its number
of Fq2r -rational points equals the upper Hasse-Weil bound, namely equals q2r + 1 + 2gqr. Furthermore,
H(P∞) = 〈q, qr + 1〉, see [14], and

σ : x 7→ αx
y 7→ αq

r+1y
(2)

with α ∈ F∗q2r such that α(qr+1)(q−1) = 1, is an automorphism of Xq,qr+1, see [11]. Note that σ has order
(qr + 1)(q − 1). So, the order of σ divides q2r − 1.

Note that under the action of the automorphism σ above the q2r+1 Fq2r -rational points on Xq,qr+1

are disposed in q(qr−1+ · · ·+q+1)+2 orbits, where q(qr−1+ · · ·+q+1) of them has length (qr+1)(q−1)
and the remaining two orbits, one has length q − 1 and the other has length 1. In fact, for the definition
of the automorphism σ, it is clear that:

• σ(0, 0) = (0, 0), and so we have a one orbit with a single point;
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• all the q − 1 Fq2r -rational points (0, b), with b 6= 0, form an orbit with length q − 1, since σ(0, b) =
(0, αq

r+1b) and α ∈ F∗q2r is such that α(qr+1)(q−1) = 1;

• the other q2r+1 − q = q(qr + 1)(qr − 1) Fq2r -rational points (x, y) ∈ Xq,qr+1, with x 6= 0 and y 6= 0,
are arranged in q(qr−1 + · · ·+ q + 1) orbits of length (qr + 1)(q − 1).

Let α be as in (2). Let F∗q2r = 〈a〉 and t ∈ {0, 1, . . . , q2r − 2} be such that α = at. So, given
Pi,0 = (ati , ali) ∈ Oi, the other points Pi,j on Oi are Pi,j = σj(Pi,0) = (ati+jk, ali+jk(q

r+1)), with
j ∈ {1, . . . , (qr + 1)(q − 1)− 1}. Then, for i = 1, . . . , r and j = 0, . . . , (qr + 1)(q − 1)− 1, we get

Mi(y) :=

q−2∏
j=0

(y − ali+jk(q
r+1)) = yq−1 − ali(q−1), (3)

and

Bi,j(x, y); =

q−2∏
s=1

(y − ali+k(q
r+1)(j+s))

(qr+1)−1∏
s=1

(x− ati+k(j+s)). (4)

Since div∞(x) = qP∞ and div∞(y) = (qr + 1)P∞, we have that

• div∞(Mi(y)) = (q − 1)(qr + 1)P∞; that is, Mi(y) ∈ L((q − 1)(qr + 1)P∞), for all i = 1, . . . , r;

• div∞(Bi,j(x, y)) = ((q−2)(qr+1)+q((qr+1)−1))P∞; that is, Bi,j ∈ L(q.qr+(q−2)(qr+1))P∞),
for all 1 ≤ i ≤ r) e 0 ≤ j ≤ (qr + 1)(q − 1)− 1.

With the notations on the previous section we have that:

• a = q and b = qr + 1;

• P = P∞;

• div∞(x) = qP∞ and div∞(y) = (qr + 1)P∞;

• H(P∞) = 〈q, qr + 1〉;

• ρ1 = q − 1, ρ2 = qr and ρ3 = q − 2.

Thus, using the Proposition 3.3 and the Theorem 3.4, we can get the root diagram for one-point codes
CXq,qr+1

(D,λP∞) and then the Gröbner basis for the module C associated to CXq,qr+1
(D,λP∞) by

Algorithm 3.5.

Example 4.1. Consider the curve X2,9 : y2+y = x9 over F64 and the code C = C(X2,9, D, 20P∞), where
D is the sum of the 128 F64-rational points distinct of P∞ = (0 : 1 : 0). Let α be a generator of F∗64. The
automorphism σ(x, y) = (α7x, y) decomposes the points in Supp(D) into sixteen orbits, being fourteen of
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length 9 and two of length 1:

O1 = {P1,0 = (α, α18), P1,1 = (α8, α18), . . . , P1,8 = (α57, α18)},
O2 = {P2,0 = (α, α54), P2,1 = (α8, α54), . . . , P2,8 = (α57, α54)},
O3 = {P3,0 = (α2, α36), P3,1 = (α9, α36), . . . , P3,8 = (α58, α36)},
O4 = {P4,0 = (α2, α45), P4,1 = (α9, α45), . . . , P4,8 = (α58, α45)},
O5 = {P5,0 = (α3, α31), P5,1 = (α10, α31), . . . , P5,8 = (α59, α31)},
O6 = {P6,0 = (α3, α59), P6,1 = (α10, α59), . . . , P6,8 = (α59, α59)},
O7 = {P7,0 = (α4, α9), P7,1 = (α11, α9), . . . , P7,8 = (α60, α9)},
O8 = {P8,0 = (α4, α27), P8,1 = (α11, α27), . . . , P8,8 = (α60, α27)},
O9 = {P9,0 = (α5, α47), P9,1 = (α12, α47), . . . , P9,8 = (α61, α47)},
O10 = {P10,0 = (α5, α61), P10,1 = (α12, α61), . . . , P10,8 = (α61, α61)},
O11 = {P11,0 = (α6, α55), P11,1 = (α13, α55), . . . , P11,8 = (α62, α55)},
O12 = {P12,0 = (α6, α62), P12,1 = (α13, α62), . . . , P12,8 = (α62, α62)},
O13 = {P13,0 = (α7, α21), P13,1 = (α14, α21), . . . , P13,8 = (1, α21)},
O14 = {P14,0 = (α7, α42), P14,1 = (α14, α42), . . . , P14,8 = (1, α42)},
O15 = {P15,0 = (0, 1)},
O16 = {P16,0 = (0, 0)}.

Since the set of roots of t9 − 1 in F64 is {1, α7, α14, α21, α28, α35, α42, α49, α56}, Proposition 3.3 and
Theorem 3.4 (where a = 2, b = 9, ρ1 = 1, ρ2 = 8, ρ3 = 0 and λ = 20) give the following root diagram.

α7 α14 α21 α28 α35 α42 α49 α56 1

X X X

X X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

X

X

4.2. A quotient of the Hermitian curve

Let Xq,m be the curve defined over Fq2 by the affine equation

yq + y = xm,

where q is a prime power and m > 2 is a divisor of q+1. This curve is a quotient of the Hermitian curve
and has genus g = (q− 1)(m− 1)/2, a single point at infinity, denoted by P∞, and other q(1 +m(q− 1))
Fq2-rational points. One may notice that P∞ = (0 : 1 : 0) if m = q+1, and P∞ = (1 : 0 : 0) if m 6= q+1.
In [5], it is shown that Xq,m is a maximal curve and in [13], G. Matthews studied Weierstrass semigroup
and algebraic codes arising from Xq,m. In addition, we have that H(P∞) = 〈m, q〉, see [5, Theorem 3].

Let F∗q2 = 〈α〉 and k such that mk = q + 1. Then,
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τ : x → αkx

y → αq+1y
(5)

is an automorphism of Xq,m of order m(q − 1), which divides q2 − 1.

It is not hard to see that under the action of the automorphism τ above the q(1 +m(q − 1)) Fq2-
rational points on Xq,m are disposed in q+2 orbits, where q of them has lengthm(q−1) and the remaining
two orbits, one has length q − 1 and the other has length 1.

Taking r = q and the first r orbits given by points on Xq,m of the form P = (a, b) with a, b 6= 0.
So, for each i = 1, . . . , r, given Pi,0 = (α`i , αti) ∈ Oi, the other points Pi,j on Oi are Pi,j = σj(Pi,0) =

(α`i+jk, αti+j(q+1)), with j ∈ {1, . . . ,m(q − 1)− 1}. That is,

Oi = {Pi,j = (α`i+jk, αti+j(q+1)) ; j = 0, . . . ,m(q − 1)− 1}.

Then, for i = 1, . . . , r and j = 0, 1, . . . ,m(q − 1)− 1, we get

Mi(y) =

q−2∏
j=0

(y − αti+j(q+1))

and

Bi,j(x, y) =

q−2∏
s=0,s6=j

(y − αti+s(q+1))

m(q−1)−1∏
s=0,s6=j

(x− α`i+sk).

So, since div∞(x) = qP∞ and div∞(y) = mP∞, it follows that

• div∞(Mi(y)) = (q − 1)mP∞; that is, Mi(y) ∈ L((q − 1)mP∞), for all i = 1, . . . , r;

• div∞(Bi,j(x, y)) = ((q − 2)m + (m − 1)q)P∞; that is, Bi,j ∈ L((m − 1)q + (q − 2)m)P∞), for all
1 ≤ i ≤ r) and 0 ≤ j ≤ m(q − 1)− 1.

With the notations on the previous section we have that:

• a = q and b = m;

• P = P∞;

• (x)∞ = qP∞ and (y)∞ = mP∞;

• H(P∞) = 〈q,m〉;

• ρ1 = q − 1, ρ2 = q − 2 and ρ3 = m− 1.

Therefore, we can get the root diagram for one-point codes CXq,m(D,λP∞) and then the Gröbner basis
for the module C associated to CXq,m(D,λP∞).

Example 4.2. Consider the curve X ? : y5 + y = x3 over F25 and the code C = CX?(D, 30P∞), where D
is the sum of the 65 F25-rational points distinct of P∞. Let α be a generator of F∗25. The automorphism
τ(x, y) = (α2x, α6y) decomposes the points in Supp(D) into seven orbits, being five of length 12, one of
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length 4 and one of length 1:

O1 = {P1,0 = (1, α), P1,1 = (α2, α7), . . . , P1,11 = (α22, α19)},
O2 = {P2,0 = (1, α20), P2,1 = (α2, α2), . . . , P2,11 = (α22, α14)},
O3 = {P3,0 = (1, α4), P3,1 = (α2, α10), . . . , P3,11 = (α22, α22)},
O4 = {P4,0 = (1, α5), P4,1 = (α2, α11), . . . , P4,11 = (α22, α23)},
O5 = {P5,0 = (1, α18), P5,1 = (α2, 1), . . . , P5,11 = (α22, α12)},
O6 = {P6,0 = (0, α3), P6,1 = (0, α9), P6,2 = (0, α15), P6,3 = (0, α21)},
O7 = {P7,0 = (0, 0)}.

Since the set of roots of t12− 1 and t4− 1 in F25 are {1, α2, α4, α6, . . . , α22} and {1, α6, α12, α18}, respec-
tively. So, Proposition 3.3 and Theorem 3.4 (where a = 5, b = 3, ρ1 = 4, ρ2 = 3, ρ3 = 2 and λ = 30)
give the following root diagram.

α2 α4 α6 α8 α10 α12 α14 α16 α18 α20 α22 1

X

X X X X X X X X

X X X X X X X X X X X X

X X X X X X X X X X X X

X X X X

X
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