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Abstract 

This study tests a practical machine-learning pipeline to predict daily Buy/Hold/Sell 

trading signals for Apple (AAPL) and to assess whether “good classification” also 

yields good trading returns after costs. The dataset is built from synchronized daily 

market series and AAPL-based technical indicators. The target signal is generated by 

a transparent rule using MACD relative to its signal line and an RSI filter, so the task 

is a supervised three-class classification problem. Four tree-based ensemble models 

are compared: Random Forest, LightGBM, XGBoost, and AdaBoost. To avoid fragile, 

hand-picked settings, each model is tuned with a systematic search procedure. 

Because the raw labels are strongly imbalanced, SMOTE is applied for training, while 

all performance and economic tests are run on the original time-ordered test period 

to keep the evaluation realistic. The results show a clear ranking. XGBoost delivers 

the best overall classification quality (Accuracy 0.974, Precision 0.975, Recall 0.974, 

F1 0.974). LightGBM and Random Forest follow at similarly high levels, while 

AdaBoost is much weaker (Accuracy 0.668, F1 0.536) despite relatively higher 

precision (0.779), meaning its predictions are not well balanced across classes. 

Confusion-matrix evidence supports this: the strong models classify Buy and Sell 

almost perfectly, and most remaining errors come from the Hold class. AdaBoost, 

however, fails to detect Hold and instead generates many Buy/Sell signals on Hold 

days. Economic backtests confirm the same story under realistic transaction costs and 

initial capital. Trading on predicted signals yields +49.1% for XGBoost, +46.1% for 

LightGBM, and +44.9% for Random Forest. AdaBoost loses money (−11.3%), with 

worse risk outcomes (Sharpe −0.10, max drawdown 29.0%) and heavier trading 

(about 68 trades, higher total costs). Overall, modern gradient-boosting ensembles 

are both statistically strong and economically more credible for this signal design. 
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BAYESYEN OPTİMİZASYONLU TOPLULUK ÖĞRENMESİ İLE ÇOK 

SINIFLI ALIM-SATIM SİNYALİ SINIFLANDIRMASI2 

Öz 

Bu çalışma, Apple (AAPL) için günlük Al/Tut/Sat işlem sinyallerini tahmin eden pratik 

bir makine öğrenmesi hattını test etmekte ve “iyi sınıflandırma” başarısının, işlem 

maliyetleri eklendiğinde iyi bir ekonomik performansa dönüşüp dönüşmediğini 

incelemektedir. Veri seti, senkronize edilmiş günlük piyasa serileri ile AAPL’ye ait 

teknik göstergelerden oluşturulmaktadır. Hedef sinyal, MACD’nin sinyal çizgisiyle 

karşılaştırılması ve RSI filtresi kullanan şeffaf bir kuralla üretildiğinden, problem 

denetimli bir üç sınıflı sınıflandırma problemine dönüşmektedir. Çalışmada dört ağaç 

tabanlı topluluk modeli karşılaştırılmaktadır: Random Forest, LightGBM, XGBoost 

ve AdaBoost. Sonuçların ad hoc parametre seçimlerine duyarlı olmaması için her 

model sistematik bir arama prosedürüyle ayarlanmaktadır. Ham etiketlerde ciddi 

sınıf dengesizliği bulunduğundan eğitim aşamasında SMOTE uygulanmakta; ancak 

tüm performans ve ekonomik testler, gerçekçi değerlendirme için orijinal zaman sıralı 

test döneminde yürütülmektedir. Bulgular, modeller arasında belirgin bir sıralama 

ortaya koymaktadır. XGBoost en yüksek sınıflandırma kalitesini sunmaktadır 

(Doğruluk 0.974, Kesinlik 0.975, Duyarlılık 0.974, F1 0.974). LightGBM ve Random 

Forest çok yakın düzeylerde onu izlemektedir. AdaBoost ise belirgin biçimde daha 

zayıf kalmaktadır (Doğruluk 0.668, F1 0.536); ayrıca kesinliği nispeten yüksek 

görünse de (0.779) sınıflar arasında dengeli bir performans sergileyememektedir. 

Karışıklık matrisi sonuçları bu tabloyu desteklemekte; güçlü modellerin Al ve Sat 

sınıflarını neredeyse hatasız ayırdığı, kalan hataların büyük ölçüde Tut sınıfında 

yoğunlaştığı görülmektedir. Buna karşılık AdaBoost’un Tut sınıfını neredeyse hiç 

yakalayamadığı ve birçok Tut gününü Al/Sat olarak etiketlediği anlaşılmaktadır. 

Ekonomik geriye dönük test sonuçları da aynı örüntüyü doğrulamaktadır. Gerçekçi 

işlem maliyetleri ve başlangıç sermayesi altında, model tahminleriyle işlem yapmak 

XGBoost için +%49.1, LightGBM için +%46.1 ve Random Forest için +%44.9 getiri 

üretmektedir. AdaBoost ise zarar yazmaktadır (−%11.3) ve daha olumsuz bir risk 

profili sergilemektedir (Sharpe −0.10, maksimum düşüş %29.0). Ayrıca daha fazla 

işlem ürettiğinden (yaklaşık 68 işlem) toplam maliyetleri de daha yüksek 

gerçekleşmektedir. Genel olarak, bu sinyal tasarımı altında modern gradient boosting 

tabanlı toplulukların hem istatistiksel olarak daha güçlü hem de ekonomik açıdan 

daha inandırıcı sonuçlar ürettiği değerlendirilmektedir. 

 

Anahtar Kelimeler: Makine Öğrenmesi, Alım–Satım Sinyali Sınıflandırması, Teknik 

Göstergeler, Algoritmik Alım–Satım, Bayesyen Hiperparametre Optimizasyonu.  

 

JEL Kodları: C45, C53, G17, C63, G11. 

 

“Bu çalışma Araştırma ve Yayın Etiğine uygun olarak hazırlanmıştır.” 

 
2 Genişletilmiş Türkçe Özet, makalenin sonunda yer almaktadır. 
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1. INTRODUCTION 

Financial markets stand at the heart of the global economy, playing a critical role in 

capital allocation, wealth generation, and economic stability. Over the years, these 

markets have been shaped by rapid technological advancements, globalization, and 

shifting economic paradigms. The inherent complexity and volatility of financial 

markets make them a challenging domain for researchers, traders, and policymakers 

seeking to predict trading signals and devise effective strategies. These challenges are 

exacerbated by the vast amounts of heterogeneous data generated daily, which often 

includes financial indicators, economic reports, news sentiment, and even social 

media trends. 

 

In this setting, forecasting actionable trading signals is difficult because return 

dynamics are nonlinear, noisy, and regime-dependent, and because predictive 

relationships can change over time. Traditional methods of technical analysis have 

therefore been supplemented by machine learning techniques that leverage large 

historical datasets to identify patterns and generate data-driven predictions. Recent 

studies show that machine-learning models can outperform traditional statistical 

approaches in a range of trading scenarios (Saud and Shakya, 2022; Wang et al., 2021; 

Cheng et al., 2021). 

 

Integrating machine learning into financial analytics marks a meaningful shift in how 

market information is processed. Unlike classical parametric models, machine 

learning methods can handle high-dimensional feature spaces and capture complex 

interactions across variables. Prior research spans supervised learning models trained 

on labeled price data (Li and Tam, 2018), ensemble learners that improve stability and 

generalization (Saifan et al., 2020; Gupta and Kumar, 2023), deep learning 

architectures designed for sequential patterns in time series (Wang and Yan, 2023; 

Sebastião and Godinho, 2021), and reinforcement learning frameworks that learn 

trading policies through interaction with the market environment (Cheng et al., 2021). 

This body of work collectively emphasizes that predictive performance depends not 

only on model choice but also on feature design, tuning strategy, and evaluation 

realism. 

 

Building on this literature, the present study develops an empirical benchmarking 

framework for multi-class trading-signal prediction with a clear emphasis on practical 

evaluation and interpretability. We focus on supervised, tree-based ensemble 

methods—Random Forest, LightGBM, XGBoost, and AdaBoost—because they 

provide strong predictive baselines while remaining relatively transparent and 

deployment-friendly in applied settings. 

 

Empirically, we construct a cross-asset dataset for Apple Inc. (AAPL) using the 

yfinance interface (Aroussi, 2024) and enrich the dataset with standard technical 

indicators that summarize trend, momentum, and volatility. Trading signals are 

defined as a three-class target (Buy/Hold/Sell) using a transparent, rule-based labeling 

scheme derived from MACD and RSI. Because class imbalance is a common feature 
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of signal labels, we apply SMOTE to balance the training set and reduce biased 

learning toward dominant classes (Chawla et al., 2002). Model hyperparameters are 

tuned via Bayesian optimization with Optuna (Akiba et al., 2019), and model behavior 

is interpreted using SHAP-based feature attribution to improve transparency 

(Lundberg and Lee, 2017). Finally, beyond standard classification metrics, we 

evaluate whether predictive gains translate into economic relevance using a cost-

inclusive backtesting design that accounts for realistic transaction frictions. 

 

Overall, the study contributes a reproducible end-to-end pipeline that links data 

construction, feature engineering, signal labeling, imbalance handling, model tuning, 

interpretability, and economic evaluation within a single framework. The remainder 

of the paper is organized as follows: Section 2 describes the data, signal definition, 

and modeling workflow; Section 3 reports empirical results and diagnostic evidence; 

and Section 4 discusses implications and limitations for practical trading applications. 

2. MATERIALS AND METHODS 

2.1. Empirical Workflow and Study Pipeline 

This section summarizes the empirical workflow used to develop and validate multi-

class machine learning models for trading signal prediction. As a compact roadmap, 

Figure 1 links each stage of the pipeline—from data acquisition and feature 

construction to economic validation and interpretability—thereby supporting 

transparency and reproducibility. 

 

As shown in Figure 1, the pipeline proceeds sequentially through data collection 

(Phase 1), feature engineering (Phase 2), and rule-based signal generation (Phase 3) 

that defines the Buy/Hold/Sell target space. To mitigate label imbalance prior to 

model fitting, the workflow incorporates SMOTE-based resampling (Chawla et al., 

2002). Competing ensemble learners—Random Forest, LightGBM, XGBoost, and 

AdaBoost—are then trained (Phase 4), with hyperparameters tuned via Optuna (Akiba 

et al., 2019) (Phase 5). Model performance is assessed using standard classification 

metrics together with trading simulation (backtesting) to evaluate decision usefulness 

under realistic execution logic (Phase 6). Finally, SHAP-based feature attribution and 

risk-oriented portfolio diagnostics are used to interpret model behavior and quantify 

economic relevance (Lundberg and Lee, 2017) (Phase 7). 
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Figure 1. The Methodological Framework of the Study 

2.2. Data and Study Design 

2.2.1 Data Sources and Asset Universe 

The dataset utilized in this study comprises a broad set of market variables collected 

via the yfinance Python package (Aroussi, 2024). Specifically, we retrieve daily 

closing prices for the target asset (AAPL) together with a cross-asset indicator set 

spanning major U.S. equity indices (e.g., NASDAQ, S&P 500, Dow Jones, NYSE), 

international equity benchmarks (e.g., FTSE 100, Russell 2000), key exchange rates 

(EUR/USD and GBP/USD), commodities (crude oil and gold), market uncertainty 

and currency proxies (VIX and U.S. dollar index), selected mega-cap technology 

stocks, Bitcoin, and the U.S. 10-year Treasury yield. This diversified asset universe is 

intended to capture common drivers of equity dynamics and to provide a richer 

information set for learning trading signals. 
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The empirical dataset is constructed in three sequential steps to ensure a clean, 

synchronized, and time-consistent sample for predictive modeling. First, the raw daily 

series are downloaded from Yahoo Finance over the broad collection window 2014-

01-02 to 2024-12-05. Second, all instruments are merged into a single panel and 

aligned by trading date, yielding an initial matrix of 3916 observations. Third, to avoid 

implicit imputation and ensure a fully observed feature vector at each timestamp, rows 

with missing values are removed. This step eliminates 1397 rows, resulting in a final 

modeling sample spanning 2014-09-17 to 2024-12-04, comprising 2519 trading days 

and 21 input features. 

2.2.2 Feature Engineering: Technical Indicators 

Building on this synchronized base panel, additional engineered predictors are derived 

to summarize trends, volatility, and momentum (e.g., moving averages, Bollinger 

Bands, and related technical indicators) (Lin et al., 2021). In line with standard 

technical-analysis constructions, the engineered set includes moving averages and 

Bollinger Band components (Bollinger, 2002), MACD and its signal line (Appel, 

1979), and RSI (Wilder, 1978). With these additions, the final predictor set used for 

model estimation contains 32 input features in total (21 cross-asset close-price 

features plus 11 AAPL-derived technical-indicator features), excluding the target 

variable Signal. Recent evidence also suggests that the informativeness of such 

indicator-based feature spaces can improve when feature quality and selection are 

explicitly addressed (Ji et al., 2022). 

 

Figure 2 provides an interpretable snapshot of how the engineered technical indicators 

summarize different dimensions of AAPL’s recent market behavior (last 500 trading 

days of the synchronized sample). Panel (a) overlays the price path with MA7 and 

MA21, which smooth high-frequency noise and make trend direction easier to 

diagnose at two horizons. The Bollinger Bands extend this view by forming a 

volatility envelope around the moving average: episodes where the price persistently 

leans toward the upper band typically coincide with strong trend continuation and 

elevated dispersion, whereas compressions and frequent touches of the lower band are 

consistent with weaker momentum and drawdown phases (Bollinger, 2002). 

 

Panel (b) reports MACD, its signal line, and the corresponding histogram (computed 

as MACD minus the signal line in the plotting routine). The histogram’s sign changes 

offer a compact way to visualize shifts in medium-term momentum, while large 

positive/negative swings reflect periods when the fast and slow exponential moving 

averages diverge materially—often aligning with trend accelerations or reversals 

(Appel, 1979). 

 

Panel (c) shows the 14-day RSI together with conventional threshold bands at 30 and 

70. Rather than treating these cutoffs as deterministic “buy/sell” triggers, the figure is 

used here as a diagnostic: clustering near the upper region signals sustained buying 

pressure, whereas dips below 30 indicate stress regimes where mean-reversion 

dynamics may become more plausible (Wilder, 1978).  
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Overall, Figure 2 motivates the feature-engineering design adopted in the predictive 

pipeline: each indicator targets a distinct market attribute—trend (moving averages), 

volatility state (Bollinger Bands), momentum timing (MACD), and oscillator-based 

pressure (RSI). This modular structure aligns with recent evidence that feature quality 

and careful selection of technical indicators can materially affect stock-movement 

classification performance (Ji et al., 2022). 

 

 
Figure 2. Technical Indicators for AAPL Based on the Last 500 Trading Days 

 

Table 1 provides a consolidated description of the full set of variables used in the 

empirical analysis, covering both the cross-asset close-price predictors and the 

engineered AAPL-based technical indicators, along with their definitions, units, 

sampling frequency, and data provenance. 
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Table 1. Features and Their Descriptions. 

Feature Name Description Units Frequency Source 

Apple Stock 

Prices (AAPL) 

Daily closing prices of Apple stock, 

representing the company's equity 

performance. 

USD Daily 
Yahoo Finance 

(AAPL) 

NASDAQ Index 

NASDAQ Composite Index values, 

reflecting the performance of tech-heavy 

equities. 

Index Value Daily 
Yahoo Finance 

(NASDAQ) 

NYSE Index 

NYSE Composite Index values, 

summarizing the performance of stocks 

listed on NYSE. 

Index Value Daily 
Yahoo Finance 

(NYSE) 

S&P 500 Index 
S&P 500 Index values, indicating the 

performance of 500 large-cap US stocks. 
Index Value Daily 

Yahoo Finance 

(S&P 500) 

Dow Jones 

Industrial 

Average 

Dow Jones Industrial Average values, 

representing 30 major US companies. 
Index Value Daily 

Yahoo Finance 

(Dow Jones) 

EUR/USD 

Exchange Rate 

Daily EUR/USD exchange rates, 

capturing the relationship between Euro 

and USD. 

EUR/USD Daily 
Yahoo Finance 

(EUR/USD) 

GBP/USD 

Exchange Rate 

Daily GBP/USD exchange rates, 

capturing the relationship between Pound 

and USD. 

GBP/USD Daily 
Yahoo Finance 

(GBP/USD) 

FTSE 100 Index 
FTSE 100 Index values, representing the 

100 largest UK-listed companies. 
Index Value Daily 

Yahoo Finance 

(FTSE 100) 

RUSSELL 2000 

Index 

RUSSELL 2000 Index values, 

representing US small-cap stocks. 
Index Value Daily 

Yahoo Finance 

(RUSSELL 

2000) 

Crude Oil Prices  

Daily closing prices of WTI crude oil 

futures (CL=F), a key global energy cost 

indicator. 

USD/Barrel Daily 
Yahoo Finance 

(CL=F) 

Gold Prices 
Daily closing prices of gold, reflecting 

market demand for safe-haven assets. 
USD/Ounce Daily 

Yahoo Finance 

(Gold) 

Volatility Index 

(VIX) 

Volatility Index (VIX), measuring 

market uncertainty and risk sentiment. 
Index Value Daily 

Yahoo Finance 

(VIX) 

USD Index 
USD Index, tracking the value of USD 

against a basket of major currencies. 
Index Value Daily 

Yahoo Finance 

(USD Index) 

Amazon Stock 

Prices 

Daily closing prices of Amazon stock, 

reflecting the company's equity 

performance. 

USD Daily 
Yahoo Finance 

(Amazon) 

Google Stock 

Prices 

Daily closing prices of Google stock, 

representing the company's equity 

performance. 

USD Daily 
Yahoo Finance 

(Google) 

Microsoft Stock 

Prices 

Daily closing prices of Microsoft stock, 

reflecting the company's equity 

performance. 

USD Daily 
Yahoo Finance 

(Microsoft) 

Nvidia Stock 

Prices 

Daily closing prices of Nvidia stock, 

representing the company's equity 

performance. 

USD Daily 
Yahoo Finance 

(Nvidia) 
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Meta Stock 

Prices 

Daily closing prices of Meta stock, 

reflecting the company's equity 

performance. 

USD Daily 
Yahoo Finance 

(Meta) 

Tesla Stock 

Prices 

Daily closing prices of Tesla stock, 

representing the company's equity 

performance. 

USD Daily 
Yahoo Finance 

(Tesla) 

Bitcoin Prices 
Daily Bitcoin prices, capturing the 

cryptocurrency's market value. 
USD Daily 

Yahoo Finance 

(Bitcoin) 

US 10-Year 

Treasury Yield 

Daily US 10-Year Treasury Yield, a 

benchmark for risk-free rates. 
Percent Daily 

Yahoo Finance 

(US 10-Year 

Treasury Yield) 

7-Day Moving 

Average (MA7) 

7-day moving average of Apple stock 

prices, indicating short-term trends. 
USD Daily Derived 

21-Day Moving 

Average (MA21) 

21-day moving average of Apple stock 

prices, indicating longer-term trends. 
USD Daily Derived 

MACD 
Difference between the 12-day and 26-

day exponential moving averages. 
USD Daily Derived 

Signal Line 

Signal line of MACD, computed as the 9-

day exponential moving average of 

MACD and used to form the MACD 

histogram (MACD − Signal_Line) 

USD Daily Derived 

20-Day Standard 

Deviation 

(20SD) 

Standard deviation of Apple stock prices 

over 20 days. 
USD Daily Derived 

Upper Bollinger 

Band 

(upper_band) 

Upper Bollinger Band, calculated as 

MA21 + 2*(20SD). 
USD Daily Derived 

Lower Bollinger 

Band 

(lower_band) 

Lower Bollinger Band, calculated as 

MA21 - 2*(20SD). 
USD Daily Derived 

Exponential 

Moving Average 

(EMA) 

Exponential moving average of Apple 

stock prices. 
USD Daily Derived 

Relative Strength 

Index (RSI) 

RSI, a momentum indicator measuring 

overbought/oversold conditions. 
Dimensionless Daily Derived 

Momentum 
Momentum of Apple stock prices 

calculated over 4 days. 
USD Daily Derived 

Volatility 
Volatility of Apple stock prices based on 

14-day rolling standard deviation. 
Dimensionless Daily Derived 

Signal 

Target variable: trading signal (1=Buy, 

2=Sell, 0=Hold) based on RSI–MACD 

rule configuration. 

Categories Daily Derived 

2.2.3 Target Variable: Trading-Signal Definition 

The dependent variable in this study is a rule-based, three-class trading signal 

constructed from two standard momentum diagnostics: the Moving Average 

Convergence Divergence (MACD) and the Relative Strength Index (RSI). The 

intention is to translate the indicator configuration observed at each trading day into 
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an actionable label that can be learned by supervised classifiers. Let 𝑡 ∈ {1, … , 𝑇} 
denote the trading-day index, and let MACD𝑡 , SL𝑡 (the MACD signal line), and RSI𝑡 

denote the corresponding indicator values available at day 𝑡. We then define the target 

label 𝑦𝑡 ∈ {0,1,2}, where 0 represents Hold, 1 represents Buy, and 2 represents Sell. 

The labeling rule is specified as the following piecewise mapping: 

 

𝑦𝑡 = {
1, if MACD𝑡 > SL𝑡 and RSI𝑡 < 50,
2, if MACD𝑡 < SL𝑡 and RSI𝑡 > 50,
0, otherwise.

 (1) 

 

Intuitively, a Buy label (𝑦𝑡 = 1) is assigned when MACD crosses above its signal 

line—an indicator of upward momentum—while the RSI remains below the neutral 

threshold of 50, which acts as a conservative filter against entering positions after an 

already-extended run-up. Conversely, a Sell label (𝑦𝑡 = 2) is assigned when MACD 

falls below the signal line—suggesting downward momentum—while RSI is above 

50, reflecting comparatively stronger recent price strength and helping to avoid 

mechanically selling into uniformly weak conditions. All remaining configurations 

are labeled Hold (𝑦𝑡 = 0), ensuring that “action” classes are reserved for states where 

the momentum direction and the RSI filter jointly support a clearer trading 

interpretation. 

 

This construction converts the empirical problem into a three-class classification 

setting: given the engineered predictor vector 𝐱𝑡, the models are trained to 

approximate the mapping 𝐱𝑡 ↦ 𝑦𝑡. Because the label 𝑦𝑡  is computed from indicator 

values available at time 𝑡, it is naturally compatible with the chronological out-of-

sample evaluation protocol adopted in the subsequent sections. 

2.2.4 Class Imbalance Handling 

A key practical challenge in the present setting is that the rule-based trading labels are 

highly imbalanced. In financial classification problems, such an imbalance is not 

merely a statistical inconvenience; it can meaningfully distort what a model “learns,” 

because many algorithms tend to prioritize the most frequent class unless corrective 

measures are taken. To mitigate this risk, the study adopts the Synthetic Minority 

Oversampling Technique (SMOTE), which increases minority-class representation by 

creating synthetic observations in feature space rather than simply duplicating existing 

cases (Chawla et al., 2002). 

 

After feature engineering and label construction, the original signal distribution is 

strongly skewed toward Hold: the sample contains 1934 Hold observations (77.4%), 

while Buy and Sell appear 148 (5.9%) and 417 (16.7%) times, respectively. This 

pattern is consistent with realistic trading environments where “no clear action” states 

are far more common than decisive entry or exit conditions. However, if left 

unaddressed, such a distribution can lead to models that look accurate on paper but 

are systematically weak at detecting the rarer Buy and Sell states that are of primary 

interest. 
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Formally, SMOTE generates a synthetic instance for a minority-class observation 𝐱 

by selecting one of its 𝑘-nearest minority neighbors 𝐱nn and interpolating along the 

segment connecting them: 

 

𝐱syn = 𝐱 + 𝜆(𝐱nn−𝐱), 𝜆 ∈ (0,1). (2) 

 

This mechanism increases minority-class density without duplicating points and 

typically improves the learner’s ability to recover minority-class structure. 

 

In implementation, SMOTE is applied to the feature matrix 𝐗 and label vector 𝐲 

constructed after preprocessing and feature engineering, for which the effective 

sample size is 2499 observations. After resampling, the dataset expands to 5802 

observations and becomes perfectly balanced by design: Hold = 1934, Buy = 1934, 

and Sell = 1934 (each 33.3%). The resampling procedure is conducted using the 

imbalanced-learn library, which provides a standardized and reproducible SMOTE 

implementation for machine-learning workflows (Lemaître et al., 2017). 

 

This balancing step is important for two reasons. First, it prevents the training process 

from being dominated by the Hold class, which would otherwise encourage trivial 

“always-hold” behavior. Second, it allows model comparisons based on class-

sensitive metrics such as Recall and F1-score to reflect genuine discriminative ability 

rather than class prevalence effects. SMOTE is applied exclusively to the training 

partition to preserve the integrity of out-of-sample evaluation. For these reasons, 

SMOTE is treated as a core preprocessing component of the predictive pipeline. 

2.2.5 Train–Test Split Protocol 

Figure 3 visualizes the daily closing price of Apple Inc. (AAPL) over the finalized 

sample period 2014-09-17 to 2024-12-04 after the preprocessing and synchronization 

steps described above. The blue line shows the observed AAPL closing price, while 

the red dashed vertical line marks the chronological train–test split date (2021-11-05), 

with approximately 70% of the time-ordered observations allocated to model training 

and the remaining 30% to out-of-sample testing. Accordingly, the training window 

covers 2014-09-17–2021-11-05, and the testing window covers 2021-11-05–2024-12-

04. 

 

Beyond documenting the evaluation design, the figure provides a compact summary 

of the price range and variability in the sample: the minimum closing price is $20.60 

(2016-05-12) and the maximum is $241.92 (2024-12-04). The overall trajectory 

exhibits pronounced nonlinearity and volatility clustering, underscoring the relevance 

of nonparametric and ensemble-based learners. Most importantly, the time-ordered 

split prevents look-ahead bias and mirrors realistic deployment settings in which 

models are fitted on historical information and assessed on genuinely unseen future 

observations; therefore, performance measured on the testing window serves as a 

more credible indicator of generalization in practical trading scenarios. 
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Figure 3. Daily Closing Price of Apple Inc. (AAPL) with Train–Test Split  

2.3. Methods 

This study formulates trading-signal prediction as a supervised three-class 

classification problem, where the engineered cross-asset and technical-indicator 

features are used to predict the target label 𝑦𝑡 ∈ {0,1,2} (Hold/Buy/Sell). The 

modeling stage benchmarks four tree-based ensemble learners—AdaBoost, Random 

Forest, XGBoost, and LightGBM—which are well-suited to financial data due to their 

ability to capture nonlinearities, interaction effects, and threshold-type behavior under 

noise. Class imbalance is explicitly handled by SMOTE in the preprocessing pipeline 

(Section 2.1.4), while the learners described below focus on discrimination and 

generalization. For completeness, the methods are presented in approximate historical 

order together with their mathematical foundations. 

2.3.1 Adaptive Boosting (AdaBoost) 

Adaptive Boosting (AdaBoost) was introduced by Freund and Schapire (1997) as a 

procedure that converts a sequence of weak learners into a strong classifier by 

iteratively reweighting training observations. Intuitively, observations that are 

misclassified in earlier rounds receive higher weights in subsequent rounds, forcing 

the algorithm to concentrate on “hard” cases. 

 

In the binary setting, the weight assigned to the 𝑡-th weak learner ℎ𝑡(𝑥) is commonly 

expressed as: 

 

𝛼𝑡 =
1

2
ln⁡ (

1 − 𝜀𝑡
𝜀𝑡

), (3) 
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where⁡𝜀𝑡 is the weighted error rate of ℎ𝑡(𝑥). The resulting classifier aggregates weak 

learners through a weighted vote: 

 

𝐻(𝑥) = sign(∑𝛼𝑡

𝑇

𝑡=1

ℎ𝑡(𝑥)) .  (4) 

 

In this study, AdaBoost is implemented in the multi-class setting consistent with the 

three-class Signal definition; therefore, the final class prediction is obtained via the 

standard multi-class extension (rather than a binary sign rule), while the underlying 

principle—iterative reweighting and weighted aggregation—remains the same 

(Freund and Schapire, 1997). Importantly, potential imbalance in trading labels is not 

left to AdaBoost alone; it is addressed explicitly via SMOTE as part of the 

preprocessing workflow. 

2.3.2 Random Forest 

Random Forest, proposed by Breiman (2001), constructs an ensemble of decision 

trees using bootstrap resampling and random feature subsampling. Each tree is trained 

on a bootstrap sample of the data, and at each node split a randomly selected subset 

of predictors is considered. This procedure reduces correlation among trees and 

typically lowers variance relative to a single decision tree. 

 

For multi-class classification, node splitting is commonly driven by an impurity 

criterion such as the Gini index: 

 

𝐺 =∑𝑝𝑖

𝐶

𝑖=1

(1 − 𝑝𝑖) = 1 −∑𝑝𝑖
2

𝐶

𝑖=1

, (5) 

 

where 𝑝𝑖  denotes the proportion of observations belonging to class 𝑖 within the node 

and 𝐶 is the number of classes. Final predictions are obtained via majority voting 

across trees, which provides robustness under noisy predictors and improves out-of-

sample stability (Breiman, 2001). 

2.3.3 Gradient Boosting Machines (GBM) 

Gradient Boosting Machines (GBM) were popularized by Friedman (2001) as an 

additive modeling framework in which base learners are fitted sequentially to 

minimize a specified loss function 𝐿(𝑦, 𝐹(𝑥)). At iteration 𝑡, the method constructs 

pseudo-residuals (negative gradients) evaluated at the current model 𝐹𝑡−1: 

 

𝑟𝑖
(𝑡) = −

∂𝐿(𝑦𝑖 , 𝐹(𝑥𝑖))

∂𝐹(𝑥𝑖)
∣𝐹=𝐹𝑡−1 . (6) 

 

A weak learner ℎ𝑡(𝑥) (typically a shallow decision tree) is then trained to approximate 

these pseudo-residuals, and the model is updated as: 
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𝐹𝑡(𝑥) = 𝐹𝑡−1(𝑥) + 𝜂 ℎ𝑡(𝑥), (7) 

 

Where 𝜂 ∈ (0,1] is the learning rate controlling the step size and, consequently, the 

bias–variance trade-off (Friedman, 2001). This sequential correction mechanism is a 

key reason why boosting methods often perform well in complex prediction tasks with 

nonlinear decision boundaries. 

2.3.4 XGBoost (Extreme Gradient Boosting) 

XGBoost (Chen and Guestrin, 2016) is a scalable and regularized gradient boosting 

framework that enhances generalization by explicitly penalizing tree complexity. Let 

the prediction be 𝑦̂𝑖 = ∑ 𝑓𝑘
𝐾
𝑘=1 (𝑥𝑖), where each 𝑓𝑘 is a decision tree. XGBoost 

minimizes an objective of the form: 

 

ℒ(𝜃) =∑𝐿(

𝑁

𝑖=1

𝑦𝑖 , 𝑦̂𝑖) +∑Ω(

𝐾

𝑘=1

𝑓𝑘), (8) 

 

where Ω(⋅) is a regularization term that discourages overly complex trees. A 

commonly used form is: 

 

ℒΩ(𝑓) = 𝛾𝑇 +
1

2
𝜆 ∥ 𝜔 ∥2, (9) 

 

with 𝑇 denoting the number of leaves and 𝜔 the vector of leaf weights. To make 

optimization efficient, XGBoost employs a second-order Taylor approximation of the 

loss around the current prediction, yielding: 

 

ℒ (𝑡) ≈∑[𝑔𝑖𝑓(𝑥𝑖) +
1

2
ℎ𝑖𝑓(𝑥𝑖)

2]

𝑁

𝑖=1

+ Ω(𝑓), (10) 

 

where 𝑔𝑖 and ℎ𝑖 are the first and second derivatives of the loss with respect to the 

current prediction (Chen and Guestrin, 2016). This second-order structure supports 

more precise split decisions and typically improves performance under complex 

nonlinear patterns. 

2.3.5 LightGBM 

LightGBM is a gradient-boosted decision tree framework designed for computational 

efficiency and scalability (Ke et al., 2017). While it follows the same additive boosting 

principle as GBM, it accelerates training through techniques such as histogram-based 

binning and efficient split finding, which is advantageous when repeated 

hyperparameter optimization is conducted and when the feature space is relatively 
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high-dimensional. In the present context, these design choices make LightGBM a 

practical benchmark alongside XGBoost for multi-class trading-signal classification. 

 

Overall, the study combines AdaBoost and Random Forest as established ensemble 

baselines with two modern gradient-boosting implementations (XGBoost and 

LightGBM). Together, these methods provide a coherent modeling set for learning 

nonlinear mappings from cross-asset and technical-indicator features to multi-class 

trading signals under realistic market noise and imbalanced label structures. 

2.4. Model Evaluation and Backtesting 

Model performance is evaluated along two dimensions to capture both predictive 

accuracy and economic relevance. First, multi-class classification quality is assessed 

on the chronological out-of-sample test window using confusion-matrix-based 

metrics. Second, predicted labels are converted into trades and evaluated via a cost-

inclusive trading simulation that reflects realistic execution frictions. 

2.4.1 Classification Metrics 

Let 𝑦𝑡 ∈ {0,1,2} denote the realized signal (Hold/Buy/Sell) and 𝑦̂𝑡 the predicted label. 

Using the standard confusion matrix components 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, and 𝐹𝑁, we report: 

 

Accuracy =
TP + TN

TP + TN + FP + FN
,  

Precision =
TP

TP + FP
,  

Recall =
TP

TP + FN
,  

F1-score = 2 ⋅
Precision ⋅ Recall

Precision + Recall
.  

(11) 

 

These metrics summarize overall correctness (Accuracy) and class-sensitive 

performance (Precision/Recall/F1), which is particularly relevant when the labels are 

unevenly distributed. 

2.4.2 Cost-Inclusive Backtesting 

Economic performance is evaluated on the original, time-ordered test sample by 

running a trading simulation driven by model predictions 𝑦̂𝑡 (not SMOTE-resampled 

sequences). The simulator follows a long-only, all-in/all-out rule: it enters a position 

when 𝑦̂𝑡 = 1 (Buy) and exits when 𝑦̂𝑡 = 2 (Sell); 𝑦̂𝑡 = 0 (Hold) triggers no action. 

Trading frictions are modeled as a proportional one-way cost rate 

 

𝑐 = 𝑐comm + 𝑐slip + 𝑐spr, (12) 

 

covering commission, slippage, and bid–ask spread. With price 𝑃𝑡, cash 𝐶𝑡, and 

holdings 𝑞𝑡, portfolio value is tracked as 
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𝑉𝑡 = 𝐶𝑡 + 𝑞𝑡𝑃𝑡 . (13) 

 

On entry, the effective purchase price is 𝑃𝑡(1 + 𝑐) , and the number of shares is set 

by available cash: 

 

𝑞𝑡 = ⌊
𝐶𝑡−1

𝑃𝑡(1 + 𝑐)
⌋. (14) 

 

On exit, proceeds are reduced proportionally by the same cost rate. From the simulated 
{𝑉𝑡}, we report total return, buy-and-hold return over the same test window, and 

excess return. Risk and stability are summarized using annualized volatility, Sharpe 

ratio (when defined), and maximum drawdown, alongside basic trading statistics such 

as the number of trades and win rate. 

3. RESULTS AND DISCUSSION 

The results provide clear evidence on the comparative performance of the four 

ensemble learners—Random Forest, LightGBM, XGBoost, and AdaBoost—in multi-

class trading-signal prediction.  To improve robustness and reduce sensitivity to ad 

hoc parameter choices, the study adopts a principled hyperparameter optimization 

procedure implemented via Optuna (Akiba et al., 2019). This approach systematically 

explores the hyperparameter space and identifies configurations that balance model 

complexity and predictive stability.  

 

Figure 4 compares the four ensemble classifiers (Random Forest, LightGBM, 

XGBoost, and AdaBoost) using Accuracy, Precision, Recall, and F1 Score.  The 

results indicate that XGBoost delivers the best overall performance (Accuracy = 

0.974; Precision = 0.975; Recall = 0.974; F1 = 0.974), with LightGBM and Random 

Forest closely trailing at similarly high levels. In contrast, AdaBoost exhibits 

substantially weaker performance (Accuracy = 0.668; F1 = 0.536), despite a relatively 

higher precision (0.779). This divergence suggests that AdaBoost’s predictions are 

less balanced, with reduced coverage of the relevant class assignments reflected in its 

lower recall and F1. 

 

Overall, Figure 4 supports the use of modern tree-based ensembles—particularly 

gradient boosting—for multi-class prediction of trading signals under the proposed 

feature set and evaluation design. Importantly, the near-alignment of precision, recall, 

and F1 for XGBoost and LightGBM indicates that their accuracy gains are not driven 

by a single dominant class but reflect broadly consistent classification quality, which 

is essential for operational trading decisions. 
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Figure 4. Comparative Classification Performance of the Evaluated Ensemble 

Models 

 

Figure 5 presents the confusion matrices of the four machine learning models—

Random Forest, LightGBM, XGBoost, and AdaBoost—used for trading signal 

classification in this study. The results show that Random Forest, LightGBM, and 

XGBoost classify the action classes (Buy and Sell) almost perfectly. Buy is essentially 

error-free (580/580 for LightGBM and XGBoost; 579/580 for Random Forest), and 

Sell is also very clean (574–577 correct, with only a few cases drifting to Hold). This 

is important because Buy/Sell are the trades, and consistent recognition of these 

regimes supports more stable decision-making. 

 

Most remaining errors for these strong models come from Hold, which is naturally 

the hardest class because it represents “no clear signal.” Some Hold days are predicted 

as Buy or Sell, but the counts stay limited (e.g., for XGBoost: 17 Hold→Buy and 23 

Hold→Sell). 

 

AdaBoost, however, has a very different profile. It predicts Buy and Sell perfectly, 

but it cannot detect Hold (only 2 Hold days are correctly classified; most are 

misclassified as Buy or Sell). Economically, this is problematic: misclassifying Hold 

as Buy/Sell means too many trades, and once transaction costs, slippage, and bid–ask 

spreads are applied, these extra trades can erase paper profits and increase drawdowns. 

 

In short, the confusion matrices suggest that LightGBM and XGBoost are not only 

accurate, but also more economically plausible, because they do not treat the market 

as an “always-trade” environment—unlike AdaBoost. 
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Figure 5. Confusion Matrices of The Four Classifiers For the Three-Class 

Trading-Signal Prediction Task 

Figure 6 reports the out-of-sample portfolio value paths produced by trading on each 

model’s predicted signals, starting from an initial capital of $100,000. Three models 

generate economically meaningful gains over the test window. XGBoost finishes 

highest at about $149.1K (+49.1%), followed by LightGBM at $146.1K (+46.1%) and 

Random Forest at $144.9K (+44.9%). Their curves exhibit step-like jumps, as 

expected in a rule-based long/flat setting: value typically changes more when the 

model switches positions and captures sustained price moves. 

 

In contrast, AdaBoost ends at roughly $88.7K (−11.3%), indicating that its signals 

lead to poor trading decisions when realistic frictions are present. Economically, this 

pattern is consistent with a model that trades too often or enters/exits at the wrong 

times—exactly the kind of behavior that increases effective costs (commission, 

slippage, spread) and amplifies drawdowns. Overall, Figure 6 suggests that XGBoost 

and LightGBM are not only strong on classification metrics but also more viable from 
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a trading perspective, as their predictions translate into higher net wealth under the 

backtest assumptions. 

 

 
Figure 6. Portfolio Value Backtest for Ensemble Models 

 

Figure 7 summarizes the out-of-sample backtest results using the model-predicted 

signals on the original test period, under the transaction-cost setting (0.34% round-

trip; initial capital $100,000). In other words, this figure translates classification 

outputs into economic performance, which is the key test of whether “high accuracy” 

also means “useful in trading.” 

 

Three models—Random Forest, LightGBM, and XGBoost—produce consistent and 

economically meaningful gains after costs. Their total returns are +44.9%, +46.1%, 

and +49.1%, respectively, and the risk-adjusted performance is also positive (Sharpe 

≈ 0.86–0.92). Importantly, both LightGBM and XGBoost keep maximum drawdown 

relatively contained (13.2%), suggesting a more stable equity curve than Random 

Forest (17.7%). 

 

AdaBoost is the clear outlier. Even though it shows a higher win rate (58.8%), it 

delivers a negative total return (-11.3%), a negative Sharpe ratio (-0.10), and the 

largest drawdown (29.0%). The main reason is visible in the trading-activity panels: 

AdaBoost makes many more trades (68 vs. 23) and therefore pays much higher total 

transaction costs ($8,761 vs. $4,159). In practical terms, this is a classic case where 

overtrading + costs dominate the raw “hit rate,” so the strategy becomes economically 

unattractive. 
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Figure 7. Backtest Summary Under Realistic Transaction Costs 

 

After documenting out-of-sample trading performance in Figure 7, Figure 8 helps 

explain why the models behave as they do by showing the relative importance of the 

input features in the final classifier. The ranking is dominated by AAPL-derived 

technical indicators, indicating that the model primarily learns the trading-signal 

structure from price-based momentum and timing information, rather than from cross-

asset levels alone. 

 

The most influential variable is RSI (importance ≈ 0.252), followed by the MACD 

signal line (≈ 0.135) and MACD itself (≈ 0.098). This is economically intuitive 

because the target labels are defined directly through MACD vs. signal-line 

interactions and an RSI filter, so these features carry the strongest immediate 

information about the signal state. The next two contributors—Volatility (≈ 0.042) 

and Momentum (≈ 0.036)—suggest that the model also conditions its decisions on 

risk regime and speed of price changes, which is consistent with trading being harder 

during turbulent periods. 

 

Cross-asset variables (e.g., VIX, oil, indices, FX) still appear in the list, but their 

importance is more modest, implying they play a supporting role—mainly refining 

decisions at the margin—rather than driving the core buy/sell classification. 

 

The model’s decisions are anchored in market-timing indicators (RSI and MACD 

family), while broader macro/market proxies provide incremental context. This 

supports the interpretation that the strongest predictive content comes from AAPL’s 
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own momentum and regime features, which also aligns with the backtest evidence 

showing that disciplined timing (without excessive turnover) is crucial once 

transaction costs are included. 

 
Figure 8. Feature-Importance Ranking for Trading-Signal Prediction 

CONCLUSION 

This study developed and tested an end-to-end machine learning framework to predict 

three trading signals (Buy, Hold, Sell) for Apple stock by combining cross-asset 

market information with AAPL-based technical indicators. The dataset was carefully 

synchronized to avoid implicit imputation and look-ahead bias, and the target signal 

was defined using a transparent rule that links MACD and RSI conditions to trading 

actions. Because the raw labels were highly imbalanced, SMOTE was used during 

training to ensure that the models learned all classes rather than only the dominant 

one. 

 

Overall, the results show that tree-based ensemble methods achieve strong out-of-

sample performance when classifying the proposed trading signals. Among the 

competing models, XGBoost and LightGBM delivered the best overall balance across 

accuracy, precision, recall, and F1, while Random Forest performed similarly but 
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slightly below the top models. AdaBoost lagged behind, producing less stable 

classification and weaker trading outcomes, suggesting that its boosting structure was 

poorly matched to this particular signal design and feature space. 

 

Beyond predictive scores, the economic evaluation strengthens the main message. 

When the model outputs were translated into a simple trading simulation with realistic 

transaction costs, the top models produced sizable positive portfolio growth, whereas 

AdaBoost underperformed materially. This gap highlights an important practical 

point: in trading applications, high classification accuracy is not sufficient on its 

own—models must also generate signals that lead to consistent decisions under costs 

and drawdowns. 

 

The feature-importance analysis provides a clear interpretation of what drives 

predictions. The most influential inputs were RSI and the MACD family (MACD and 

its signal line), followed by volatility and momentum measures. This is economically 

intuitive because these indicators summarize trend and timing information directly 

relevant to rule-based signal states. Cross-asset variables contributed, but mostly as 

supporting context rather than the primary decision drivers. 

 

This study has several limitations. First, the target labels are rule-based and therefore 

reflect the chosen MACD–RSI logic; different labeling rules could change both class 

balance and difficulty. Second, SMOTE improves learning balance but may introduce 

synthetic patterns that do not fully reflect real market dynamics, so using the original 

time-ordered test set for backtesting remains essential. Third, the trading simulator 

uses a simplified long-only position logic and does not explore leverage, short-selling 

constraints, or more advanced execution models. 

 

Future work can extend the framework in three directions. First, alternative label 

definitions and threshold sensitivity analysis can test how robust the conclusions are 

to signal design. Second, richer information sets (e.g., macro surprises, earnings 

events, sentiment indicators) may improve generalization beyond technical signals. 

Third, more realistic trading rules—position sizing, stop-loss logic, and cost-aware 

signal filtering—could improve the link between predictive performance and 

economic value. 

 

In summary, the evidence supports using optimized gradient-boosting models to learn 

technical-signal states from a structured feature set. It also demonstrates that 

combining transparent signal construction with cost-aware backtesting is a practical 

way to assess whether predictive models can lead to economically meaningful results. 
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BAYESYEN OPTİMİZASYONLU TOPLULUK ÖĞRENMESİ İLE ÇOK 

SINIFLI ALIM-SATIM SİNYALİ SINIFLANDIRMASI 

 

GENİŞLETİLMİŞ ÖZET 

1. GİRİŞ 

Finansal piyasalarda alım–satım kararlarının zamanlaması; yüksek oynaklık, doğrusal 

olmayan ilişkiler ve gürültülü veri yapısı nedeniyle zor bir tahmin problemidir. Klasik 

teknik analiz yaklaşımları, tekil göstergeler üzerinden kural tabanlı sinyaller üretse 

de, çoklu veri kaynaklarını (çapraz varlık göstergeleri, endeksler, emtialar, kur ve risk 

göstergeleri) birlikte kullanma ve karmaşık etkileşimleri yakalama konusunda sınırlı 

kalabilmektedir. Bu çalışma, alım–satım sinyali üretimini üç sınıflı bir sınıflandırma 

problemi (Al/Tut/Sat) olarak ele alarak, topluluk öğrenme (ensemble) tabanlı modern 

makine öğrenmesi yöntemlerinin bu görevdeki performansını hem istatistiksel hem 

de ekonomik açıdan sınamayı amaçlamaktadır. 

 

Çalışmanın temel motivasyonu iki noktada yoğunlaşır: (i) Piyasa verisindeki çok 

boyutlu ve doğrusal olmayan örüntülerin, ağaç tabanlı topluluk yöntemleri tarafından 

etkin biçimde öğrenilebilmesi; (ii) “yüksek sınıflandırma başarısı”nın tek başına 

yeterli olmayıp, üretilen sinyallerin işlem maliyetleri altında gerçekten kârlı ve 

istikrarlı bir işlem performansına dönüşmesi gerekliliği. Bu nedenle çalışma, model 

performansını yalnızca Accuracy/F1 gibi ölçütlerle sınırlamamakta; maliyet dâhil 

backtest ile “ekonomik geçerliliği” de değerlendirmektedir. 

2. YÖNTEM 

Ampirik tasarım, uçtan uca bir tahmin hattı (pipeline) üzerinde kurgulanmıştır: veri 

toplama–ön işleme, özellik mühendisliği, kural tabanlı hedef değişken (sinyal) 

üretimi, sınıf dengesizliğinin giderilmesi, model eğitimi/optimizasyonu, test 

döneminde sınıflandırma ölçütleri ve maliyet dâhil backtest ile ekonomik doğrulama. 

Veri seti, yfinance aracılığıyla Apple (AAPL) kapanış fiyatları ile ABD hisse 

endeksleri, seçilmiş teknoloji hisseleri, EUR/USD–GBP/USD kurları, altın–petrol 

gibi emtialar, VIX, dolar endeksi, Bitcoin ve ABD 10 yıllık tahvil faizi gibi çapraz 

varlık göstergelerini kapsayacak şekilde oluşturulmuştur. Ham dönem 2014-01-02–

2024-12-05 olup, senkronizasyon ve eksik gözlem temizliği sonrasında nihai 

örneklem 2014-09-17–2024-12-04 aralığında 2519 işlem gününe indirgenmiştir; 

ayrıca AAPL tabanlı teknik göstergeler (hareketli ortalamalar, Bollinger bantları, 

MACD, RSI vb.) eklenerek toplam 32 girdili bir özellik uzayı elde edilmiştir. 

 

Hedef değişken, iki yaygın momentum göstergesi kullanılarak şeffaf bir kural seti ile 

tanımlanmıştır: MACD’nin sinyal çizgisini yukarı kesmesi ve RSI<50 koşulu “Al”, 

MACD’nin sinyal çizgisinin altına inmesi ve RSI>50 koşulu “Sat”, diğer tüm 

durumlar ise “Tut” olarak etiketlenmiştir. Bu kurgu, tahmin problemini üç sınıflı bir 

sınıflandırma yapısına dönüştürürken aynı zamanda etiketlerin zaman tutarlılığını 

korur. Ancak bu yapı doğal olarak dengesiz sınıf dağılımı üretmektedir (Tut sınıfı 



 

Cemal ÖZTÜRK 

294 

 

belirgin biçimde baskındır). Bu nedenle eğitim aşamasında SMOTE ile azınlık sınıflar 

sentetik olarak artırılmış; dengeleme yalnızca eğitim bölümünde uygulanarak test 

döneminde ileriye dönük yanlılığın önüne geçilmiştir. 

 

Modelleme aşamasında dört ağaç tabanlı topluluk yöntemi karşılaştırılmıştır: 

AdaBoost, Random Forest, XGBoost ve LightGBM. Hiperparametre seçiminin 

keyfîliğini azaltmak ve genelleme performansını güçlendirmek için Bayesçi 

optimizasyon yaklaşımı Optuna ile uygulanmış; modeller kronolojik bir eğitim–test 

bölmesi altında (yaklaşık %70 eğitim, %30 test) değerlendirilmiştir. Performans iki 

katmanda raporlanmıştır: (i) Confusion matrix tabanlı çok sınıflı sınıflandırma 

ölçütleri (Accuracy, Precision, Recall, F1), (ii) Al/Sat sinyallerinin long-only, all-

in/all-out işlem mantığıyla maliyet dâhil simülasyona çevrildiği backtest çıktıları 

(toplam getiri, al-tut getirisi, Sharpe, maksimum düşüş, işlem sayısı, maliyet yükü 

vb.). 

3. BULGULAR 

Sınıflandırma sonuçları, modern gradyan artırma tabanlı yöntemlerin (özellikle 

XGBoost ve LightGBM) en yüksek ve en dengeli başarıyı sağladığını göstermektedir. 

Test döneminde XGBoost; Accuracy, Precision, Recall ve F1 ölçütlerinde en iyi genel 

performansı üretmiş, LightGBM ve Random Forest çok yakın değerlerle takip 

etmiştir. AdaBoost ise genel doğruluk ve özellikle dengeli sınıflandırmayı yansıtan 

F1 bakımından belirgin biçimde geride kalmıştır. Bu ayrışma, dinamik ve dengesiz 

yapılı finansal etiketlerde, daha güçlü düzenleme ve esnek karar sınırları sunan 

gradyan artırma mimarilerinin avantajını işaret etmektedir. 

 

Confusion matrix analizi, en güçlü modellerin işlem kararları açısından kritik olan 

“Al” ve “Sat” sınıflarını neredeyse hatasız yakaladığını; hataların görece daha çok 

“Tut” sınıfında kümelendiğini ortaya koymaktadır. Bu bulgu pratik açıdan önemlidir: 

“Tut” sınıfı doğası gereği belirsiz rejimleri temsil ettiği için, bu sınıftaki sınırlı hata 

toleransı, modelin “her gün işlem yapma” eğilimine sapmaması bakımından 

gereklidir. AdaBoost’un temel sorunu tam da burada görünür hâle gelmektedir: “Tut” 

günlerini yeterince ayırt edemediği için gereksiz işlem üretmekte ve işlem 

maliyetlerine karşı kırılgan bir strateji profili sergilemektedir. 

 

Ekonomik doğrulama (backtest) katmanı, sınıflandırma başarısının “ekonomik 

fayda”ya dönüşüp dönüşmediğini açık biçimde ayrıştırmıştır. XGBoost, LightGBM 

ve Random Forest; başlangıç sermayesini test döneminde anlamlı biçimde artırmış; 

XGBoost en yüksek portföy değerine ulaşmıştır. Buna karşılık AdaBoost, işlem 

maliyetleri dâhil edildiğinde negatif toplam getiri üretmiş; daha yüksek işlem sayısı 

nedeniyle toplam maliyet yükü artmış ve maksimum düşüş derinleşmiştir. Bu sonuç, 

finansal uygulamalarda “yüksek doğruluk” söyleminin tek başına yeterli olmadığını; 

işlem sıklığı, maliyet ve drawdown gibi unsurların model seçiminin ayrılmaz parçası 

olduğunu göstermektedir. 
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4. TARTIŞMA 

Bulgular, iki temel tartışma noktasını güçlendirmektedir. Birincisi, gradyan artırma 

tabanlı topluluk yöntemleri (XGBoost/LightGBM), çapraz varlık göstergeleri ve 

teknik göstergelerden oluşan zengin özellik uzayında; etkileşimleri, eşik 

davranışlarını ve doğrusal olmayan örüntüleri daha etkin yakalayarak daha istikrarlı 

sınıflandırma üretmektedir. İkincisi, ekonomik performansın belirleyicilerinden biri 

“işlem disiplini”dir: Tut rejimini makul düzeyde tanımlayamayan bir model, yüksek 

işlem devir hızıyla maliyetleri büyütür ve kârlılığı aşındırır. AdaBoost’un kâğıt 

üzerindeki bazı sınıf doğrularına rağmen ekonomik olarak zayıf kalması, bu 

mekanizmanın somut bir örneğidir. 

 

Model davranışını açıklamak amacıyla raporlanan önem/katkı analizi, kararların 

büyük ölçüde AAPL’ye özgü teknik göstergeler tarafından sürüklendiğini 

göstermektedir. Özellikle RSI ve MACD ailesi (MACD, sinyal çizgisi) en etkili 

değişkenlerdir; bunu volatilite ve momentum gibi rejim göstergeleri izlemektedir. Bu 

sonuç ekonometrik olarak da tutarlıdır: Hedef etiketler MACD–RSI mantığıyla 

üretildiğinden, bu değişkenlerin bilgi içeriği doğrudan yüksektir; çapraz varlık 

göstergeleri ise daha çok marjinal düzeltme/bağlam sağlama rolünde kalmaktadır. 

Dolayısıyla çalışma, “sinyal tanımı–özellik uzayı–model çıktısı” arasındaki ilişkiyi 

şeffaf biçimde görünür kılarak yorumlanabilirliği güçlendirmektedir. 

SONUÇ 

Bu çalışma, AAPL için üç sınıflı alım–satım sinyali üretimini; (i) çapraz varlık 

göstergeleri + teknik göstergelerden oluşan kapsamlı bir özellik seti, (ii) sınıf 

dengesizliğini gideren SMOTE tabanlı eğitim yaklaşımı, (iii) Optuna ile Bayesçi 

hiperparametre optimizasyonu ve (iv) işlem maliyetleri altında ekonomik doğrulama 

(backtest) bileşenleriyle bütünleşik bir çerçevede değerlendirmiştir. Sonuçlar, 

XGBoost ve LightGBM’nin hem istatistiksel ölçütlerde hem de maliyet dâhil 

ekonomik performansta en başarılı yöntemler olduğunu; AdaBoost’un ise özellikle 

“Tut” rejimini ayırt edememesi nedeniyle aşırı işlem üretip maliyetler altında zayıf 

kaldığını göstermektedir. 

 

Çalışmanın başlıca katkısı, alım–satım sinyali sınıflandırmasında model 

karşılaştırmasını yalnızca tahmin başarısı ile sınırlamayıp, doğrudan ekonomik 

uygulanabilirlik testine bağlamasıdır. Gelecek araştırmalar, sinyal etiketleme 

kuralının (eşiklerin) duyarlılık analizini yaparak etiket tasarımının sonuçlara etkisini 

ölçebilir; makroekonomik sürprizler ve duygu analizi gibi gerçek zamanlı 

değişkenleri özellik setine ekleyerek genellemeyi güçlendirebilir; ayrıca pozisyon 

büyüklüğü, risk bütçeleme ve maliyet-duyarlı sinyal filtreleme gibi daha gerçekçi 

işlem kurallarıyla strateji katmanını geliştirebilir. 



 

Cemal ÖZTÜRK 

296 

 

REFERENCES 

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. (2019). Optuna: A next-

generation hyperparameter optimization framework. Proceedings of the 25th 

ACM SIGKDD International Conference on Knowledge Discovery and Data 

Mining (KDD ’19), 2623–2631. doi:10.1145/3292500.3330701 

 

Appel, G. (1979). The Moving Average Convergence-Divergence Trading Method. 

Signalert Corporation. 

 

Aroussi, R. (2024). yfinance (Version 0.1.70) [Software]. Zenodo. 

https://doi.org/10.5281/zenodo.13340981 

 

Bollinger, J. (2002). Bollinger on Bollinger Bands. McGraw-Hill. 

 

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. 

https://doi.org/10.1023/A:1010933404324 

 

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: 

Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence 

Research, 16, 321–357. https://doi.org/10.1613/jair.953 

 

Chen, T., and Guestrin, C. (2016). XGBoost: A scalable tree boosting system. 

Proceedings of the 22nd ACM SIGKDD International Conference on 

Knowledge Discovery and Data Mining, 785–794. San Francisco, CA, United 

States. https://doi.org/10.1145/2939672.2939785 

 

Cheng, L., Huang, Y., Hsieh, M., and Wu, M. (2021). A novel trading strategy 

framework based on reinforcement deep learning for financial market 

predictions. Mathematics, 9(23), 3094. https://doi.org/10.3390/math9233094 

 

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. 

The Annals of Statistics, 29(5), 1189–1232. 

https://doi.org/10.1214/aos/1013203451 

Freund, Y., and Schapire, R. E. (1997). A decision-theoretic generalization of on-line 

learning and an application to boosting. Journal of Computer and System 

Sciences, 55(1), 119–139. https://doi.org/10.1006/jcss.1997.1504 

 

Gupta, V., and Kumar, E. (2023). H3O-LGBM: Hybrid Harris Hawk Optimization-

based Light Gradient Boosting Machine model for real-time trading. Artificial 

Intelligence Review, 56(8), 8697–8720. https://doi.org/10.1007/s10462-022-

10323-0 

 

Ji, G., Yu, J., Hu, K., Xie, J., and Ji, X. (2022). An adaptive feature selection schema 

using improved technical indicators for predicting stock price movements. 

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.3390/math9233094
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1007/s10462-022-10323-0
https://doi.org/10.1007/s10462-022-10323-0


BAYESIAN-OPTIMIZED ENSEMBLE LEARNING FOR MULTI-CLASS TRADING SIGNAL 

CLASSIFICATION 

297 

 

Expert Systems with Applications, 200, 116941. 

https://doi.org/10.1016/j.eswa.2022.116941 

 

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T.-Y. 

(2017). LightGBM: A highly efficient gradient boosting decision tree. 

Proceedings of the 31st International Conference on Neural Information 

Processing Systems, 3149–3157. Long Beach, CA, United States. 

 

Lemaître, G., Nogueira, F., and Aridas, C. K. (2017). imbalanced-learn: A Python 

toolbox to tackle the curse of imbalanced datasets in machine learning. Journal 

of Machine Learning Research, 18(17), 1–5. Retrieved December 8, 2024, 

from https://imbalanced-learn.org/stable/ 

 

Li, Z., and Tam, V. (2018). A machine learning view on momentum and reversal 

trading. Algorithms, 11(11), 170. https://doi.org/10.3390/a11110170 

 

Lin, H., Chen, C., Huang, G., and Jafari, A. (2021). Stock price prediction using 

generative adversarial networks. Journal of Computer Science, 17(3), 188–

196. https://doi.org/10.3844/jcssp.2021.188.196 

 

Saifan, R., Sharif, K., Abu-Ghazaleh, M., and Abdel-Majeed, M. (2020). Investigating 

algorithmic stock market trading using ensemble machine learning methods. 

Informatica, 44(3). https://doi.org/10.31449/inf.v44i3.2904 

 

Saud, A., and Shakya, S. (2022). Directional movement index-based machine learning 

strategy for predicting stock trading signals. International Journal of Electrical 

and Computer Engineering (IJECE), 12(4), 4185–4194. 

https://doi.org/10.11591/ijece.v12i4.pp4185-4194 

 

Sebastião, H., and Godinho, P. (2021). Forecasting and trading cryptocurrencies with 

machine learning under changing market conditions. Financial Innovation, 

7(1). https://doi.org/10.1186/s40854-020-00217-x 

 

Wang, Q., Kang, K., Zhihan, Z., and Cao, D. (2021). Application of LSTM and 

Conv1D LSTM network in stock forecasting model. Artificial Intelligence 

Advances, 3(1), 36–43. https://doi.org/10.30564/aia.v3i1.2790 

 

Wang, Y., and Yan, K. (2023). Application of traditional machine learning models for 

quantitative trading of Bitcoin. Artificial Intelligence Evolution, 4(1), 34–48. 

https://doi.org/10.37256/aie.4120232226 

 

Wilder, J. W., Jr. (1978). New Concepts in Technical Trading Systems. Trend 

Research. 

 

https://doi.org/10.1016/j.eswa.2022.116941
https://imbalanced-learn.org/stable/
https://doi.org/10.3390/a11110170
https://doi.org/10.3844/jcssp.2021.188.196
https://doi.org/10.31449/inf.v44i3.2904
https://doi.org/10.11591/ijece.v12i4.pp4185-4194
https://doi.org/10.1186/s40854-020-00217-x
https://doi.org/10.30564/aia.v3i1.2790
https://doi.org/10.37256/aie.4120232226


 

Cemal ÖZTÜRK 

298 

 

 

KATKI ORANI / 

CONTRIBUTION RATE 

AÇIKLAMA / 

EXPLANATION 

KATKIDA 

BULUNANLAR / 

CONTRIBUTORS 

Fikir veya Kavram /  

Idea or Notion 

Araştırma hipotezini veya 

fikrini oluşturmak / Form 

the research hypothesis or 

idea 

Cemal ÖZTÜRK 

Tasarım / Design 

Yöntemi, ölçeği ve deseni 

tasarlamak / Designing 

method, scale and pattern 

Cemal ÖZTÜRK 

Veri Toplama ve İşleme / 

Data Collecting and 

Processing 

Verileri toplamak, 

düzenlenmek ve raporlamak 

/ Collecting, organizing and 

reporting data 

Cemal ÖZTÜRK 

Tartışma ve Yorum / 

Discussion and 

Interpretation 

Bulguların 

değerlendirilmesinde ve 

sonuçlandırılmasında 

sorumluluk almak / Taking 

responsibility in evaluating 

and finalizing the findings 

Cemal ÖZTÜRK 

Literatür Taraması / 

Literature Review 

Çalışma için gerekli 

literatürü taramak / Review 

the literature required for 

the study 

Cemal ÖZTÜRK 

 


