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Abstract: Reliable analysis of UAV telemetry data is critical for mission safety, especially as drones are increasingly deployed 
in complex and high-risk environments. These data streams often include anomalies arising from sensor faults, environmental 
disruptions, or cyber-physical attacks, making robust anomaly detection essential. This study introduces an unsupervised 
anomaly detection framework designed specifically for high-frequency UAV telemetry. It combines domain-driven feature 
engineering with an AutoML-based optimization pipeline that enables automated model selection and hyperparameter tuning. 
The framework integrates four unsupervised algorithms—Local Outlier Factor, Isolation Forest, One-Class SVM, and Elliptic 
Envelope—ensuring adaptability to the dynamic nature of UAV operations. Evaluated on a real-world dataset of 127,000 
samples from 48 UAV missions, the system uses expert-labeled anomaly segments solely for validation to preserve the integrity 
of unsupervised learning. Among all methods, Local Outlier Factor yielded the best results with 0.920 accuracy, 0.880 
precision, 0.850 recall, and 0.860 F1-score. Scalable and low-latency, the proposed solution is well-suited for real-time 
deployment. By bridging theoretical advances with operational needs, this work contributes to safer and more resilient aerial 
robotic systems. 
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İnsansız Hava Aracı Telemetrisinde Otomatik Makine Öğrenmesi Tabanlı Anomali Tespiti 

 
Öz: İnsansız Hava Araçlarının (İHA) telemetri verilerinin güvenilir şekilde analiz edilmesi, özellikle karmaşık ve riskli 
ortamlarda görev başarısı ve operasyonel güvenlik açısından kritik öneme sahiptir. Bu veri akışları, sensör arızaları, çevresel 
etkenler veya siber-fiziksel saldırılar nedeniyle anormallikler içerebilir. Bu nedenle, sağlam bir anomali tespit mekanizması 
gereklidir. Bu çalışma, yüksek frekanslı İHA telemetrisi için özel olarak tasarlanmış, gözetimsiz bir anomali tespit çerçevesi 
sunmaktadır. Yaklaşım, alan bilgisine dayalı özellik mühendisliğini, model seçimi ve hiperparametre ayarlarını 
otomatikleştiren bir AutoML tabanlı optimizasyon süreciyle birleştirir. Sistem; Local Outlier Factor, Isolation Forest, One-
Class SVM ve Elliptic Envelope olmak üzere dört farklı gözetimsiz algoritmayı entegre ederek, İHA operasyonlarının dinamik 
doğasına uyum sağlar. 48 farklı İHA görevinden toplanan 127.000 örnek içeren gerçek dünya veri kümesi üzerinde yapılan 
değerlendirmelerde, uzmanlar tarafından etiketlenmiş anomali segmentleri yalnızca doğrulama amacıyla kullanılmıştır. En iyi 
performans, %92 doğruluk, %88 kesinlik, %85 duyarlılık ve %86 F1-skoru ile Local Outlier Factor algoritması tarafından elde 
edilmiştir. Gerçek zamanlı uygulamalar için ölçeklenebilir ve düşük gecikmeli olarak tasarlanan bu sistem, İHA’larda otomatik 
arıza izleme ve güvenli, dayanıklı hava araçları ekosistemlerinin gelişimine önemli katkılar sunmaktadır. 
 
Anahtar kelimeler: Anomali tespiti, insansız hava araçları, otomatik makine öğrenmesi. 
 
1. Introduction 
 

The Unmanned Aerial Vehicles or drones have revolutionized industries ranging from logistics and 
agriculture to disaster management and defense. With these autonomous systems becoming integrated into the 
contemporary infrastructure, their networked operation through the Internet of Drones (IoD) has been a 
revolutionary paradigm. IoD platforms provide real-time communication, coordination, and data exchange 
between drone fleets to support high-end applications like aerial surveillance, package delivery, and environmental 
monitoring. Yet, the use of telemetry data—continuous feeds of sensor readings, position reports, and system 
status messages—presents significant challenges to the provision of operational reliability and security. Anomalies 
in IoD telemetry data, regardless of whether they are sensor fault-induced, cyberattack-induced, or interference-
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induced, present critical risks to mission failure, safety risks, and economic losses. Classical anomaly detection 
techniques, which are conventionally recommended for static or low-dimensional data sets, cannot handle the 
dynamic and high-dimensional characteristics of IoD telemetry and require new techniques with specific 
application to this field. 

UAVs have evolved from niche military equipment to pervasive instruments in the commercial and civilian 
spheres. Their capability to venture into hostile or unreachable territories, along with developments in autonomy 
and connectivity, has unlocked uses in precision agriculture, search-and-rescue missions, and urban air mobility. 
The IoD environment, which networks drones via cloud servers and edge computing nodes, continues to augment 
their capabilities by facilitating fleet-level control, real-time analytics, and remote command issuance. 

Central to IoD operations is telemetry data, a multivariate time-series stream capturing metrics such as: 
• Positional Data: Latitude, longitude, altitude, and GPS fix status. 
• Kinematic Parameters: Groundspeed, airspeed, climb rate, and orientation (roll, pitch, yaw). 
• System Health: Battery voltage, current, energy consumption, and vibration levels. 
• Mission-Specific Metrics: Distance to target, waypoint progression. 

These parameters must be monitored for flight stability, hardware malfunction, and cyber-physical attack. 
For example, abrupt voltage fluctuation of the battery indicates faulty power system, and erratic GPS coordinates 
signal spoofing attacks. Yet, high volume, high velocity, and heterogeneity of telemetry data prevent anomaly 
detection, especially in real-time analysis-intensive applications. 

There are four key challenges in anomaly detection from IoD telemetry data: 
1. Temporal Dependencies and High-Dimensionality: Telemetry streams comprise dozens of 

physically related variables sampled at high rates. For example, a drone’s velocity (groundspeed, 
airspeed) and attitude (roll, pitch, yaw) are physically coupled, and models must discover 
spatiotemporal correlations rather than isolated features. 

2. Unpredictable Operating Environments: UAVs fly in unpredictable environments in which wind 
gusts, electromagnetic interference, and shifting payloads cause temporary deviations from normal 
behavior that are indistinguishable from true anomalies. 

3. Class Imbalance and Label Scarcity: Anomalies are infrequent occurrences in telemetry data, which 
results in class-imbalanced datasets. Moreover, labeling anomalies is expensive and usually 
impossible in real-world deployment. 

4. Real-Time Processing Constraints: IoD systems require low-latency anomaly detection to facilitate 
real-time corrective measures, e.g., rerouting drones or emergency landings. 

Classic thresholding approaches and supervised learning break down in these cases. Thresholds are too 
inflexible to capture variations in context, and supervised models need enormous sets of labeled data that are 
almost never available. Unsupervised and semi-supervised methods, which learn “normal” patterns from unlabeled 
data, are an attractive solution but demand careful model and parameter selection—a step still manually and 
tediously performed. 

The incorporation of AutoML in IoD anomaly detection removes the constraints of human model selection 
and hyperparameter tuning. AutoML simplifies the machine learning pipeline by automating feature engineering, 
algorithm selection, and hyperparameter tuning required to handle the dynamic and heterogeneous nature of 
telemetry data. The AutoML process was realized through a custom optimization routine using standard parameter 
search and tuning strategies, rather than a commercial AutoML platform. In IoD environments, where telemetry 
feature sets differ greatly across missions and operating conditions, AutoML facilitates adaptive anomaly detection 
systems that can self-optimize independently. AutoML platforms can assess such trade-offs in real time, choosing 
the best-performing algorithm based on runtime performance metrics. 

This work contributes to the state of the art in methodological innovations specific to IoD anomaly detection. 
Informing this work is a formalized framework for systematic benchmarking of unsupervised algorithms along 
UAV-specific operational dimensions like latency, noise robustness, and responsiveness to dynamic environments. 
This framework provides algorithmic evaluation standardization for real-world IoD deployments. Building on this, 
we introduce an automated pipeline that streamlines anomaly detection workflows using advanced optimization 
techniques, tailoring model configurations to telemetry properties on the fly. This automation reduces the reliance 
on hand-tuning while also making access more democratized for non-machine learning-expert operators. 
Furthermore, empirical insights are codified into actionable guidelines mapping anomaly types (e.g., sensor 
failures, communication hijacks) to algorithmic strengths, which simplifies prioritization for practitioners based 
on mission-critical needs. Together, these contributions close gaps between theoretical developments and practical 
needs of IoD ecosystems. They enable scalable solutions for autonomous drone networks. Unlike previous 
approaches, our framework combines AutoML-driven model optimization with expert-validated unsupervised 
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anomaly detection tailored to the complex, high-frequency nature of UAV telemetry data, ensuring both 
adaptability and interpretability. 

This paper offers the following key contributions: 
• A fully unsupervised anomaly detection framework for UAV telemetry, integrating AutoML-based 

hyperparameter optimization with domain-specific feature engineering. 
• A comprehensive benchmarking of four unsupervised models (LOF, Isolation Forest, One-Class SVM, 

Elliptic Envelope) on a real-world UAV telemetry dataset comprising 127,000 records from 48 missions. 
• A validated, real-time ready anomaly detection pipeline, optimized for deployment in resource-

constrained aerial platforms with interpretability and scalability in mind. 
As UAVs become mainstream technologies, their safe integration into airspace systems is of the highest 

priority. Our framework addresses this requirement by eliminating the necessity of manual tuning and adapting to 
evolving telemetry patterns, enabling operators to focus on mission completion. By enhancing resilience to both 
hardware failure and cyber attacks, this research paves the way for safer, more reliable autonomous systems in an 
increasingly connected aerial ecosystem. 

The remainder of this paper is structured to guide the reader through the research methodology, experimental 
results, and practical insights. Section 2 reviews related work in UAV anomaly detection, AutoML, and IoT 
security, contextualizing our contributions within existing literature. Section 3 details the IoD telemetry dataset, 
preprocessing techniques, and the architecture of the proposed approach. Section 4 presents empirical evaluations 
of the four anomaly detection algorithms, comparing their performance. Section 5 discusses the implications of 
our findings, addressing limitations and trade-offs in real-world deployments. Finally, Section 6 concludes with a 
summary of key contributions and future research directions, including the integration of federated learning for 
privacy-preserving swarm analytics and edge-AI optimizations for low-latency processing. 
 
2. Related Work 

 
The domain of anomaly detection has witnessed significant advancements across IoT, industrial systems, and 

unmanned aerial systems, driven by innovations in machine learning, sensor fusion, and decentralized 
architectures. This section organizes recent research into thematic categories, emphasizing methodologies, 
challenges, and contributions to handling multivariate time-series data, privacy preservation, and real-time 
processing. 

 
2.1. Anomaly detection in IoT and industrial systems 

 
IoT and industrial applications demand robust frameworks to manage multivariate sensor data, class 

imbalance, and dynamic operational environments. Study [1] addresses sensor interdependencies by clustering 
correlated sensor streams, offering scalability for high-dimensional IoT environments. Complementing this, [2] 
tackles class imbalance through XGBoost-based feature selection and optimized LSTM loss functions, achieving 
an AUC-ROC of 0.984. The integration of network and sensor data is explored in [3], where autoencoders and 
LSTMs enhance detection robustness against stealthy attacks in industrial control systems. [4] further validates 
the benefits of multi-source data fusion, combining network traffic, sensor readings, and hardware status to achieve 
85.41% accuracy in anomaly classification. Challenges in additive manufacturing are addressed by [5], which 
employs zero-bias deep neural networks (ZBDNN) to detect defects like voids and resin-rich areas with 99.71% 
accuracy, while [6] leverages GANs to balance datasets and improve defect detection reliability. Automated model 
selection is tackled in [7], which uses meta-learning to dynamically choose optimal algorithms based on 
manufacturing data characteristics, reducing dependency on domain expertise. Building on this, the AID4I 
framework [8] leverages automated machine learning to perform end-to-end intrusion detection in IIoT networks, 
combining preprocessing, hybrid SHAP-genetic feature selection, and hyperparameter tuning across 14 classifiers. 
It achieves up to 99.87% accuracy while significantly reducing model development time and manual effort. Study 
[9] extends these principles to smart transportation, integrating Bayesian change point detection and forecasting 
to secure connected vehicles with 53.83% higher accuracy than traditional methods. 

 
2.2. UAV-specific anomaly detection techniques 
 

Unmanned Aerial Vehicles demand customized solutions owing to their dependency on multi-sensor 
infrastructures, dynamic flight environments, and exposure to cyber-physical attacks. Federated learning and 
multi-modal denoising are employed in research [10] for privacy-preserving anomaly detection in UAV swarms 
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with 99.01% detection accuracy. [11] secures swarms via Merkle tree-based attestation and Byzantine consensus, 
which allows decentralized containment of anomalies without exposing data. Sensor fusion is the focus of [12], 
combining GPS, accelerometer, and gyroscope data to achieve quasi-perfect accuracy (AUC = 1.00). 
Spatiotemporal correlations are leveraged in [13], where an STC-LSTM-AE model recovers actual flight data with 
98.75% accuracy. Hardware-specific challenges are overcome in [14], where wavelet scattering is combined with 
LSTM autoencoders for detecting propeller failures up to 130 seconds in advance of failure. [15] trains semi-
supervised 1D convolutional models on normal flight data to detect signal noise and transient failures, whereas 
[16] employs Large Language Models (LLMs) with retrieval-augmented generation (RAG) to facilitate 
contextualized decision-making for UAV missions.  Study [17] explores AI-driven fuzzing techniques to uncover 
vulnerabilities in UAV firmware and protocols, highlighting gaps in proprietary drone security testing. 
Complementing these efforts, study [18] presents a comprehensive analysis of privacy and security challenges in 
the Internet of Drones, identifying GPS spoofing, data injection, and command tampering as key threats. The study 
reviews mitigation strategies such as blockchain-based authentication, lightweight IDS, and cryptographic 
communication frameworks tailored for UAV networks. 

 
2.3. Addressing data scarcity and concept drift 

 
Anomaly detection in evolving systems must overcome challenges like limited labeled data and dynamic 

environments. Study [19] addresses data scarcity by aligning simulated and real UAV data via dynamic time 
warping (DTW), enabling effective knowledge transfer with LSTM-AM models. [20] employs memory-
augmented autoencoders (MemAE) to store prototypical flight patterns, achieving AUC scores up to 0.9988 with 
minimal training data. Online learning is explored in [21], which combines ARF-ADWIN and KNN-ADWIN 
models with PSO optimization to adapt to IoT data streams in real time. [22] tackles sensor degradation through 
meta-learning and ensemble strategies, improving F1-scores by 16% in industrial systems. [23] introduces VMD-
LSTM hybrids to filter periodic patterns in server telemetry, minimizing false alarms through automatic 
hyperparameter tuning. 

 
2.4. Privacy-preserving and lightweight detection frameworks 

 
Resource constraints and privacy concerns in distributed systems necessitate efficient and secure anomaly 

detection methods. [24] combines semi-supervised learning with Mamdani fuzzy inference systems (FIS) to reduce 
data transmission overhead, achieving 99.70% accuracy in WSNs. [25] deploys a lightweight multi-classification 
model on UAV firmware, requiring only 48 KB of storage while achieving 89.38% accuracy. Study [26] introduces 
a Node Performance Score (NPS) for cluster head selection, improving network stability by 258% compared to 
traditional protocols. 
 
3. Methodology 
 

Although this study employs unsupervised learning techniques for anomaly detection, it strategically 
integrates domain expertise to enrich the data labeling process for subsequent evaluation. In the early stages of 
dataset preparation, experienced drone operators and flight engineers meticulously reviewed the telemetry data, 
identifying and annotating segments that exhibited known or suspected anomalous behavior based on operational 
context and empirical understanding. These annotations were incorporated into the dataset as labeled anomalies; 
however, to uphold the unsupervised nature of the detection approach, they were strictly excluded from the training 
phase of the models. This ensured that the models learned to characterize normal flight behavior independently, 
without being influenced by predefined notions of anomalies. 

The telemetry dataset utilized in this research consists of 48 separate flight sessions, each of which 
corresponds to an individual UAV mission under different operational and environmental conditions. Throughout 
the sessions, overall telemetry records of around 127,000 were gathered, covering parameters like GPS location, 
orientation (roll, pitch, yaw), battery level, and velocity metrics. Among the full dataset, anomalous segments 
account for roughly 7.5% of the samples, as identified through expert annotation. These anomalies include sensor 
malfunctions (e.g., GPS dropout, abrupt voltage fluctuations), flight instability (e.g., sudden roll angle changes), 
and potential cyber-physical interferences (e.g., command spoofing or inconsistent data spikes). The remaining 
92.5% of the data reflects stable and expected UAV operation, providing a rich foundation for unsupervised 
learning. This distribution captures the real-world scarcity of anomalies, highlighting the inherent detection 
challenges while providing realistic test conditions. By clearly defining the number of flight sessions, anomaly 
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ratio, and deviation nature, this study seeks to enhance transparency, reproducibility, and contextual insight for 
follow-on researchers expanding on this dataset. 

The anomaly data with labels was only consulted in the evaluation step, where we used it to calculate the 
performance of the anomaly detection models. We could compare the models’ anomaly predictions and the ground 
truth labels that the experts saw for calculating strong supervised metrics like precision, recall, F1-score, and 
accuracy. This mixed approach—unsupervised model training with supervised validation—is a pragmatic trade-
off that leverages the best of both paradigms. It enables learning unbiased from normal data and still permits strict, 
quantifiable validation against expert judgment. The use of labeled anomalies in validation improves not just the 
interpretability of results, but renders the outputs of the models meaningful in the context of real-world 
expectations and domain-specific implications. This kind of paradigm is particularly worthwhile in safety-critical 
contexts like drone surveillance, where it is as important to identify small deviations as to exclude false positives. 
This article outlines an accurate and structured approach to anomaly detection in drone telemetry data through a 
fusion of traditional outlier detection techniques and domain-specific feature engineering. As elucidated in Table 
1, the procedure starts with the importing of raw telemetry data in the JSON format comprising high-resolution 
sensor measurements of drones and ground truth labels for anomalies. These datasets usually consist of high-
frequency time-series like GPS location, accelerometer, gyroscope, battery voltage, and orientation readings 
necessary to log operational states and mark abnormal behavior. In preprocessing, we extract all relevant numerical 
features and anomaly labels, and we cleanse the dataset of noise and inconsistencies. This includes filtering missing 
values, normalizing timestamps, and synchronizing asynchronous sensor streams. Besides, domain-specific 
features are crafted to better capture flight dynamics, e.g., velocity magnitude from GPS, roll-pitch-yaw angles 
transformation, and energy consumption rates over time. Statistical metrics such as moving averages, standard 
deviations, and z-scores are also calculated to enhance feature richness and highlight subtle deviations in behavior. 
Following feature construction, an Automated Machine Learning pipeline is employed to efficiently explore and 
optimize a variety of anomaly detection algorithms and their hyperparameters. This enables the systematic 
selection of high-performing models tailored to the complex patterns present in drone telemetry data, thereby 
improving detection accuracy and reducing manual tuning efforts. 
 

Table 1. Algorithm of anomaly detection pipeline for drone telemetry. 
 

1. LOAD flight telemetry data from JSON files containing drone sensor readings 
and anomaly labels 
2. PREPROCESS data: 
   a. EXTRACT numerical features and anomaly labels 
   b. ENGINEER domain-specific features 
   c. CALCULATE statistical indicators  
3. SPLIT data into train/validation/test sets 
4. OPTIMIZE detection algorithms: 
   a. Isolation Forest 
   b. One-Class SVM 
   c. Local Outlier Factor 
   d. Elliptic Envelope 
5. DETECT anomalies: 
   a. SCALE features using to handle outliers 
   b. TRAIN models on normal data 
   c. GENERATE anomaly scores and binary predictions 
6. EVALUATE results: 
   a. CALCULATE metrics 
   b. VISUALIZE data 
7. SAVE optimized models for deployment 

 
The data is then split into training, validation, and testing sets with temporal integrity to avoid data leakage—

the most important consideration when dealing with time-series analysis. The highlight of our solution is the 
hyperparameter optimization of four anomaly detection algorithms: Isolation Forest, One-Class Support Vector 
Machine, Local Outlier Factor, and Elliptic Envelope. These four unsupervised models are all specialized in high-
dimensional anomaly detection and each makes different assumptions about the distribution of the data. All the 
features are normalized to a standard range before training the models to counter the effect of extreme values and 
for algorithmic stability. The models are trained on normal flight data only to learn the baseline behavior, and the 
models produce anomaly scores when they see the test data. Binary anomaly predictions are obtained by taking 
suitable thresholds on the scores. 
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Evaluation of detection performance entails calculation of common classification metrics such as precision, 
recall, F1-score, accuracy, and confusion bias to evaluate the trade-off between true and false predictions of 
different anomaly detection models. Such metrics give an in-depth knowledge of the trade-off between sensitivity 
and specificity that is most important in scenarios where anomalies are rare and false alarms lead to inefficiencies 
in operations. For visualization, individual metric values for each method are plotted as bar charts to enable quick 
comparative evaluation. Radar charts provide summary visualization by superimposing all the metrics, showing a 
bird’s-eye view of the model performance summary. Confusion matrices also show in-depth understanding of 
model performance on normal and anomalous examples by graphically visualizing true positives, false positives, 
true negatives, and false negatives to help identify patterns of misclassifications. Time-series overlays also aid 
interpretability by emphasizing anomaly regions along temporal sequences. Both of these assessment methods 
allow quantitative benchmarking and qualitative diagnostics of model trustworthiness. Finally, the tuned models 
are serialized and persisted for convenient deployment into real-time drone telemetry monitoring systems. 
 
4. Results and Experiments 
 
4.1. Quantitative evaluation 
 

The performance of the proposed unsupervised anomaly detection framework was systematically evaluated 
using four distinct algorithms—Local Outlier Factor, Elliptic Envelope, Isolation Forest, and One-Class Support 
Vector Machine. To provide a robust comparative overview, we compiled two key tables that encapsulate the 
performance metrics and confusion matrix outcomes across these methods. These metrics allow us to assess not 
only how well each algorithm detects anomalies, but also how their predictions align with the expert-labeled 
ground truth. 

In Table 2, LOF stands out as the most effective method, achieving the highest accuracy (0.920), precision 
(0.880), recall (0.850), and F1-score (0.860). This combination reflects a well-balanced detection capability, 
minimizing both false positives and false negatives. The model’s Confusion Bias of 0.080—significantly lower 
than the others—demonstrates its robustness in maintaining an equitable error rate, meaning it neither over-
predicts anomalies nor overlooks true ones. This characteristic is particularly valuable in drone telemetry 
applications, where both missed anomalies and false alarms can have operational consequences. 

By contrast, the Elliptic Envelope method shows moderate performance with balanced but slightly inferior 
values in all metrics and a higher confusion bias of 0.160, suggesting a tendency to overflag normal operations as 
anomalous. Meanwhile, Isolation Forest and One-Class SVM both deliver relatively lower F1-scores (0.700 and 
0.720, respectively) and higher confusion biases, indicating reduced reliability. This table not only support the 
numerical evaluation of our models but also acts as a reference point for understanding the trade-offs each 
algorithm brings to real-world deployment. The consistency of LOF across metrics substantiates its selection as 
the most suitable candidate for robust and interpretable drone anomaly detection in this study. It is important to 
note that achieving precision and recall above 85% in unsupervised settings, especially with imbalanced and high-
dimensional data, reflects substantial detection capability in practical UAV scenarios. 

 
Table 2. Performance metrics for anomaly detection methods. 

 
Method Accuracy Precision Recall F1-score Confusion Bias 

Local Outlier Factor 0.920 0.880 0.850 0.860 0.080 
Elliptic Envelope 0.780 0.760 0.740 0.750 0.160 
Isolation Forest 0.730 0.720 0.680 0.700 0.200 
One-Class SVM 0.750 0.730 0.710 0.720 0.180 

 
4.2. Comparative analysis and interpretation 

 
The proposed unsupervised anomaly detector’s performance was compared thoroughly with four 

algorithms—Local Outlier Factor, Elliptic Envelope, Isolation Forest, and One-Class Support Vector Machine 
(SVM). To measure their performance in detecting anomalous behavior in drone telemetry data, expert-marked 
segments of anomalies were employed as ground truth, with supervised metrics being utilized only at the time of 
evaluation. Quantitative performance was also achieved through the use of accuracy, precision, recall, F1-score, 
and confusion bias as primary performance metrics. As evident from the tabulated results, the best performing was 
LOF with an F1-score of 0.860, and accuracy, precision, and recall of 0.920, 0.880, and 0.850 respectively. This 



Anıl SEZGİN, Rasim KESKİN, Aytuğ BOYACI 
 

705 
 

enhanced performance is due to the ability of LOF to leverage local density fluctuations, which are common for 
high-frequency drone telemetry data under unusual maneuvers or signal disturbances. 

Elliptic Envelope was succeeded by an F1-score of 0.750, with comparatively balanced performance yet 
lower sensitivity to anomaly boundaries, as indicated by its confusion bias of 0.160, which was greater. In 
comparison, Isolation Forest and One-Class SVM were reasonably less effective, with F1-scores of 0.700 and 
0.720, respectively. These trends are supported by the confusion matrices, where LOF produced very low false 
positive and false negative rates, whereas the other models suffered from higher misclassification rates, especially 
in classifying borderline anomaly cases. Notably, Isolation Forest recorded the highest confusion bias at 0.200, 
highlighting its tendency to overflag normal samples as anomalies, a critical drawback for real-time applications 
that demand reliability and low false alarm rates. 

To facilitate interpretability and comparative analysis, a series of visualizations were generated and are 
presented as follows. These visual tools are essential for visually validating the quantitative insights discussed 
previously and highlighting the distinct behavioral patterns of each model. 

Figure 1 shows the confusion matrix of the Local Outlier Factor method, visually affirming its performance 
in distinguishing between normal and anomalous instances. The matrix highlights a low number of false positives 
and false negatives, clearly reflecting LOF’s precision and recall balance. 

 

 
  

Figure 1. Confusion matrix for Local Outlier Factor. 
 
Following this, Figure 2 presents a grouped bar chart comparing performance metrics—accuracy, precision, 

recall, and F1-score—across all four methods. This side-by-side layout allows for easy identification of which 
metric contributes most to a model’s overall performance. Notably, the bar chart reinforces LOF’s superiority 
across all metrics. 

Finally, Figure 3 illustrates the same evaluation metrics in a radar chart format. This visualization enables 
quick visual comparison of balance and spread across all metrics. The radar shape for LOF appears the most 
symmetric and expanded, suggesting a robust and uniformly strong performance profile. In contrast, the other 
models show noticeable performance drops along at least one metric axis. 
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Figure 2. Bar chart of accuracy, precision, recall, and F1-score for all methods. 
 
  
 

 
 

Figure 3. Radar chart comparison of all methods across key metrics. 
 
Beyond metric comparisons, these results underscore the critical importance of aligning algorithmic selection 

with the specific operational demands and constraints of drone anomaly detection. In practical aerial operations, 
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false positives can lead to unnecessary mission interruptions, while false negatives risk overlooking critical safety 
failures. Thus, selecting a model that minimizes both types of errors is crucial. In this context, while Isolation 
Forest and One-Class SVM are widely regarded for their simplicity and ability to generalize across datasets, our 
findings reveal that these advantages are offset by their elevated confusion biases and greater rate of false alarms. 
For applications involving real-time, high-frequency telemetry data, such noise sensitivity may compromise 
mission integrity, especially when anomaly detection serves as a trigger for automated safety responses or operator 
alerts. 

Elliptic Envelope, which assumes Gaussian distribution across multivariate features, struggles in the face of 
real-world drone telemetry that exhibits complex, non-Gaussian dynamics. Its performance, while consistent in 
lab conditions or controlled datasets, is often compromised when deployed in naturalistic flight scenarios with 
environmental disturbances and sensor irregularities. These shortcomings are particularly evident in its higher 
confusion bias and decreased recall, reflecting a limited capacity to generalize across irregular data segments. By 
contrast, the Local Outlier Factor algorithm capitalizes on local density estimation, making it inherently more 
adaptive to heterogeneous feature patterns and abrupt trajectory changes. This adaptability is especially beneficial 
in UAV anomaly detection, where anomalies are often localized and context-sensitive, such as a sudden deviation 
in roll angle or GPS dropout. 

Taken together, the experimental findings validate not only the performance hierarchy among these 
algorithms but also the methodological advantage of employing a hybrid framework—unsupervised learning for 
training, complemented by supervised evaluation against domain-labeled anomalies. This balanced approach 
enables models to learn patterns independently while still being held to rigorous assessment standards. The clear 
and consistent superiority of LOF across all evaluation metrics reinforces its practical utility and sets a strong 
precedent for its integration into real-time drone health monitoring pipelines. Future directions may include 
expanding this framework to incorporate ensemble strategies or hybridizing with deep learning-based models that 
can further enhance anomaly localization and predictive capabilities under complex flight conditions. 

 
5. Conclusion  
 

This study explored a holistic and automated unsupervised machine learning anomaly detection system for 
Veer UAV telemetry systems through expert-guided validation. With a hybrid approach—unsupervised training 
coupled with supervised testing—the method ensures that models have flexibility in learning patterns from 
unlabeled datasets and, at the same time, are exhaustively tested on real expectations. Such balance is crucial in 
safety-critical drone flights where both false positives and false negatives lead to severe mission-level 
consequences. 

Of the methods tested, the Local Outlier Factor algorithm proved most consistent and strongest under all 
performance metrics. Its ability to identify outliers in local density is especially suited to the non-linear, context-
dependent nature of drone telemetry. Conversely, approaches that presume global distribution patterns, like the 
Elliptic Envelope and Isolation Forest algorithms, were more susceptible to confusion biases and less sensitive 
when subjected to adaptive telemetry environments. This performance gap underscores the necessity of adapting 
anomaly detection techniques to the specific statistical characteristics of UAV data streams. 

The value of this research lies beyond mere algorithm selection. It highlights the necessity for feature 
engineering across domains, maintaining data integrity within time-series subdomains, and exploiting visualization 
techniques for enhancing model interpretability. By employing AutoML for hyperparameter optimization, the 
suggested pipeline minimizes manual tuning requirements, thus making it accessible to practitioners lacking deep 
machine learning expertise. Collectively, these design choices provide a reproducible and scalable pipeline for the 
integration of anomaly detection within real-world UAV systems. 

 
6. Future Research 
 

Building on the current work, future research is encouraged to investigate the fusion of semi-supervised and 
self-supervised learning approaches to further enhance the performance of anomaly detection. Semi-supervised 
approaches, which can leverage limited quantities of labeled data, would increase sensitivity to subtle and context-
dependent anomalies. Self-supervised approaches, on the other hand, provide a hopeful path to acquiring 
generalizable representations from vast volumes of unlabeled telemetry data—enabling more robust anomaly 
detection for varied UAV types as well as mission profiles. 

The other promising direction is the application of deep learning architectures specifically designed for time-
series analysis. Recurrent neural networks, LSTM networks, and Transformer-based models are capable of 
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learning temporal dependencies and long-range correlations in telemetry data efficiently. In conjunction with 
reconstruction-based models such as variational autoencoders, these techniques may enable the detection of 
anomalous sequences and system degradation patterns more effectively. Incorporating ensemble learning—
combining LOF with neural models—could yield more robust performance across different scenarios. 
Real-time deployment also demands attention. For low-latency onboard anomaly detection, models must be 
edge-computing optimized. This involves pruning, quantization, and architectural reduction to meet the 
computational constraints of UAV platforms. The inclusion of human-in-the-loop mechanisms, explainable AI, 
and uncertainty-aware predictions will be required to develop the trust and operational transparency of anomaly 
notifications. In total, future systems must be developed to operate within overall UAV autonomy systems, 
communicating with mission planning and control algorithms to facilitate adaptive behavior, e.g., rerouting, 
emergency landing, or automated diagnostics in the field. 
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