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Abstract

This study tests a practical machine-learning pipeline to predict daily Buy/Hold/Sell
trading signals for Apple (AAPL) and to assess whether “good classification” also
yields good trading returns after costs. The dataset is built from synchronized daily
market series and AAPL-based technical indicators. The target signal is generated by
a transparent rule using MACD relative to its signal line and an RSI filter, so the task
is a supervised three-class classification problem. Four tree-based ensemble models
are compared: Random Forest, LightGBM, XGBoost, and AdaBoost. To avoid fragile,
hand-picked settings, each model is tuned with a systematic search procedure.
Because the raw labels are strongly imbalanced, SMOTE is applied for training, while
all performance and economic tests are run on the original time-ordered test period
to keep the evaluation realistic. The results show a clear ranking. XGBoost delivers
the best overall classification quality (Accuracy 0.974, Precision 0.975, Recall 0.974,
F1 0.974). LightGBM and Random Forest follow at similarly high levels, while
AdaBoost is much weaker (Accuracy 0.668, FI 0.536) despite relatively higher
precision (0.779), meaning its predictions are not well balanced across classes.
Confusion-matrix evidence supports this: the strong models classify Buy and Sell
almost perfectly, and most remaining errors come from the Hold class. AdaBoost,
however, fails to detect Hold and instead generates many Buy/Sell signals on Hold
days. Economic backtests confirm the same story under realistic transaction costs and
initial capital. Trading on predicted signals yields +49.1% for XGBoost, +46.1% for
LightGBM, and +44.9% for Random Forest. AdaBoost loses money (—11.3%), with
worse risk outcomes (Sharpe —0.10, max drawdown 29.0%) and heavier trading
(about 68 trades, higher total costs). Overall, modern gradient-boosting ensembles
are both statistically strong and economically more credible for this signal design.
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BAYESYEN OPTiMiZASYONLU TOPLULUK OGRENMESI iLE COK
SINIFLI ALIM-SATIM SiNYALIi SINIFLANDIRMASI?

0z

Bu ¢alisma, Apple (AAPL) icin giinliik Al/Tut/Sat islem sinyallerini tahmin eden pratik
bir makine ogrenmesi hattini test etmekte ve “iyi siniflandirma” bagarisinin, islem
maliyetleri eklendiginde iyi bir ekonomik performansa doniisiip dontismedigini
incelemektedir. Veri seti, senkronize edilmis giinliik piyasa serileri ile AAPL ye ait
teknik gostergelerden olusturulmaktadr. Hedef sinyal, MACD 'nin sinyal ¢izgisiyle
karsilastiriimast ve RSI filtresi kullanan seffaf bir kuralla iiretildiginden, problem
denetimli bir ti¢ sumifli siniflandirma problemine déoniismektedir. Calismada dort agag
tabanli topluluk modeli karsilastirilmaktadir: Random Forest, LightGBM, XGBoost
ve AdaBoost. Sonuglarin ad hoc parametre segimlerine duyarli olmamast igin her
model sistematik bir arama prosediiriiyle ayarlanmaktadir. Ham etiketlerde ciddi
swnif dengesizligi bulundugundan egitim asamasinda SMOTE uygulanmakta; ancak
tiim performans ve ekonomik testler, gercek¢i degerlendirme icin orijinal zaman sirali
test déneminde yiiriitiilmektedir. Bulgular, modeller arasinda belirgin bir siralama
ortaya koymaktadir. XGBoost en yiiksek siniflandirma kalitesini sunmaktadir
(Dogruluk 0.974, Kesinlik 0.975, Duyarliik 0.974, F1 0.974). LightGBM ve Random
Forest ¢cok yakin diizeylerde onu izlemektedir. AdaBoost ise belirgin bicimde daha
zayif kalmaktadir (Dogruluk 0.668, FI1 0.536); ayrica kesinligi nispeten yiiksek
goriinse de (0.779) simiflar arasinda dengeli bir performans sergileyememektedir.
Karisiklik matrisi sonuglar:t bu tabloyu desteklemekte; giiclii modellerin Al ve Sat
swmiflarim neredeyse hatasiz ayirdigi, kalan hatalarin biiyiik olciide Tut sinifinda
yogunlastigi gériilmektedir. Buna karsilik AdaBoost’un Tut swnifint neredeyse hig
yakalayamadigr ve bir¢ok Tut giiniinii Al/Sat olarak etiketledigi anlasiimaktadir.
Ekonomik geriye doniik test sonuglar: da ayni ériintiiyii dogrulamaktadr. Gergekgi
islem maliyetleri ve baslangic sermayesi altinda, model tahminleriyle islem yapmak
XGBoost igin +%49.1, LightGBM icin +%46.1 ve Random Forest icin +%44.9 getiri
tiretmektedir. AdaBoost ise zarar yazmaktadwr (—%11.3) ve daha olumsuz bir risk
profili sergilemektedir (Sharpe —0.10, maksimum diisiis %29.0). Ayrica daha fazla
islem iirettiginden (vaklasik 68 islem) toplam maliyetleri de daha yiiksek
gerceklesmektedir. Genel olarak, bu sinyal tasarumi altinda modern gradient boosting
tabanl topluluklarin hem istatistiksel olarak daha giiclii hem de ekonomik agidan
daha inandwrici sonuglar iirettigi degerlendirilmektedir.

Anahtar Kelimeler: Makine Ogrenmesi, Alim—Satim Sinyali Stniflandirmasi, Teknik
Gostergeler, Algoritmik Alim—Satim, Bayesyen Hiperparametre Optimizasyonu.

JEL Kodlar: C45, C53, G17, C63, G11.

“Bu ¢alisma Arastirma ve Yayin Etigine uygun olarak hazirlanmistir.”

2 Genisletilmis Tiirkge Ozet, makalenin sonunda yer almaktadir.

272
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1. INTRODUCTION

Financial markets stand at the heart of the global economy, playing a critical role in
capital allocation, wealth generation, and economic stability. Over the years, these
markets have been shaped by rapid technological advancements, globalization, and
shifting economic paradigms. The inherent complexity and volatility of financial
markets make them a challenging domain for researchers, traders, and policymakers
seeking to predict trading signals and devise effective strategies. These challenges are
exacerbated by the vast amounts of heterogeneous data generated daily, which often
includes financial indicators, economic reports, news sentiment, and even social
media trends.

In this setting, forecasting actionable trading signals is difficult because return
dynamics are nonlinear, noisy, and regime-dependent, and because predictive
relationships can change over time. Traditional methods of technical analysis have
therefore been supplemented by machine learning techniques that leverage large
historical datasets to identify patterns and generate data-driven predictions. Recent
studies show that machine-learning models can outperform traditional statistical
approaches in a range of trading scenarios (Saud and Shakya, 2022; Wang et al., 2021;
Cheng et al., 2021).

Integrating machine learning into financial analytics marks a meaningful shift in how
market information is processed. Unlike classical parametric models, machine
learning methods can handle high-dimensional feature spaces and capture complex
interactions across variables. Prior research spans supervised learning models trained
on labeled price data (Li and Tam, 2018), ensemble learners that improve stability and
generalization (Saifan et al., 2020; Gupta and Kumar, 2023), deep learning
architectures designed for sequential patterns in time series (Wang and Yan, 2023;
Sebastido and Godinho, 2021), and reinforcement learning frameworks that learn
trading policies through interaction with the market environment (Cheng et al., 2021).
This body of work collectively emphasizes that predictive performance depends not
only on model choice but also on feature design, tuning strategy, and evaluation
realism.

Building on this literature, the present study develops an empirical benchmarking
framework for multi-class trading-signal prediction with a clear emphasis on practical
evaluation and interpretability. We focus on supervised, tree-based ensemble
methods—Random Forest, LightGBM, XGBoost, and AdaBoost—because they
provide strong predictive baselines while remaining relatively transparent and
deployment-friendly in applied settings.

Empirically, we construct a cross-asset dataset for Apple Inc. (AAPL) using the
yfinance interface (Aroussi, 2024) and enrich the dataset with standard technical
indicators that summarize trend, momentum, and volatility. Trading signals are
defined as a three-class target (Buy/Hold/Sell) using a transparent, rule-based labeling
scheme derived from MACD and RSI. Because class imbalance is a common feature
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of signal labels, we apply SMOTE to balance the training set and reduce biased
learning toward dominant classes (Chawla et al., 2002). Model hyperparameters are
tuned via Bayesian optimization with Optuna (Akiba et al., 2019), and model behavior
is interpreted using SHAP-based feature attribution to improve transparency
(Lundberg and Lee, 2017). Finally, beyond standard classification metrics, we
evaluate whether predictive gains translate into economic relevance using a cost-
inclusive backtesting design that accounts for realistic transaction frictions.

Overall, the study contributes a reproducible end-to-end pipeline that links data
construction, feature engineering, signal labeling, imbalance handling, model tuning,
interpretability, and economic evaluation within a single framework. The remainder
of the paper is organized as follows: Section 2 describes the data, signal definition,
and modeling workflow; Section 3 reports empirical results and diagnostic evidence;
and Section 4 discusses implications and limitations for practical trading applications.

2. MATERIALS AND METHODS

2.1. Empirical Workflow and Study Pipeline

This section summarizes the empirical workflow used to develop and validate multi-
class machine learning models for trading signal prediction. As a compact roadmap,
Figure 1 links each stage of the pipeline—from data acquisition and feature
construction to economic validation and interpretability—thereby supporting
transparency and reproducibility.

As shown in Figure 1, the pipeline proceeds sequentially through data collection
(Phase 1), feature engineering (Phase 2), and rule-based signal generation (Phase 3)
that defines the Buy/Hold/Sell target space. To mitigate label imbalance prior to
model fitting, the workflow incorporates SMOTE-based resampling (Chawla et al.,
2002). Competing ensemble learners—Random Forest, LightGBM, XGBoost, and
AdaBoost—are then trained (Phase 4), with hyperparameters tuned via Optuna (Akiba
et al., 2019) (Phase 5). Model performance is assessed using standard classification
metrics together with trading simulation (backtesting) to evaluate decision usefulness
under realistic execution logic (Phase 6). Finally, SHAP-based feature attribution and
risk-oriented portfolio diagnostics are used to interpret model behavior and quantify
economic relevance (Lundberg and Lee, 2017) (Phase 7).
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Figure 1. The Methodological Framework of the Study

2.2. Data and Study Design
2.2.1 Data Sources and Asset Universe

The dataset utilized in this study comprises a broad set of market variables collected
via the yfinance Python package (Aroussi, 2024). Specifically, we retrieve daily
closing prices for the target asset (AAPL) together with a cross-asset indicator set
spanning major U.S. equity indices (e.g., NASDAQ, S&P 500, Dow Jones, NYSE),
international equity benchmarks (e.g., FTSE 100, Russell 2000), key exchange rates
(EUR/USD and GBP/USD), commodities (crude oil and gold), market uncertainty
and currency proxies (VIX and U.S. dollar index), selected mega-cap technology
stocks, Bitcoin, and the U.S. 10-year Treasury yield. This diversified asset universe is
intended to capture common drivers of equity dynamics and to provide a richer
information set for learning trading signals.
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The empirical dataset is constructed in three sequential steps to ensure a clean,
synchronized, and time-consistent sample for predictive modeling. First, the raw daily
series are downloaded from Yahoo Finance over the broad collection window 2014-
01-02 to 2024-12-05. Second, all instruments are merged into a single panel and
aligned by trading date, yielding an initial matrix of 3916 observations. Third, to avoid
implicit imputation and ensure a fully observed feature vector at each timestamp, rows
with missing values are removed. This step eliminates 1397 rows, resulting in a final
modeling sample spanning 2014-09-17 to 2024-12-04, comprising 2519 trading days
and 21 input features.

2.2.2 Feature Engineering: Technical Indicators

Building on this synchronized base panel, additional engineered predictors are derived
to summarize trends, volatility, and momentum (e.g., moving averages, Bollinger
Bands, and related technical indicators) (Lin et al., 2021). In line with standard
technical-analysis constructions, the engineered set includes moving averages and
Bollinger Band components (Bollinger, 2002), MACD and its signal line (Appel,
1979), and RSI (Wilder, 1978). With these additions, the final predictor set used for
model estimation contains 32 input features in total (21 cross-asset close-price
features plus 11 AAPL-derived technical-indicator features), excluding the target
variable Signal. Recent evidence also suggests that the informativeness of such
indicator-based feature spaces can improve when feature quality and selection are
explicitly addressed (Ji et al., 2022).

Figure 2 provides an interpretable snapshot of how the engineered technical indicators
summarize different dimensions of AAPL’s recent market behavior (last 500 trading
days of the synchronized sample). Panel (a) overlays the price path with MA7 and
MAZ21, which smooth high-frequency noise and make trend direction easier to
diagnose at two horizons. The Bollinger Bands extend this view by forming a
volatility envelope around the moving average: episodes where the price persistently
leans toward the upper band typically coincide with strong trend continuation and
elevated dispersion, whereas compressions and frequent touches of the lower band are
consistent with weaker momentum and drawdown phases (Bollinger, 2002).

Panel (b) reports MACD, its signal line, and the corresponding histogram (computed
as MACD minus the signal line in the plotting routine). The histogram’s sign changes
offer a compact way to visualize shifts in medium-term momentum, while large
positive/negative swings reflect periods when the fast and slow exponential moving
averages diverge materially—often aligning with trend accelerations or reversals
(Appel, 1979).

Panel (c) shows the 14-day RSI together with conventional threshold bands at 30 and
70. Rather than treating these cutoffs as deterministic “buy/sell” triggers, the figure is
used here as a diagnostic: clustering near the upper region signals sustained buying
pressure, whereas dips below 30 indicate stress regimes where mean-reversion
dynamics may become more plausible (Wilder, 1978).
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Overall, Figure 2 motivates the feature-engineering design adopted in the predictive
pipeline: each indicator targets a distinct market attribute—trend (moving averages),
volatility state (Bollinger Bands), momentum timing (MACD), and oscillator-based
pressure (RSI). This modular structure aligns with recent evidence that feature quality
and careful selection of technical indicators can materially affect stock-movement
classification performance (Ji et al., 2022).

(a) Price with Moving Averages and Bollinger Bands
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Figure 2. Technical Indicators for AAPL Based on the Last 500 Trading Days

Table 1 provides a consolidated description of the full set of variables used in the
empirical analysis, covering both the cross-asset close-price predictors and the
engineered AAPL-based technical indicators, along with their definitions, units,
sampling frequency, and data provenance.
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Table 1. Features and Their Descriptions.

278

Feature Name Description Units Frequency  Source
Apple Stock Daily closing prices of Apple stock, Yahoo Finance
j representing the company's equity USD Daily
Prices (AAPL) performance. (AAPL)
NASDAQ Composite Index values, Yahoo Finance
NASDAQ Index  reflecting the performance of tech-heavy  Index Value Daily (NASDAQ)
equities.
NYSE Composite Index values, Yahoo Finance
NYSE Index summarizing the performance of stocks  Index Value Daily (NYSE)
listed on NYSE.
S&P 500 Index values, indicating the . Yahoo Finance
S&P 500 Index performance of 500 large-cap US stocks. Index Value Daily (S&P 500)
o . Jones Dow Jones Industrial Average values, . Yahoo Finance
Industrial . . . Index Value Daily
Average representing 30 major US companies. (Dow Jones)
Daily EUR/USD exchange rates, .
ESC%?S?Rate capturing the relationship between Euro ~ EUR/USD Daily é%lg%sg; ance
e and USD.
Daily GBP/USD  exchange rates, .
gﬁigis?}late capturing the relationship between Pound ~ GBP/USD Daily zgg;(;US]l;l)nance
e and USD.
FTSE 100 Index values, representing the . Yahoo Finance
FTSE 100 Index 100 largest UK-listed companies. Index Value Daily (FTSE 100)
RUSSELL 2000 RUSSELL 2000 Index  val Yahoo _Finance
; eX - Values:  hdex Value Daily (RUSSELL
Index representing US small-cap stocks. 2000)
Daily closing prices of WTI crude oil Yahoo Finance
Crude Oil Prices futures (CL=F), a key global energy cost ~ USD/Barrel Daily _
(CL=F)
indicator.
. Daily closing prices of gold, reflecting . Yahoo Finance
Gold Prices market demand for safe-haven assets. USD/Ounce Daily (Gold)
Volatility Index  Volatility Index (VIX), measuring . Yahoo Finance
(VIX) market uncertainty and risk sentiment. Index Value Daily (VIX)
USD Index, tracking the value of USD . Yahoo Finance
USD Index against a basket of major currencies. Index Value Daily (USD Index)
Daily closing prices of Amazon stock, .
]?;r:;zon Stock reflecting  the company's equity USD Daily Z:lr}rll(:;on)l: tnance
performance.
Google  Stock Daily closing prices of Google stock, Yahoo  Finance
. representing the company's equity USD Daily
Prices performance. (Google)
. Daily closing prices of Microsoft stock, .
i/gz:soft Stock reflecting  the company's equity USD Daily Z\Z}jl:r(())sofl:)mance
performance.
L Daily closing prices of Nvidia stock, .
NYldla Stock representing the company's equity USD Daily Yahp 0 Finance
Prices (Nvidia)

performance.



BAYESIAN-OPTIMIZED ENSEMBLE LEARNING FOR MULTI-CLASS TRADING SIGNAL

CLASSIFICATION
Mea sk Db g piee uf M oy Yo P
Prices & pany quity y (Meta)
performance.
Tesla Stock rDalrly s:ﬁflng tlf rices n(zlfa:e'sla Stocik, USD Dail Yahoo Finance
Prices cpresenting e companys  equity y (Tesla)
performance.
Bitcoin Prices Daily Bltcomv prices, capturing the USD Daily Yf{hoo. Finance
cryptocurrency's market value. (Bitcoin)
UsS 10-Year  Daily US 10-Year Treasury Yield, a . Yahoo  Finance
. . Percent Daily (US 10-Year
Treasury Yield benchmark for risk-free rates. .
Treasury Yield)
7-Day Moving  7-day moving average of Apple stock . .
Average (MA7) prices, indicating short-term trends. USD Daily Derived
21-Day Moving  21-day moving average of Apple stock . .
Average (MA21)  prices, indicating longer-term trends. Usb Daily Derived
MACD Difference be?tween }he 12-day and 26- USD Daily Derived
day exponential moving averages.
Signal line of MACD, computed as the 9-
. . day exponential moving average of . .
Signal Line MACD and used to form the MACD ~ USP Daily Derived
histogram (MACD — Signal Line)
20-Day Standard L .
Deviation gz,ir;dza(;(z;lezlatlon of Apple stock prices USD Daily Derived
(20SD) Y-
Upper Bollinger .
Upper Bollinger Band, calculated as . .
Band MA21 + 2%(20SD). USD Daily Derived
(upper_band)
Lower Bollinger .
Lower Bollinger Band, calculated as . .
Band MA21 - 2%(20SD). UusD Daily Derived
(lower_band)
Exponential . .
Moving Average ft):)l; ﬁnerrilzl:sl moving average of Apple UusD Daily Derived
(EMA) prices.
Relative Strength ~ RSI, a momentum indicator measuring . . . .
Index (RSI) overbought/oversold conditions. Dimensionless  Daily Derived
Momentum Momentum of Apple stock prices USD Daily Derived
calculated over 4 days.
- Volatility of Apple stock prices based on . - . . .
Volatility 14-day rolling standard deviation. Dimensionless ~ Daily Derived
Target variable: trading signal (1=Buy,
Signal 2=Sell, 0=Hold) based on RSI-MACD  Categories Daily Derived

rule configuration.

2.2.3 Target Variable: Trading-Signal Definition

The dependent variable in this study is a rule-based, three-class trading signal
constructed from two standard momentum diagnostics: the Moving Average
Convergence Divergence (MACD) and the Relative Strength Index (RSI). The
intention is to translate the indicator configuration observed at each trading day into
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an actionable label that can be learned by supervised classifiers. Let t € {1,...,T}
denote the trading-day index, and let MACD;, SL; (the MACD signal line), and RSI;
denote the corresponding indicator values available at day t. We then define the target
label y; € {0,1,2}, where 0 represents Hold, 1 represents Buy, and 2 represents Sell.
The labeling rule is specified as the following piecewise mapping:

1, if MACD,; > SL; and RSI; < 50,
v, =12, ifMACD; < SL, and RSI; > 50, (1)
0, otherwise.

Intuitively, a Buy label (y; = 1) is assigned when MACD crosses above its signal
line—an indicator of upward momentum—while the RSI remains below the neutral
threshold of 50, which acts as a conservative filter against entering positions after an
already-extended run-up. Conversely, a Sell label (y; = 2) is assigned when MACD
falls below the signal line—suggesting downward momentum—while RSI is above
50, reflecting comparatively stronger recent price strength and helping to avoid
mechanically selling into uniformly weak conditions. All remaining configurations
are labeled Hold (y, = 0), ensuring that “action” classes are reserved for states where
the momentum direction and the RSI filter jointly support a clearer trading
interpretation.

This construction converts the empirical problem into a three-class classification
setting: given the engineered predictor vector X, the models are trained to
approximate the mapping X, = y;. Because the label y; is computed from indicator
values available at time ¢, it is naturally compatible with the chronological out-of-
sample evaluation protocol adopted in the subsequent sections.

2.2.4 Class Imbalance Handling

A key practical challenge in the present setting is that the rule-based trading labels are
highly imbalanced. In financial classification problems, such an imbalance is not
merely a statistical inconvenience; it can meaningfully distort what a model “learns,”
because many algorithms tend to prioritize the most frequent class unless corrective
measures are taken. To mitigate this risk, the study adopts the Synthetic Minority
Oversampling Technique (SMOTE), which increases minority-class representation by
creating synthetic observations in feature space rather than simply duplicating existing
cases (Chawla et al., 2002).

After feature engineering and label construction, the original signal distribution is
strongly skewed toward Hold: the sample contains 1934 Hold observations (77.4%),
while Buy and Sell appear 148 (5.9%) and 417 (16.7%) times, respectively. This
pattern is consistent with realistic trading environments where “no clear action” states
are far more common than decisive entry or exit conditions. However, if left
unaddressed, such a distribution can lead to models that look accurate on paper but
are systematically weak at detecting the rarer Buy and Sell states that are of primary
interest.
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Formally, SMOTE generates a synthetic instance for a minority-class observation x
by selecting one of its k-nearest minority neighbors X, and interpolating along the
segment connecting them:

Xgn = X + A(Xpp—X), A€ (0,1). ©)

This mechanism increases minority-class density without duplicating points and
typically improves the learner’s ability to recover minority-class structure.

In implementation, SMOTE is applied to the feature matrix X and label vector y
constructed after preprocessing and feature engineering, for which the effective
sample size is 2499 observations. After resampling, the dataset expands to 5802
observations and becomes perfectly balanced by design: Hold = 1934, Buy = 1934,
and Sell = 1934 (each 33.3%). The resampling procedure is conducted using the
imbalanced-learn library, which provides a standardized and reproducible SMOTE
implementation for machine-learning workflows (Lemaitre et al., 2017).

This balancing step is important for two reasons. First, it prevents the training process
from being dominated by the Hold class, which would otherwise encourage trivial
“always-hold” behavior. Second, it allows model comparisons based on class-
sensitive metrics such as Recall and F1-score to reflect genuine discriminative ability
rather than class prevalence effects. SMOTE is applied exclusively to the training
partition to preserve the integrity of out-of-sample evaluation. For these reasons,
SMOTE is treated as a core preprocessing component of the predictive pipeline.

2.2.5 Train—Test Split Protocol

Figure 3 visualizes the daily closing price of Apple Inc. (AAPL) over the finalized
sample period 2014-09-17 to 2024-12-04 after the preprocessing and synchronization
steps described above. The blue line shows the observed AAPL closing price, while
the red dashed vertical line marks the chronological train—test split date (2021-11-05),
with approximately 70% of the time-ordered observations allocated to model training
and the remaining 30% to out-of-sample testing. Accordingly, the training window
covers 2014-09-17-2021-11-05, and the testing window covers 2021-11-05-2024-12-
04.

Beyond documenting the evaluation design, the figure provides a compact summary
of the price range and variability in the sample: the minimum closing price is $20.60
(2016-05-12) and the maximum is $241.92 (2024-12-04). The overall trajectory
exhibits pronounced nonlinearity and volatility clustering, underscoring the relevance
of nonparametric and ensemble-based learners. Most importantly, the time-ordered
split prevents look-ahead bias and mirrors realistic deployment settings in which
models are fitted on historical information and assessed on genuinely unseen future
observations; therefore, performance measured on the testing window serves as a
more credible indicator of generalization in practical trading scenarios.
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Figure 3. Daily Closing Price of Apple Inc. (AAPL) with Train—Test Split
2.3. Methods

This study formulates trading-signal prediction as a supervised three-class
classification problem, where the engineered cross-asset and technical-indicator
features are used to predict the target label y, € {0,1,2} (Hold/Buy/Sell). The
modeling stage benchmarks four tree-based ensemble learners—AdaBoost, Random
Forest, XGBoost, and LightGBM—which are well-suited to financial data due to their
ability to capture nonlinearities, interaction effects, and threshold-type behavior under
noise. Class imbalance is explicitly handled by SMOTE in the preprocessing pipeline
(Section 2.1.4), while the learners described below focus on discrimination and
generalization. For completeness, the methods are presented in approximate historical
order together with their mathematical foundations.

2.3.1 Adaptive Boosting (AdaBoost)

Adaptive Boosting (AdaBoost) was introduced by Freund and Schapire (1997) as a
procedure that converts a sequence of weak learners into a strong classifier by
iteratively reweighting training observations. Intuitively, observations that are
misclassified in earlier rounds receive higher weights in subsequent rounds, forcing
the algorithm to concentrate on “hard” cases.

In the binary setting, the weight assigned to the t-th weak learner h,(x) is commonly
expressed as:

1 1_€t
e (15,
t
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where &, is the weighted error rate of h,(x). The resulting classifier aggregates weak
learners through a weighted vote:

T
H(x) = sign (Z a; ht(x)> . 4

t=1

In this study, AdaBoost is implemented in the multi-class setting consistent with the
three-class Signal definition; therefore, the final class prediction is obtained via the
standard multi-class extension (rather than a binary sign rule), while the underlying
principle—iterative reweighting and weighted aggregation—remains the same
(Freund and Schapire, 1997). Importantly, potential imbalance in trading labels is not
left to AdaBoost alone; it is addressed explicitly via SMOTE as part of the
preprocessing workflow.

2.3.2 Random Forest

Random Forest, proposed by Breiman (2001), constructs an ensemble of decision
trees using bootstrap resampling and random feature subsampling. Each tree is trained
on a bootstrap sample of the data, and at each node split a randomly selected subset
of predictors is considered. This procedure reduces correlation among trees and
typically lowers variance relative to a single decision tree.

For multi-class classification, node splitting is commonly driven by an impurity
criterion such as the Gini index:

C

c
6= pU-p)=1-) pl, ®)
i=1 i=1
where p; denotes the proportion of observations belonging to class i within the node
and C is the number of classes. Final predictions are obtained via majority voting
across trees, which provides robustness under noisy predictors and improves out-of-
sample stability (Breiman, 2001).

2.3.3 Gradient Boosting Machines (GBM)

Gradient Boosting Machines (GBM) were popularized by Friedman (2001) as an
additive modeling framework in which base learners are fitted sequentially to
minimize a specified loss function L(y, F(x)). At iteration t, the method constructs
pseudo-residuals (negative gradients) evaluated at the current model F,_;:

© _ oL(y;, F(x,))

L W F=Fp_q" (6)

A weak learner h,(x) (typically a shallow decision tree) is then trained to approximate
these pseudo-residuals, and the model is updated as:
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Fe(x) = Fe_q(x) + 1 he (), @)

Where n € (0,1] is the learning rate controlling the step size and, consequently, the
bias—variance trade-off (Friedman, 2001). This sequential correction mechanism is a
key reason why boosting methods often perform well in complex prediction tasks with
nonlinear decision boundaries.

2.3.4 XGBoost (Extreme Gradient Boosting)

XGBoost (Chen and Guestrin, 2016) is a scalable and regularized gradient boosting
framework that enhances generalization by explicitly penalizing tree complexity. Let
the prediction be §; = YX_, fi (x;), where each f; is a decision tree. XGBoost
minimizes an objective of the form:

£60) = ) L9 + ) fo) ®)
i=1 k=1

where Q(-) is a regularization term that discourages overly complex trees. A
commonly used form is:

L) =Tzl IR ©

with T denoting the number of leaves and w the vector of leaf weights. To make
optimization efficient, XGBoost employs a second-order Taylor approximation of the
loss around the current prediction, yielding:

N

1
o= Z [gif (@) + 5 hif ()| + Q). (10)

i=1

where g; and h; are the first and second derivatives of the loss with respect to the
current prediction (Chen and Guestrin, 2016). This second-order structure supports
more precise split decisions and typically improves performance under complex
nonlinear patterns.

2.3.5 LightGBM

LightGBM is a gradient-boosted decision tree framework designed for computational
efficiency and scalability (Ke et al., 2017). While it follows the same additive boosting
principle as GBM, it accelerates training through techniques such as histogram-based
binning and efficient split finding, which is advantageous when repeated
hyperparameter optimization is conducted and when the feature space is relatively
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high-dimensional. In the present context, these design choices make LightGBM a
practical benchmark alongside XGBoost for multi-class trading-signal classification.

Overall, the study combines AdaBoost and Random Forest as established ensemble
baselines with two modern gradient-boosting implementations (XGBoost and
LightGBM). Together, these methods provide a coherent modeling set for learning
nonlinear mappings from cross-asset and technical-indicator features to multi-class
trading signals under realistic market noise and imbalanced label structures.

2.4. Model Evaluation and Backtesting

Model performance is evaluated along two dimensions to capture both predictive
accuracy and economic relevance. First, multi-class classification quality is assessed
on the chronological out-of-sample test window using confusion-matrix-based
metrics. Second, predicted labels are converted into trades and evaluated via a cost-
inclusive trading simulation that reflects realistic execution frictions.

2.4.1 Classification Metrics

Lety, € {0,1,2} denote the realized signal (Hold/Buy/Sell) and ¥, the predicted label.
Using the standard confusion matrix components TP, TN, FP, and FN, we report:

TP + TN

TP + TN + FP + FN’
TP

TP + FP’
TP an

TP + FN’
Precision - Recall

Accuracy =
Precision =

Recall =

Fl1- =2 .
score Precision + Recall

These metrics summarize overall correctness (Accuracy) and class-sensitive
performance (Precision/Recall/F1), which is particularly relevant when the labels are
unevenly distributed.

2.4.2 Cost-Inclusive Backtesting

Economic performance is evaluated on the original, time-ordered test sample by
running a trading simulation driven by model predictions y, (not SMOTE-resampled
sequences). The simulator follows a long-only, all-in/all-out rule: it enters a position
when J, = 1 (Buy) and exits when J, = 2 (Sell); §; = 0 (Hold) triggers no action.
Trading frictions are modeled as a proportional one-way cost rate

€ = Ccomm + Cslip + Cspr' (12)
covering commission, slippage, and bid—ask spread. With price P, cash C;, and

holdings g, portfolio value is tracked as
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Vi = C; + q¢ Py (13)

On entry, the effective purchase price is P,(1 + c) , and the number of shares is set
by available cash:

Ceq
lPt(l + o)l (14)

On exit, proceeds are reduced proportionally by the same cost rate. From the simulated
{V,}, we report total return, buy-and-hold return over the same test window, and
excess return. Risk and stability are summarized using annualized volatility, Sharpe
ratio (when defined), and maximum drawdown, alongside basic trading statistics such
as the number of trades and win rate.

3. RESULTS AND DISCUSSION

The results provide clear evidence on the comparative performance of the four
ensemble learners—Random Forest, LightGBM, XGBoost, and AdaBoost—in multi-
class trading-signal prediction. To improve robustness and reduce sensitivity to ad
hoc parameter choices, the study adopts a principled hyperparameter optimization
procedure implemented via Optuna (Akiba et al., 2019). This approach systematically
explores the hyperparameter space and identifies configurations that balance model
complexity and predictive stability.

Figure 4 compares the four ensemble classifiers (Random Forest, LightGBM,
XGBoost, and AdaBoost) using Accuracy, Precision, Recall, and F1 Score. The
results indicate that XGBoost delivers the best overall performance (Accuracy =
0.974; Precision = 0.975; Recall = 0.974; F1 = 0.974), with LightGBM and Random
Forest closely trailing at similarly high levels. In contrast, AdaBoost exhibits
substantially weaker performance (Accuracy = 0.668; F1 =0.536), despite a relatively
higher precision (0.779). This divergence suggests that AdaBoost’s predictions are
less balanced, with reduced coverage of the relevant class assignments reflected in its
lower recall and F1.

Overall, Figure 4 supports the use of modern tree-based ensembles—particularly
gradient boosting—for multi-class prediction of trading signals under the proposed
feature set and evaluation design. Importantly, the near-alignment of precision, recall,
and F1 for XGBoost and LightGBM indicates that their accuracy gains are not driven
by a single dominant class but reflect broadly consistent classification quality, which
is essential for operational trading decisions.
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Figure 4. Comparative Classification Performance of the Evaluated Ensemble
Models

Figure 5 presents the confusion matrices of the four machine learning models—
Random Forest, LightGBM, XGBoost, and AdaBoost—used for trading signal
classification in this study. The results show that Random Forest, LightGBM, and
XGBoost classify the action classes (Buy and Sell) almost perfectly. Buy is essentially
error-free (580/580 for LightGBM and XGBoost; 579/580 for Random Forest), and
Sell is also very clean (574—577 correct, with only a few cases drifting to Hold). This
is important because Buy/Sell are the trades, and consistent recognition of these
regimes supports more stable decision-making.

Most remaining errors for these strong models come from Hold, which is naturally
the hardest class because it represents “no clear signal.” Some Hold days are predicted
as Buy or Sell, but the counts stay limited (e.g., for XGBoost: 17 Hold—Buy and 23
Hold—Sell).

AdaBoost, however, has a very different profile. It predicts Buy and Sell perfectly,
but it cannot detect Hold (only 2 Hold days are correctly classified; most are
misclassified as Buy or Sell). Economically, this is problematic: misclassifying Hold
as Buy/Sell means too many trades, and once transaction costs, slippage, and bid—ask
spreads are applied, these extra trades can erase paper profits and increase drawdowns.

In short, the confusion matrices suggest that LightGBM and XGBoost are not only

accurate, but also more economically plausible, because they do not treat the market
as an “always-trade” environment—unlike AdaBoost.
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Figure 5. Confusion Matrices of The Four Classifiers For the Three-Class
Trading-Signal Prediction Task

Figure 6 reports the out-of-sample portfolio value paths produced by trading on each
model’s predicted signals, starting from an initial capital of $100,000. Three models
generate economically meaningful gains over the test window. XGBoost finishes
highest at about $149.1K (+49.1%), followed by LightGBM at $146.1K (+46.1%) and
Random Forest at $144.9K (+44.9%). Their curves exhibit step-like jumps, as
expected in a rule-based long/flat setting: value typically changes more when the
model switches positions and captures sustained price moves.

In contrast, AdaBoost ends at roughly $88.7K (—11.3%), indicating that its signals
lead to poor trading decisions when realistic frictions are present. Economically, this
pattern is consistent with a model that trades too often or enters/exits at the wrong
times—exactly the kind of behavior that increases effective costs (commission,
slippage, spread) and amplifies drawdowns. Overall, Figure 6 suggests that XGBoost
and LightGBM are not only strong on classification metrics but also more viable from
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a trading perspective, as their predictions translate into higher net wealth under the
backtest assumptions.

XGBoost: $149.1K (+49.1%)

e

e

LightGBM: $146.1K (+46.1%)

$150K [
Models

Random Forest

«— Random Forest: $144.9K (+44.9%)

$140K -
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Figure 6. Portfolio Value Backtest for Ensemble Models

Figure 7 summarizes the out-of-sample backtest results using the model-predicted
signals on the original test period, under the transaction-cost setting (0.34% round-
trip; initial capital $100,000). In other words, this figure translates classification
outputs into economic performance, which is the key test of whether “high accuracy”
also means “useful in trading.”

Three models—Random Forest, LightGBM, and XGBoost—produce consistent and
economically meaningful gains after costs. Their total returns are +44.9%, +46.1%,
and +49.1%, respectively, and the risk-adjusted performance is also positive (Sharpe
~ 0.86—0.92). Importantly, both LightGBM and XGBoost keep maximum drawdown
relatively contained (13.2%), suggesting a more stable equity curve than Random
Forest (17.7%).

AdaBoost is the clear outlier. Even though it shows a higher win rate (58.8%), it
delivers a negative total return (-11.3%), a negative Sharpe ratio (-0.10), and the
largest drawdown (29.0%). The main reason is visible in the trading-activity panels:
AdaBoost makes many more trades (68 vs. 23) and therefore pays much higher total
transaction costs ($8,761 vs. $4,159). In practical terms, this is a classic case where
overtrading + costs dominate the raw “hit rate,” so the strategy becomes economically
unattractive.
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Figure 7. Backtest Summary Under Realistic Transaction Costs

After documenting out-of-sample trading performance in Figure 7, Figure 8 helps
explain why the models behave as they do by showing the relative importance of the
input features in the final classifier. The ranking is dominated by AAPL-derived
technical indicators, indicating that the model primarily learns the trading-signal
structure from price-based momentum and timing information, rather than from cross-
asset levels alone.

The most influential variable is RSI (importance = 0.252), followed by the MACD
signal line (= 0.135) and MACD itself (= 0.098). This is economically intuitive
because the target labels are defined directly through MACD vs. signal-line
interactions and an RSI filter, so these features carry the strongest immediate
information about the signal state. The next two contributors—Volatility (= 0.042)
and Momentum (= 0.036)—suggest that the model also conditions its decisions on
risk regime and speed of price changes, which is consistent with trading being harder
during turbulent periods.

Cross-asset variables (e.g., VIX, oil, indices, FX) still appear in the list, but their
importance is more modest, implying they play a supporting role—mainly refining
decisions at the margin—rather than driving the core buy/sell classification.

The model’s decisions are anchored in market-timing indicators (RSI and MACD
family), while broader macro/market proxies provide incremental context. This
supports the interpretation that the strongest predictive content comes from AAPL’s
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own momentum and regime features, which also aligns with the backtest evidence
showing that disciplined timing (without excessive turnover) is crucial once

transaction costs are included.
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Figure 8. Feature-Importance Ranking for Trading-Signal Prediction

CONCLUSION

This study developed and tested an end-to-end machine learning framework to predict
three trading signals (Buy, Hold, Sell) for Apple stock by combining cross-asset
market information with AAPL-based technical indicators. The dataset was carefully
synchronized to avoid implicit imputation and look-ahead bias, and the target signal
was defined using a transparent rule that links MACD and RSI conditions to trading
actions. Because the raw labels were highly imbalanced, SMOTE was used during
training to ensure that the models learned all classes rather than only the dominant

one.

Overall, the results show that tree-based ensemble methods achieve strong out-of-
sample performance when classifying the proposed trading signals. Among the
competing models, XGBoost and LightGBM delivered the best overall balance across
accuracy, precision, recall, and F1, while Random Forest performed similarly but
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slightly below the top models. AdaBoost lagged behind, producing less stable
classification and weaker trading outcomes, suggesting that its boosting structure was
poorly matched to this particular signal design and feature space.

Beyond predictive scores, the economic evaluation strengthens the main message.
When the model outputs were translated into a simple trading simulation with realistic
transaction costs, the top models produced sizable positive portfolio growth, whereas
AdaBoost underperformed materially. This gap highlights an important practical
point: in trading applications, high classification accuracy is not sufficient on its
own—models must also generate signals that lead to consistent decisions under costs
and drawdowns.

The feature-importance analysis provides a clear interpretation of what drives
predictions. The most influential inputs were RSI and the MACD family (MACD and
its signal line), followed by volatility and momentum measures. This is economically
intuitive because these indicators summarize trend and timing information directly
relevant to rule-based signal states. Cross-asset variables contributed, but mostly as
supporting context rather than the primary decision drivers.

This study has several limitations. First, the target labels are rule-based and therefore
reflect the chosen MACD-RSI logic; different labeling rules could change both class
balance and difficulty. Second, SMOTE improves learning balance but may introduce
synthetic patterns that do not fully reflect real market dynamics, so using the original
time-ordered test set for backtesting remains essential. Third, the trading simulator
uses a simplified long-only position logic and does not explore leverage, short-selling
constraints, or more advanced execution models.

Future work can extend the framework in three directions. First, alternative label
definitions and threshold sensitivity analysis can test how robust the conclusions are
to signal design. Second, richer information sets (e.g., macro surprises, earnings
events, sentiment indicators) may improve generalization beyond technical signals.
Third, more realistic trading rules—position sizing, stop-loss logic, and cost-aware
signal filtering—could improve the link between predictive performance and
economic value.

In summary, the evidence supports using optimized gradient-boosting models to learn
technical-signal states from a structured feature set. It also demonstrates that
combining transparent signal construction with cost-aware backtesting is a practical
way to assess whether predictive models can lead to economically meaningful results.
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BAYESYEN OPTiMiZASYONLU TOPLULUK OGRENMESI iLE COK
SINIFLI ALIM-SATIM SiNYALIi SINIFLANDIRMASI

GENIiSLETILMIS OZET
1. GIRIS

Finansal piyasalarda alim—satim kararlarinin zamanlamasi; yiiksek oynaklik, dogrusal
olmayan iliskiler ve giiriiltiili veri yapisi nedeniyle zor bir tahmin problemidir. Klasik
teknik analiz yaklasimlari, tekil gostergeler iizerinden kural tabanli sinyaller iiretse
de, coklu veri kaynaklarin1 (¢capraz varlik gostergeleri, endeksler, emtialar, kur ve risk
gostergeleri) birlikte kullanma ve karmagik etkilesimleri yakalama konusunda sinirl
kalabilmektedir. Bu ¢alisma, alim—satim sinyali iiretimini ti¢ sinifli bir siniflandirma
problemi (Al/Tut/Sat) olarak ele alarak, topluluk 6grenme (ensemble) tabanli modern
makine 6grenmesi yontemlerinin bu gorevdeki performansini hem istatistiksel hem
de ekonomik agidan sinamay1 amaglamaktadir.

Calismanin temel motivasyonu iki noktada yogunlasir: (i) Piyasa verisindeki ¢ok
boyutlu ve dogrusal olmayan oriintiilerin, agac tabanli topluluk yontemleri tarafindan
etkin bicimde ogrenilebilmesi; (i) “yiiksek siniflandirma basarisi’nin tek basina
yeterli olmayip, lretilen sinyallerin iglem maliyetleri altinda ger¢ekten karli ve
istikrarli bir iglem performansina déniismesi gerekliligi. Bu nedenle ¢alisma, model
performansini yalnizca Accuracy/F1 gibi Ol¢giitlerle sinirlamamakta; maliyet dahil

backtest ile “ekonomik gecerliligi” de degerlendirmektedir.
2. YONTEM

Ampirik tasarim, ugtan uca bir tahmin hatt1 (pipeline) iizerinde kurgulanmistir: veri
toplama—o6n isleme, Ozellik miihendisligi, kural tabanli hedef degisken (sinyal)
tretimi, smnif dengesizliginin giderilmesi, model egitimi/optimizasyonu, test
doneminde siniflandirma dlgiitleri ve maliyet dahil backtest ile ekonomik dogrulama.
Veri seti, yfinance araciligiyla Apple (AAPL) kapanis fiyatlar1 ile ABD hisse
endeksleri, se¢ilmis teknoloji hisseleri, EUR/USD-GBP/USD kurlari, altin—petrol
gibi emtialar, VIX, dolar endeksi, Bitcoin ve ABD 10 yillik tahvil faizi gibi ¢apraz
varlik gostergelerini kapsayacak sekilde olusturulmustur. Ham dénem 2014-01-02—
2024-12-05 olup, senkronizasyon ve eksik gozlem temizligi sonrasinda nihai
orneklem 2014-09-17-2024-12-04 araliginda 2519 islem gilinline indirgenmistir;
ayrica AAPL tabanl teknik gostergeler (hareketli ortalamalar, Bollinger bantlari,
MACD, RSI vb.) eklenerek toplam 32 girdili bir 6zellik uzay1 elde edilmistir.

Hedef degisken, iki yaygin momentum gostergesi kullanilarak seffaf bir kural seti ile
tanimlanmistir: MACD’nin sinyal ¢izgisini yukar1 kesmesi ve RSI<50 kosulu “Al”,
MACD’nin sinyal g¢izgisinin altina inmesi ve RSI>50 kosulu “Sat”, diger tiim
durumlar ise “Tut” olarak etiketlenmistir. Bu kurgu, tahmin problemini ti¢ sinifl1 bir
siiflandirma yapisina doniistiiriircken ayni zamanda etiketlerin zaman tutarliligin
korur. Ancak bu yap1 dogal olarak dengesiz sinif dagilimi iiretmektedir (Tut sinifi
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belirgin bicimde baskindir). Bu nedenle egitim agamasinda SMOTE ile azinlik siniflar
sentetik olarak artirilmis; dengeleme yalnizca egitim bdliimiinde uygulanarak test
doneminde ileriye doniik yanliligin 6niine gegilmistir.

Modelleme agamasinda dort aga¢ tabanli topluluk yontemi karsilastirilmistir:
AdaBoost, Random Forest, XGBoost ve LightGBM. Hiperparametre segiminin
keyfiligini azaltmak ve genelleme performansini gii¢lendirmek icin Bayesci
optimizasyon yaklasimi Optuna ile uygulanmis; modeller kronolojik bir egitim—test
boélmesi altinda (yaklasik %70 egitim, %30 test) degerlendirilmistir. Performans iki
katmanda raporlanmistir: (i) Confusion matrix tabanli ¢ok sinifli smiflandirma
Olciitleri (Accuracy, Precision, Recall, F1), (ii) Al/Sat sinyallerinin long-only, all-
in/all-out islem mantigiyla maliyet dahil simiilasyona cevrildigi backtest ciktilari
(toplam getiri, al-tut getirisi, Sharpe, maksimum diisii, islem sayisi, maliyet yiikii

vb.).
3. BULGULAR

Siniflandirma sonuglari, modern gradyan artirma tabanli yontemlerin (6zellikle
XGBoost ve LightGBM) en yiiksek ve en dengeli basariy1 sagladigin1 gostermektedir.
Test doneminde XGBoost; Accuracy, Precision, Recall ve F1 6lgiitlerinde en iyi genel
performans: {iretmis, LightGBM ve Random Forest ¢ok yakin degerlerle takip
etmistir. AdaBoost ise genel dogruluk ve 6zellikle dengeli siniflandirmay1 yansitan
F1 bakimindan belirgin bi¢gimde geride kalmistir. Bu ayrisma, dinamik ve dengesiz
yapilt finansal etiketlerde, daha gii¢lii diizenleme ve esnek karar sinirlari sunan
gradyan artirma mimarilerinin avantajini isaret etmektedir.

Confusion matrix analizi, en gii¢clii modellerin iglem kararlar1 agisindan kritik olan
“Al” ve “Sat” siniflarini1 neredeyse hatasiz yakaladigini; hatalarin goérece daha ¢ok
“Tut” smifinda kiimelendigini ortaya koymaktadir. Bu bulgu pratik agidan énemlidir:
“Tut” sinifi dogas1 geregi belirsiz rejimleri temsil ettigi i¢in, bu siniftaki sinirli hata
toleransi, modelin “her giin islem yapma” egilimine sapmamasi bakimindan
gereklidir. AdaBoost™un temel sorunu tam da burada goriiniir hale gelmektedir: “Tut”
glinlerini yeterince aymrt edemedigi icin gereksiz islem {iretmekte ve islem
maliyetlerine kars1 kirilgan bir strateji profili sergilemektedir.

Ekonomik dogrulama (backtest) katmani, siniflandirma basarisinin “ekonomik
fayda”ya doniislip doniismedigini agik bigimde ayristirmistir. XGBoost, LightGBM
ve Random Forest; baglangi¢ sermayesini test doneminde anlamli bi¢imde artirmis;
XGBoost en yiiksek portfoy degerine ulasmigtir. Buna karsilik AdaBoost, islem
maliyetleri dahil edildiginde negatif toplam getiri iiretmis; daha yiiksek islem sayis1
nedeniyle toplam maliyet yiikii artmis ve maksimum diislis derinlesmistir. Bu sonug,
finansal uygulamalarda “yiiksek dogruluk” sdyleminin tek basina yeterli olmadigini;
islem siklig1, maliyet ve drawdown gibi unsurlarin model se¢iminin ayrilmaz pargasi
oldugunu gdstermektedir.
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4. TARTISMA

Bulgular, iki temel tartigma noktasini giiclendirmektedir. Birincisi, gradyan artirma
tabanli topluluk yontemleri (XGBoost/LightGBM), ¢apraz varlik gostergeleri ve
teknik gostergelerden olusan zengin Ozellik uzayinda; etkilesimleri, esik
davraniglarin1 ve dogrusal olmayan oriintiileri daha etkin yakalayarak daha istikrarl
smiflandirma iiretmektedir. Ikincisi, ekonomik performansin belirleyicilerinden biri
“islem disiplini”dir: Tut rejimini makul diizeyde tanimlayamayan bir model, yiiksek
islem devir hiztyla maliyetleri biiyiitiir ve karliligi asindirir. AdaBoost’un kagit
tizerindeki bazi smif dogrularina ragmen ekonomik olarak zayif kalmasi, bu
mekanizmanin somut bir 6rnegidir.

Model davranisini agiklamak amaciyla raporlanan onem/katki analizi, kararlarin
biyiik olciide AAPL’ye oOzgii teknik gostergeler tarafindan siiriiklendigini
gostermektedir. Ozellikle RSI ve MACD ailesi (MACD, sinyal ¢izgisi) en etkili
degiskenlerdir; bunu volatilite ve momentum gibi rejim gostergeleri izlemektedir. Bu
sonu¢ ekonometrik olarak da tutarlidir: Hedef etiketler MACD-RSI mantigiyla
tiretildiginden, bu degiskenlerin bilgi igerigi dogrudan yiiksektir; capraz varlik
gostergeleri ise daha ¢ok marjinal diizeltme/baglam saglama roliinde kalmaktadir.
Dolayistyla galisma, “sinyal tanimi—6zellik uzayi—model ¢iktis1” arasindaki iligkiyi
seffaf bicimde goriiniir kilarak yorumlanabilirligi giiclendirmektedir.

SONUC

Bu calisma, AAPL i¢in li¢ smifli alim—satim sinyali iretimini; (i) ¢apraz varlik
gostergeleri + teknik gostergelerden olusan kapsamli bir 6zellik seti, (ii) sinif
dengesizligini gideren SMOTE tabanli egitim yaklasimi, (iii) Optuna ile Bayesci
hiperparametre optimizasyonu ve (iv) islem maliyetleri altinda ekonomik dogrulama
(backtest) bilesenleriyle biitiinlesik bir cergevede degerlendirmistir. Sonuglar,
XGBoost ve LightGBM’nin hem istatistiksel Olgiitlerde hem de maliyet dahil
ekonomik performansta en basarili yontemler oldugunu; AdaBoost’un ise 6zellikle
“Tut” rejimini ayirt edememesi nedeniyle asir1 islem tretip maliyetler altinda zayif
kaldigin1 gostermektedir.

Calismanin  baglica katkisi, alim—satim sinyali siniflandirmasinda model
karsilagtirmasint yalnizca tahmin basarist ile sinirlamayip, dogrudan ekonomik
uygulanabilirlik testine baglamasidir. Gelecek arastirmalar, sinyal etiketleme
kuralinin (esiklerin) duyarlilik analizini yaparak etiket tasariminin sonuglara etkisini
Olcebilir; makroekonomik siirprizler ve duygu analizi gibi ger¢ek zamanl
degiskenleri 6zellik setine ekleyerek genellemeyi gli¢lendirebilir; ayrica pozisyon
biyiikliigii, risk biitceleme ve maliyet-duyarl sinyal filtreleme gibi daha gercekei
islem kurallartyla strateji katmanini gelistirebilir.
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