

Review Article**Interactive Futures: The Integration of Digital Technologies into Mathematics Education**Fatma ERDOĞAN ^{1*} ¹ *Fırat University, Elazığ, Türkiye, f.erdogan@firat.edu.tr** Corresponding Author: f.erdogan@firat.edu.tr**Article Info****Received:** 02 April 2025**Accepted:** 16 June 2025**Keywords:** Digital technologies, technology-based instruction, technology integration, mathematics education [10.18009/jcer.1669338](https://doi.org/10.18009/jcer.1669338)**Publication Language:** English**Abstract**

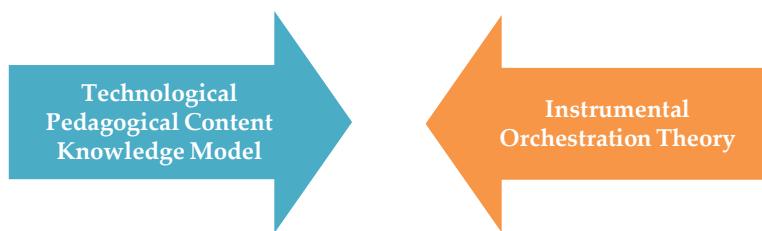
Given the abstract nature of mathematics, which often hinders student understanding, digital technologies serve to make learning more accessible and engaging. This review offers a comprehensive analysis of how digital tools are employed in mathematics education, emphasizing theoretical frameworks, application areas, and pedagogical implications. Drawing on the Technological Pedagogical Content Knowledge model and the instrumental orchestration approach, the study examines teachers' competencies in technology integration and the instructional impact of digital tools. What is more, applications such as augmented reality, dynamic geometry software, and gamified platforms are shown to enhance students' achievement, motivation, and engagement, while mitigating mathematics anxiety. Nonetheless, factors such as limited pedagogical readiness, infrastructure deficiencies, and unequal digital literacy among teachers and students remain significant barriers. The study concludes by recommending strategies for sustainable integration, including improvements in teacher education, content development, and education policy. It urges further research into the instructional potential of emerging digital technologies.

CrossMark

To cite this article: Erdoğan, F. (2025). Interactive futures: The integration of digital technologies into mathematics education. *Journal of Computer and Education Research*, 13 (26), 1076-1099. <https://doi.org/10.18009/jcer.1669338>**Introduction**

In the current educational landscape, the integration of digital technologies into teaching and learning processes has been gaining unprecedented momentum. This trend is particularly pronounced in mathematics education, which has increasingly become a focal point for scholarly inquiry due to the potential of digital technologies to enhance students' academic achievement, motivation, and mitigate their mathematical anxiety (Hillmayr et al., 2020; Öztop, 2023). Historically, mathematics has often been perceived as a challenging discipline, primarily because teaching abstract mathematical concepts presents significant pedagogical difficulties. Given this background, the strategic incorporation of digital tools into mathematics education plays a pivotal role in fostering conceptual understanding and

concretizing abstract mathematical knowledge (Drijvers & Sinclair, 2024; Engelbrecht & Borba, 2024).


In recent studies, it has been consistently demonstrated that digital technologies in mathematics education not only facilitate knowledge transfer but also significantly support students in constructing mathematical concepts and achieving deeper conceptual understanding (Dockendorff & Zaccarelli, 2025; Drijvers, 2019; Engelbrecht & Borba, 2024; Hillmayr et al., 2020; Kutluca & Akran, 2025; Mamolo & Sugano, 2024; Ran et al., 2022). Additionally, bibliometric analyses reveal a remarkable surge in the presence of e-learning studies within mathematics education literature, particularly highlighted by a notable increase in publications in the post-pandemic period (Kaya & Kutluca, 2024). Moreover, it has been widely reported that educational practices delivered through digital tools contribute positively by enhancing students' academic achievement, reducing mathematical anxiety, and fostering more favorable attitudes toward mathematics (Engelbrecht & Borba, 2024; Mamolo & Sugano, 2024; Öztop & Toptaş, 2022).

Nevertheless, integrating digital technologies effectively into educational contexts is not without challenges (Simsek et al., 2025). Various factors, including teachers' self-efficacy regarding technology usage, institutional technological infrastructure, and available technical support, considerably complicate the seamless integration of digital tools (McCulloch et al., 2018; Thurm & Barzel, 2022). This situation underscores that the integration of digital technologies into mathematics education is inherently multifaceted, involving not only student-centered approaches but also significant consideration of teachers' pedagogical competencies.

In the light of these considerations, the primary aim of this study is to conduct a comprehensive review of the existing literature concerning the integration of digital technologies into mathematics education, systematically addressing the areas of application, impacts, and encountered difficulties. Consequently, the findings from this research are anticipated to offer practical recommendations for the effective use of digital technologies in mathematics education and to establish a robust theoretical and practical framework guiding future research directions.

Theoretical Framework

The integration of digital technologies into educational environments has become an indispensable component of contemporary instructional practices. Particularly in the context of mathematics education, the effective use of technology requires not only instrumental proficiency but also the holistic consideration of pedagogical and content knowledge domains. Within this framework, the Technological Pedagogical Content Knowledge (TPACK) model presents a robust theoretical structure that delineates the intersections of knowledge required for the meaningful integration of technology into teaching practices (Dockendorff & Zaccarelli, 2025). In parallel, the instrumental orchestration theory offers a strategic lens through which to analyze how teachers configure and guide the use of digital tools within classroom contexts and how students engage with these tools in structured learning processes (Trouche & Drijvers, 2014). Collectively, these two models aim not merely to promote the use of digital technologies, but to cultivate teachers' competencies in aligning technological resources with pedagogical objectives and curricular content (Rao & Bhagat, 2024). This study explores the effective integration of digital technologies in mathematics education through the dual lenses of the TPACK framework and instrumental orchestration theory (Figure 1).

Figure 1. Theoretical framework

TPACK Model and Its Application to Mathematics Education

The TPACK model provides a significant theoretical framework that integrates essential domains of knowledge, enabling teachers to effectively incorporate digital technologies into classroom environments. Developed by Mishra and Koehler (2006), the model analyzes the intersection of three primary knowledge areas (e.g., content knowledge,

pedagogical knowledge, and technological knowledge) and defines seven fundamental components that underpin effective instruction: content knowledge, pedagogical knowledge, technological knowledge, technological pedagogical knowledge, technological content knowledge, pedagogical content knowledge, and TPACK itself. Establishing a balanced interplay among these components allows mathematics teachers to strategically integrate digital tools with pedagogical objectives and mathematical content, thus enhancing students' conceptual learning and active participation (Dockendorff & Zaccarelli, 2025; McCulloch et al., 2018). Niess et al. (2009) further adapted the generic TPACK model specifically for mathematics education by developing a set of TPACK mathematics standards and proposing a model outlining how this domain-specific construct evolves as teachers progress towards meeting these standards. This adaptation emphasizes that the effectiveness and reach of technology integration in mathematics classrooms significantly depend upon the extent to which such integration is embedded within teacher education programs. Consequently, effective use of dynamic geometry software, algebra applications, or virtual mathematics laboratories requires not only technological proficiency, but also appropriate pedagogical approaches and tasks specifically designed for the targeted mathematical content.

The TPACK model provides mathematics teachers with a structured framework for the meaningful integration of digital technologies into their teaching practices. Weigand et al. (2024) highlight that, in the digital age, teachers should evolve beyond being mere users of digital tools; they must also become competent developers and discerning selectors of these tools. From this perspective, it is crucial that teachers comprehend the pedagogical potential of digital technologies, make informed decisions regarding tool selection, and effectively integrate these technologies into lesson content. Moreover, incorporating practical activities designed to foster the development of TPACK components within pre-service teacher education programs significantly facilitates teachers' effective use of digital technologies when entering the profession (Dockendorff & Zaccarelli, 2025; Thurm & Barzel, 2022). Consequently, the TPACK model contributes substantially to mathematics teachers' development of a multilayered knowledge structure, enabling them not only to utilize digital tools but also to strategically align these tools with pedagogical objectives.

Instrumental Orchestration Theory

Instrumental orchestration is a theoretical framework developed to elucidate the active role of teachers in integrating digital technologies into instructional processes (Trouche & Drijvers, 2014). Initially proposed by Trouche (2004), this concept encompasses teachers' practices of organizing, guiding, and structuring digital tools within classroom settings. Instrumental orchestration involves a comprehensive set of pedagogical strategies aimed at facilitating the effective implementation of digital technologies in educational environments (Trouche & Drijvers, 2014).

Instrumental orchestration is founded on two key concepts: didactical configurations and exploitation modes. Didactical configurations describe how digital tools are positioned and employed within classroom activities, such as individual tasks, group work, or teacher-led presentations. Exploitation modes, on the other hand, refer to how teachers utilize these tools and manage student interactions with them. For instance, a teacher may encourage students to explore a mathematical concept through dedicated software, simultaneously employing guiding questions to pedagogically structure and manage the learning process (Drijvers, 2019).

The instrumental orchestration approach underscores that effective learning does not simply result from having access to digital tools, but rather from the teacher's meaningful integration of these tools into learning processes. In this regard, instrumental orchestration positions the teacher in the role of an "orchestrator," who coordinates, synchronizes, and manages students' meaning-making processes through digital technologies (Trouche & Drijvers, 2014). This approach integrates students' individual cognitive structures with the pedagogical contexts created by digital tools in instructional settings. Consequently, students' interaction with these tools is addressed not merely at the level of usage, but importantly within the broader context of constructing meaning. Thus, instrumental orchestration aligns effectively with student-centered and constructivist instructional approaches (Rao & Bhagat, 2024).

One of the strengths of instrumental orchestration lies in its inherent flexibility. Teachers can develop diverse orchestration strategies tailored specifically to classroom contexts, student characteristics, and content types (Drijvers, 2019; Trouche & Drijvers, 2014; Weigand et al., 2024). For instance, employing digital drawing tools for individual exploratory activities may constitute an effective strategy in geometry instruction, whereas

collaborative problem-solving sessions might serve as a more suitable orchestration approach in algebra education (Dockendorff & Zaccarelli, 2025). In summary, instrumental orchestration provides mathematics teachers with a pedagogically and strategically sound framework for effectively integrating digital tools into classroom practices (Drijvers, 2019; Trouche & Drijvers, 2014). This framework facilitates going beyond superficial uses of digital technologies in mathematics education, enabling the design of practices that deepen and structure students' learning processes (Weigand et al., 2024). Therefore, it is crucial for teachers not only to become familiar with digital tools but also to possess the capability to strategically orchestrate these tools within meaningful pedagogical contexts (Dockendorff & Zaccarelli, 2025).

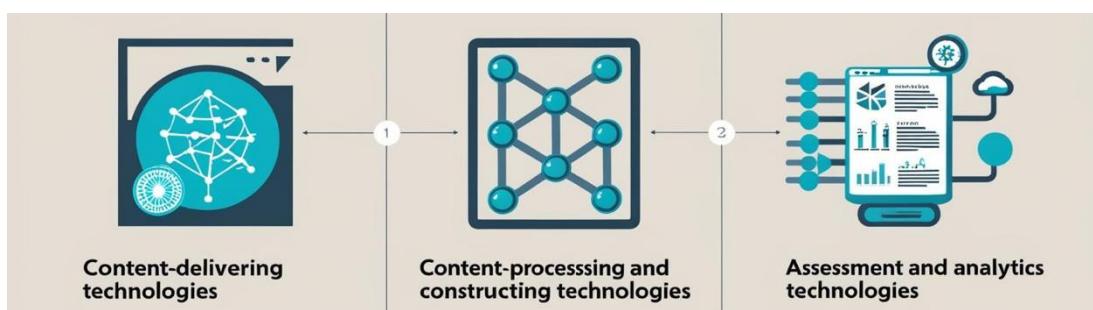
These two frameworks are not isolated; rather, they offer mutually reinforcing perspectives when employed in concert. In this regard, the relationship between TPACK and instrumental orchestration warrants further clarification, particularly in terms of how they complement one another in both theory and practice. While the TPACK framework provides a foundational structure for understanding the intersection of technological, pedagogical, and content knowledge in mathematics instruction, instrumental orchestration offers a complementary lens that operationalizes this knowledge within classroom practices. TPACK emphasizes what teachers need to know—namely, the integrated domains of knowledge—whereas instrumental orchestration focuses on how this knowledge is enacted through dynamic configurations of digital tools and pedagogical strategies (Dockendorff & Zaccarelli, 2025; Trouche & Drijvers, 2014). In this sense, instrumental orchestration can be viewed as the practice-based extension of TPACK, translating abstract competencies into concrete instructional actions. For example, a teacher's understanding of pedagogical affordances within TPACK may inform their selection of a dynamic geometry tool, while instrumental orchestration governs how that tool is integrated—whether through a "sherpa-student" configuration or collaborative exploration (Drijvers, 2019; Weigand et al., 2024). Moreover, recent studies suggest that the development of TPACK competencies is closely intertwined with the teacher's ability to design and adapt orchestration strategies responsive to learners' needs and contextual constraints (Engelbrecht & Borba, 2024; Rao & Bhagat, 2024). Therefore, the complementarity of these two frameworks lies in their synergy: TPACK provides the epistemic basis for technology integration, while instrumental orchestration ensures its effective and adaptive implementation in the classroom.

The Relationship Between Digital Technologies and Mathematics Education

The role and significance of digital technologies in mathematics education become evident in their potential to support learning processes and foster student-centered educational environments. Due to the inherently abstract nature of mathematics and the common difficulties students encounter in achieving conceptual understanding, the integration of digital technologies has become indispensable (Drijvers & Sinclair, 2024). Technology-enhanced mathematics instruction facilitates the concretization of abstract concepts through interactive applications and digital tools, thus significantly supporting students' conceptual development (Chen, 2019). In particular, interactive technologies such as augmented reality, virtual reality, and digital games capture students' attention, transforming learning processes into more active and participatory experiences (Chen, 2019; Cirneanu & Moldoveanu, 2024; Ersözlu, 2024; Mamolo & Sugano, 2024).

The use of digital technologies in mathematics instruction provides students with visual and dynamic representations of complex concepts that are often difficult to grasp through traditional methods. This, in turn, enables students to develop a deeper and more enduring understanding of mathematical ideas (Hillmayr et al., 2020). Furthermore, digital technologies offer opportunities for personalized learning experiences, allowing students with different learning paces to access equitable learning opportunities (Mamolo & Sugano, 2024).

It is also important to highlight that digital technologies are transforming the role of teachers in the classroom. Rather than acting solely as transmitters of knowledge, teachers increasingly take on the role of facilitators who design student-centered activities and guide students through their learning processes (Dockendorff & Zaccarelli, 2025). To effectively fulfill this role, teachers must develop the necessary pedagogical and technological competencies to integrate digital tools meaningfully into instruction. This transformation can only be achieved through teacher education programs that prioritize technology integration and through the continuous professional development of teachers (McCulloch et al., 2018).


In conclusion, the integration of digital technologies into mathematics education is regarded as a critical component that enriches learning processes, enhances student engagement, and contributes to more effective instructional practices. When used systematically and with sound pedagogical grounding, these technologies play a significant

role in improving students' mathematical achievement and fostering more positive attitudes toward mathematics.

Applications of Digital Technologies in Mathematics Education

Types and Classification of Digital Tools in Mathematics Instruction

Digital tools used in mathematics education can be categorized into various types, including presentation tools, dynamic software, game-based applications, augmented/virtual reality systems, and assessment and analytics platforms (Hoyle, 2018; Zeynivandnezhad et al., 2020). The categories of digital tools that offer potential for mathematics teaching and learning can be classified into three main groups, as illustrated in Figure 2.

Figure 2. Types and classification of digital tools in mathematics instruction

- *Content-delivering technologies:* This group includes tools such as presentation software, instructional videos, interactive whiteboards, and animated content, which are commonly used by teachers to explain mathematical concepts (Hoyle, 2018). These technologies serve to capture students' attention, introduce new topics, and present mathematical ideas in engaging and visually appealing ways (Zeynivandnezhad et al., 2020).
- *Content-processing and constructing technologies:* This category includes dynamic geometry software such as GeoGebra and Cabri; algebra applications like Desmos; augmented reality (AR) and virtual reality (VR) systems; as well as interactive games and simulations. These tools enable students to develop problem-solving skills, construct mathematical models, and engage in experiential learning processes (Chen, 2019; Drijvers & Sinclair, 2024). Moreover, due to their visual and interactive features, these technologies help students build mathematical concepts more effectively. Bibliometric data suggest that e-learning platforms such as GeoGebra, Matific, and

MathWiki are increasingly preferred in mathematics instruction, and these tools have been shown to positively impact student engagement, achievement, and self-efficacy (Kaya & Kutluca, 2024).

- *Assessment and analytics technologies:* This group includes AI-powered student analytics platforms, digital testing systems, game-based assessment tools, and adaptive learning technologies. These tools allow teachers to closely monitor students' learning processes, provide personalized feedback, and redesign instructional strategies based on data-driven insights (Mamolo & Sugano, 2024; Rao & Bhagat, 2024).

This classification plays a crucial role in helping teachers make informed decisions about technology selection, align tools with instructional objectives, and personalize teaching practices based on diverse student profiles.

The Use of Digital Tools in Instructional Design

The integration of digital tools into instructional design requires the coherent alignment of pedagogical goals with technological affordances. In this process, teachers are expected to integrate the three domains of knowledge defined in the TPACK model—technological, pedagogical, and content knowledge (Dockendorff & Zaccarelli, 2025). In this context, an effective instructional design should be grounded in the principles shown in Figure 3.

Figure 3. Principles of digital instructional design

- *Multiple representations:* Representing concepts visually, symbolically, and verbally enables students to better understand relationships among mathematical ideas (Hillmayr et al., 2020).
- *Opportunities for interactive exploration:* Supporting constructivist learning through tools and applications that allow students to develop their own strategies contributes to more meaningful and lasting learning (Cirneanu & Moldoveanu, 2024).
- *Immediate feedback:* Real-time feedback provided by digital tools helps students identify errors more easily and supports self-regulated learning (Mamolo & Sugano, 2024).
- *Adaptable content:* Differentiated instruction becomes more feasible through tasks and content that can be adjusted according to students' proficiency levels, thus facilitating the management of classroom heterogeneity.
- *Support for collaborative learning environments:* Digital platforms promote interactive collaboration among students through group work, joint problem-solving, and peer learning (Cirneanu & Moldoveanu, 2024; Viberg et al., 2023).
- *Learning beyond time and space:* Web 2.0 tools, interactive online materials, and digital content enable learning to extend beyond the boundaries of the traditional classroom (Viberg et al., 2023).

The integration of digital tools into instructional design not only represents a technological shift but also signals a transformation in pedagogical approaches. Through student-centered, interactive, and personalized instructional models, mathematics education becomes more accessible, engaging, and effective.

Effects of Digital Tools on Mathematics Education

The integration of digital tools into mathematics education has significant implications not only for students' academic performance but also for their affective experiences within the learning process. Numerous studies indicate that digital technologies, when effectively implemented, positively influence students' mathematical achievement, motivation, attitudes, and anxiety levels. Understanding these multifaceted impacts is essential for leveraging digital tools to enhance both pedagogical practices and students' psychological engagement with mathematics. The following subsections systematically

examine the specific effects of digital technologies on students' academic success, motivation and attitudes towards learning, and their experiences of mathematical anxiety.

Effects on Academic Achievement

One of the most extensively researched impacts of digital technologies in mathematics education concerns their contribution to students' academic achievement. Numerous studies have shown that technology-supported mathematics instruction enhances students' performance (Akkuş & Gök, 2024; Çırak & Uygun, 2023; Drijvers & Sinclair, 2024; Hillmayr et al., 2020; Kutluca, 2019; Thurm & Barzel, 2022; Ran et al., 2022; Rao & Bhagat, 2024; Viberg et al., 2023). According to the meta-analysis conducted by Hillmayr et al. (2020), the use of digital tools has a moderately positive effect on students' mathematics achievement. Tools such as GeoGebra, interactive whiteboards, virtual simulations, and game-based learning applications have been found to enhance students' conceptual understanding (Engelbrecht & Borba, 2024; Kaya et al., 2023; Mamolo & Sugano, 2024).

In an experimental study by Çırak and Uygun (2023), the use of digital materials in mathematics instruction for gifted students significantly improved their academic performance. Similarly, Akkuş and Gök (2024) demonstrated the positive impact of technology-supported instruction on student achievement. Such practices have been shown to enhance both students' computational skills and their performance in problem-solving tasks.

The contribution of digital tools to students' conceptual development is also a key factor in enhancing academic achievement. Dynamic software, in particular, enables students to visualize abstract concepts, recognize their own mistakes, and actively structure their learning processes, thereby promoting deeper and more lasting understanding (Drijvers & Sinclair, 2024; Engelbrecht & Borba, 2024). Moreover, the literature emphasizes that digital technology-based instruction offers more diverse learning opportunities than traditional methods, caters to various learning styles, and provides students with richer environments for problem-solving (Viberg et al., 2023).

The impact of digital tools on academic success extends beyond individual student outcomes. Studies have shown that class-wide achievement levels also improve when digital tools are effectively utilized. Thurm and Barzel (2022) found that in classrooms where teachers use digital tools proficiently, achievement gaps tend to narrow and students in

lower-performing groups demonstrate greater progress. These findings suggest that digital technologies may play a supportive role in promoting educational equity.

Effects on Motivation and Attitudes

Motivation is a key factor that influences students' engagement and persistence throughout the learning process (Deci & Ryan, 2000; Ersozlu, 2024). Digital tools play a significant role in fostering students' intrinsic interest by promoting their active participation in learning activities (Hillmayr et al., 2020; Mamolo & Sugano, 2024). In particular, educational games, task-based digital applications, and problem-solving-oriented software have been shown to increase students' willingness to learn (Viberg et al., 2023).

The interactive, visual, and gamified learning environments provided by digital technologies have been shown to significantly enhance students' motivation and contribute to the development of more positive attitudes toward mathematics (Chen, 2019; Ersozlu, 2024). In particular, game-based software and applications that incorporate narrative elements help sustain students' attention and promote active participation in lessons (Mamolo & Sugano, 2024). Dockendorff and Zaccarelli (2025) emphasize that students demonstrate higher levels of engagement and are more likely to express themselves during activities involving digital tools. This increased engagement nurtures students' intrinsic motivation and strengthens their sustained interest in the subject.

Additionally, digital tools allow students to make mistakes within low-risk environments, which fosters a safer and more encouraging learning atmosphere (Mamolo & Sugano, 2024; Öztürk, 2023). Instant feedback provided by these technologies further reinforces students' sense of achievement and supports the development of their self-efficacy beliefs (Dockendorff & Zaccarelli, 2025; Hillmayr et al., 2020; Mamolo & Sugano, 2024). In particular, feedback that is enriched with visual elements and framed around growth-oriented messages helps students feel valued and acknowledged in the learning process (Mamolo & Sugano, 2024).

In summary, digital technologies have a profound impact not only on students' academic outcomes but also on their motivation and attitudes toward learning. This influence highlights the necessity of adopting a holistic instructional design approach—one that leverages digital tools not merely for content delivery but also to address the emotional and psychological dimensions of the learning process.

Effects on Mathematics Anxiety

Mathematics anxiety is a significant affective variable that negatively influences students' performance in mathematics-related tasks (Ashcraft & Krause, 2007; Ersozlu, 2024). When students experience high levels of anxiety in response to mathematical problems, their academic performance and motivation toward the subject may decline substantially (Chen, 2019; Öztop, 2023). The literature frequently emphasizes the important role digital technologies play in mitigating this type of anxiety (Ersozlu, 2024; Mamolo & Sugano, 2024; Öztop, 2023). For instance, a meta-analysis conducted by Öztop (2023) found that instructional practices supported by digital tools moderately reduce students' mathematics anxiety. This effect is especially pronounced in learning environments that are safe, personalized, and enriched with visual content.

Interactive software that allows students to make mistakes through trial-and-error processes creates low-risk environments that help alleviate anxiety. In another study, Mamolo and Sugano (2024) demonstrated the effectiveness of Digital Interactive Math Comics (DIMaC), an interactive comic-based digital application, in reducing students' mathematics anxiety while simultaneously improving their academic performance. Such applications help students reshape their emotional relationship with mathematics and foster greater self-confidence. Ersozlu (2024) also found that game-based digital tools not only alleviate anxiety but also strengthen students' self-efficacy beliefs toward mathematics.

Research has also shown that positive feedback and individualized support provided by teachers in technology-enhanced classroom environments contribute to lowering students' anxiety levels (Dockendorff & Zaccarelli, 2025). In this regard, digital tools not only reshape students' interaction with content but also transform teacher-student dynamics in ways that foster positive affective outcomes. All things considered, digital technologies contribute significantly to students' mathematics learning processes not only at the cognitive level but also at the affective level. The observed positive effects on key variables such as achievement, motivation, and anxiety highlight the potential of technology-enhanced mathematics instruction to strengthen both the pedagogical and psychological dimensions of learning.

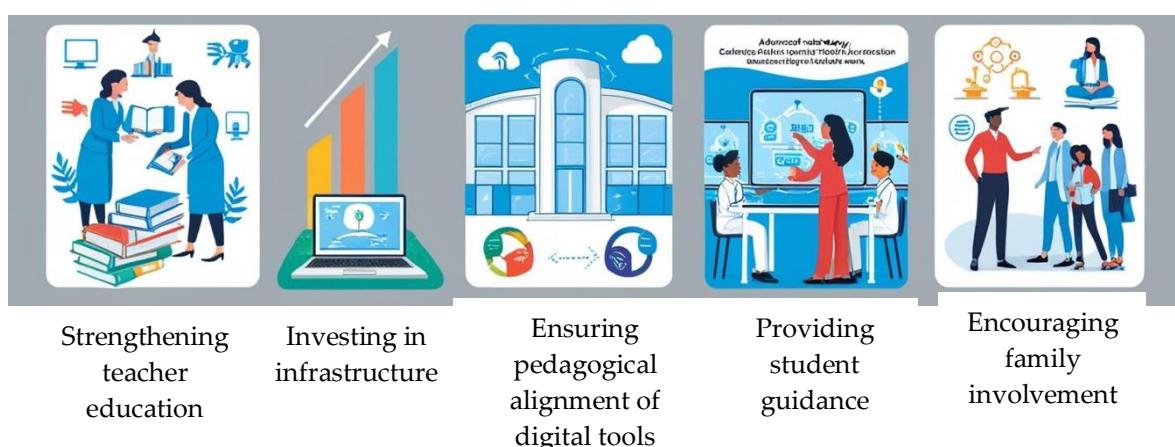
Challenges in the Use of Digital Technologies and Suggested Solutions

Challenges Faced by Teachers

Although the integration of digital technologies into mathematics instruction offers numerous benefits for teachers, it also presents a range of challenges during implementation. First and foremost, teachers' levels of pedagogical competence in relation to technology are not always sufficient (Dockendorff & Zaccarelli, 2025; McCulloch et al., 2018; Simsek et al., 2025; Thurm & Barzel, 2022). Notably, experienced teachers are often reported to be reluctant to integrate digital tools into their lessons and may struggle to adapt to rapid technological changes (McCulloch et al., 2018; Thurm & Barzel, 2022). Equally important, teachers' access to technological resources remains a significant constraint. Technical limitations such as lack of equipment, unreliable internet connectivity, and insufficient availability of high-quality digital content can undermine teachers' motivation and hinder the effective use of digital tools in instruction (Drijvers, 2019; Viberg et al., 2023). Teachers may also experience a lack of support when it comes to aligning digital tools with pedagogical objectives (Simsek et al., 2025). Inadequate implementation of frameworks such as TPACK in both pre-service and in-service teacher education highlights the necessity of equipping educators not only with technical knowledge but also with robust pedagogical strategies for effective classroom integration (Dockendorff & Zaccarelli, 2025).

Challenges Faced by Students

From the students' perspective, the use of digital tools presents both opportunities and certain obstacles. A primary concern is the issue of digital inequality, which poses a significant threat to equity in education. Not all students have access to adequate technological devices or stable internet connectivity, which can hinder participation in online learning environments—particularly for those from socioeconomically disadvantaged backgrounds (Rao & Bhagat, 2024). This disparity limits access to digital learning resources and may widen the existing achievement gap (Rao & Bhagat, 2024; Thurm & Barzel, 2022; Viberg et al., 2023).


In addition, some students struggle to maintain focus in digital settings due to distractions, decreased motivation, or the cognitive overload caused by technological complexity. Overly visual content and excessively reward-driven gamified environments can, in some cases, lead to superficial learning habits (Chen, 2019; Mamolo & Sugano, 2024; Rao & Bhagat, 2024). Moreover, the absence of immediate feedback and the limited

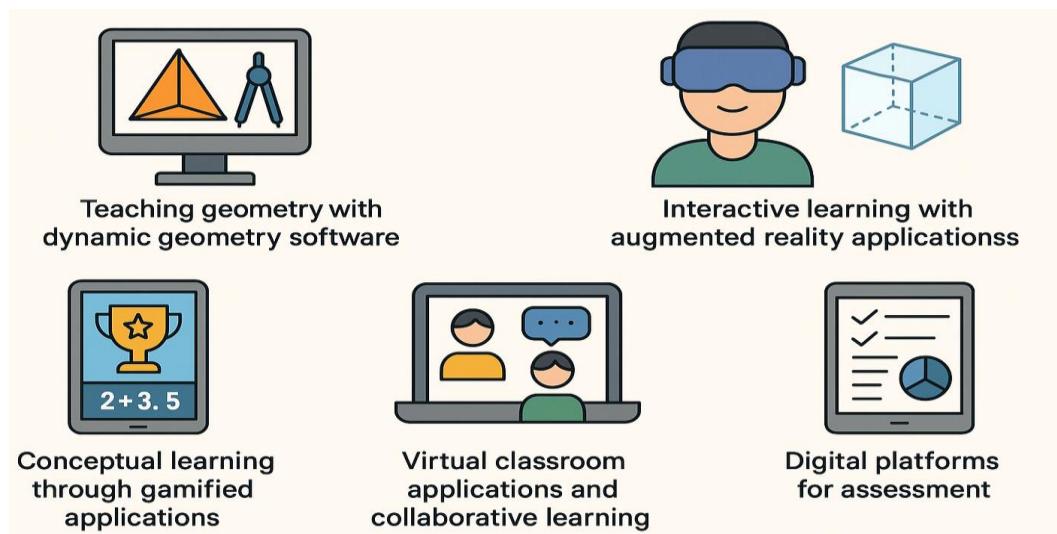
availability of direct teacher guidance may trigger emotional challenges such as feelings of isolation or heightened learning anxiety among students (Mamolo & Sugano, 2024).

Variations in students' levels of digital literacy also contribute to challenges in the effective use of technological tools (Chen, 2019; Rao & Bhagat, 2024). In particular, younger learners at the primary and lower secondary levels may face difficulties due to a lack of adequate guidance in navigating digital environments. Since many students are accustomed to using technology passively as consumers, transitioning toward more productive, inquiry-based usage requires both time and structured support (Mamolo & Sugano, 2024; Viberg et al., 2023). It is also worth noting that tools such as digital games (Chen, 2019; Mamolo & Sugano, 2024) and augmented reality applications (Rao & Bhagat, 2024), while engaging for many students, can also serve as potential distractions. When in-game tasks are not sufficiently aligned with instructional objectives, students' attention may drift toward the aesthetic or competitive features of the game rather than focusing on the intended learning outcomes (Ersozlu, 2024). Therefore, the design of digital tools must be carefully aligned with educational goals and structured to preserve pedagogical balance and coherence (Mamolo & Sugano, 2024; Rao & Bhagat, 2024).

Multidimensional Solutions

To ensure the effective integration of digital technologies into educational environments, comprehensive solutions should be developed that address the needs of both teachers and students, as shown in Figure 4.

Figure 4. Sustainable integration of digital technologies in education


- *Strengthening teacher education:* Pre-service teacher training programs should

- incorporate digital pedagogical practices and provide hands-on experiences that enable teachers to effectively design lessons using digital tools (Dockendorff & Zaccarelli, 2025).
- *Investing in infrastructure:* Addressing deficiencies in hardware, software, and internet access in schools is essential for facilitating teachers' access to digital resources (McCulloch et al., 2018).
- *Ensuring pedagogical alignment of digital tools:* Technologies used in instruction should not only be innovative but also aligned with instructional goals and appropriate to students' developmental levels (Drijvers & Sinclair, 2024).
- *Providing student guidance:* Students should be supported in developing key skills such as digital attention management, time planning, and independent learning strategies (Mamolo & Sugano, 2024; Rao & Bhagat, 2024; Viberg et al., 2023).
- *Encouraging family involvement:* Parents should be informed and engaged to help support digital learning environments at home, fostering stronger school-family partnerships (Dockendorff & Zaccarelli, 2025; Hillmayr et al., 2020; Rao & Bhagat, 2024).

Ultimately, the integration of digital technologies into instructional settings requires more than just technical infrastructure—it demands comprehensive preparation across pedagogical, psychological, and social dimensions. Holistic approaches that acknowledge these interrelated factors are essential for maximizing the full potential of digital tools in mathematics education.

Sample Digital Applications and Classroom Practices

To illustrate the effective use of digital technologies in mathematics instruction, the literature highlights a range of exemplary tools and classroom-based practices (Drijvers & Sinclair, 2024; Viberg et al., 2023). These examples demonstrate how digital tools can be structured to support different age groups and mathematical content areas, as well as how they can serve specific instructional goals (Mamolo & Sugano, 2024; Rao & Bhagat, 2024). Figure 5 shows some examples of digital applications and classroom practices used in mathematics classrooms.

Figure 5. Sample digital applications and classroom practices

- *Teaching geometry with dynamic geometry software:* Dynamic software such as GeoGebra has proven particularly effective in the teaching of geometry (Drijvers & Sinclair, 2024; Hillmayr et al., 2020). These tools allow students to explore geometric figures—such as triangles and quadrilaterals—by dynamically manipulating angles, sides, and area relationships, thereby enabling them to concretize abstract mathematical relationships. In such applications, students engage in active learning by interacting with shapes, exploring patterns, and observing the underlying mathematical principles (Dockendorff & Zaccarelli, 2025; Viberg et al., 2023).
- *Interactive learning with augmented reality applications:* AR-based mobile applications are particularly effective in enhancing student engagement, especially when teaching three-dimensional shapes and spatial relationships (Chen, 2019; Rao & Bhagat, 2024). For instance, through an AR application, students can manipulate virtual 3D objects—such as rotating the surfaces of a cube on their device—and apply their understanding to calculate surface area and volume in a hands-on, interactive environment (Mamolo & Sugano, 2024; Viberg et al., 2023).
- *Conceptual learning through gamified applications:* Digital games designed for mathematics education have proven effective in reinforcing conceptual understanding, particularly in the areas of basic arithmetic and algebraic operations (Chen, 2019; Engelbrecht & Borba, 2024; Hillmayr et al., 2020; Rao & Bhagat, 2024). Game-based tasks can be adapted to varying skill levels, allowing students to

progress at their own pace (Mamolo & Sugano, 2024; Viberg et al., 2023). For example, Mamolo and Sugano (2024) found that the use of DIMaC—a gamified, comic-style learning application—had a positive impact on both students' motivation and their levels of mathematics anxiety.

- *Virtual classroom applications and collaborative learning:* In online learning contexts, digital platforms such as Google Classroom and Microsoft Teams have proven effective for classroom management, task distribution, and the facilitation of interactive activities. These environments align well with collaborative learning models that promote peer-to-peer interaction, joint problem-solving, and shared reflection (Viberg et al., 2023).
- *Digital platforms for assessment:* Assessment tools such as Formative and Socrative are increasingly used by teachers to measure students' real-time understanding and to provide individualized feedback. These platforms enable educators to quickly identify students' strengths and areas for improvement, allowing them to adapt instructional strategies with greater flexibility and precision (Dockendorff & Zaccarelli, 2025).

Taken together, these examples illustrate that digital tools are not merely technological innovations but can serve as powerful pedagogical instruments. When aligned with instructional goals, they significantly contribute to the development of students' mathematical thinking, problem-solving skills, and collaborative learning competencies (Ran et al., 2022).

Policy and Implementation Recommendations

The integration of digital technologies into mathematics education should be addressed not only at the individual level of teachers and students, but also through a broader, systemic, and structural lens. This view is consistent with global trends observed in various countries, such as Finland, Singapore, and the Netherlands, where national education reforms have embedded digital fluency into mathematics curricula as a core competency (Drijvers, 2019; OECD, 2021). These cases demonstrate that integrating digital tools into system-level policies and pedagogical designs has tangible, scalable effects on classroom practices. In this regard, a multi-stakeholder approach involving policymakers, school administrators, faculties of education, and content developers is essential. The

literature emphasizes that for digital transformation to be both sustainable and impactful, the following policy and implementation strategies should be prioritized:

Prioritizing Digitalization in National Education Policies

The success of digital transformation within education systems is closely tied to strategic planning and national policy development. It is recommended that curricula be aligned with technological advancements, that digital competencies be explicitly included as intended learning outcomes, and that instructional programs be redesigned accordingly (Drijvers & Sinclair, 2024; Hillmayr et al., 2020).

Restructuring Teacher Education Programs

Pre-service and in-service teacher education programs should be redesigned to include not only technological knowledge but also the pedagogical foundations of technology integration. Recent research also provides concrete examples of how teacher education programs can effectively integrate digital technologies (Dockendorff & Zaccarelli, 2025; Trouche & Drijvers (2014). For instance, Dockendorff and Zaccarelli (2025) describe a teacher preparation model where prospective mathematics teachers design and implement micro-teaching sessions using tools such as GeoGebra and Desmos. These sessions are followed by structured video analyses focusing on TPACK components, enabling candidates to reflect on their pedagogical and technological decisions. Additionally, co-planning workshops with mentor teachers help bridge theory and practice by aligning digital tool use with specific learning objectives. These practices illustrate how teacher training can move beyond tool literacy toward meaningful, pedagogically grounded integration. In particular, training based on the TPACK framework can significantly enhance teachers' self-efficacy in using digital tools (Dockendorff & Zaccarelli, 2025; Thurm & Barzel, 2022).

Promoting Policies for Digital Content and Resource Development

It is essential to support digital content development projects based on national and international collaborations in the field of educational technology. These resources must be pedagogically sound, accessible, inclusive, and adaptable to diverse learning styles (Mamolo & Sugano, 2024).

Enhancing School Leadership and Management

School administrators must develop strong digital leadership competencies in order to play a more active role in their schools' digital transformation processes. It is emphasized that leadership should encompass not only technical aspects, but also pedagogical insight and visionary thinking (Viberg et al., 2023).

Digitalizing Monitoring and Evaluation Systems

Data-driven systems capable of monitoring the effectiveness of educational practices and providing timely feedback should be established. Data-driven systems designed to monitor the effectiveness of instructional practices and provide timely feedback are increasingly recognized as vital for supporting personalized learning in mathematics education. While Hillmayr et al. (2020) highlight the positive overall impact of digital tools on learning outcomes, Rao and Bhagat (2024) provide more direct evidence by reviewing studies that incorporate AI-supported feedback mechanisms and learning analytics to enhance computational thinking and individual learning pathways. These findings underscore the potential of adaptive technologies to tailor instruction and support real-time pedagogical decision-making.

This broader recognition of data-informed instructional design is also reflected in recent national curriculum reforms, which emphasize the practical integration of such systems into mathematics assessment and evaluation processes. These systems may include learning analytics, AI-supported student monitoring tools, and digital assessment mechanisms to evaluate instructional processes (Rao & Bhagat, 2024). The mathematics curriculum likewise emphasizes the need for assessment processes to be not only outcome-oriented but also process-focused, suggesting the integration of digital technologies for formative and summative evaluation purposes. In particular, it is recommended that the creation of digital content be incorporated into the assessment criteria for performance-based tasks (Ministry of National Education [MoNE], 2024).

Taken as a whole, these recommendations reveal that the effective and sustainable integration of digital technologies in mathematics education requires a comprehensive reform that extends beyond classroom practices to encompass the entire education system.

Conclusion and Recommendations for Future Research

This review has explored the role and significance of digital technologies in mathematics education from multiple perspectives. The findings indicate that digital tools not only enrich learning environments but also support students' academic achievement, motivation, and affective development. Specifically, technologies such as augmented reality, gamification, dynamic geometry software, and digital assessment tools contribute to the creation of interactive, student-centered learning settings that align with constructivist instructional principles.

Nevertheless, the effective integration of digital technologies into mathematics instruction depends not merely on the availability of tools, but on a combination of key factors—namely, teachers' pedagogical competencies, students' digital literacy, the quality of educational content, and the presence of systemic support structures. Therefore, instructional integration of digital tools requires a multidimensional strategy.

In this regard, future research should focus on the following directions:

- Longitudinal and comparative studies examining the effects of digital tools across different age groups and learning levels,
- Quantitative and qualitative research investigating the relationship between teachers' TPACK competencies and their effectiveness in using digital tools,
- Experimental studies analyzing the impact of digital technologies on students with diverse learning styles,
- Design-based research focusing on the integration of emerging technologies—such as augmented reality, artificial intelligence, and big data—into mathematics education,
- Context-specific field studies in Türkiye exploring the barriers and solution strategies related to digital technology use among teachers and students.

To support the development of these research areas, several methodological approaches may be particularly useful. Longitudinal designs can help track changes in teachers' digital integration practices over time, while case studies may yield in-depth insights into school-level implementation processes. Experimental and quasi-experimental designs can also be employed to examine the causal impact of specific digital tools or training programs on learning outcomes and instructional effectiveness.

Digital technologies have become an integral component of contemporary mathematics instruction. However, to ensure their effective and sustainable integration, it is

essential to adopt a holistic approach to policy development and instructional design—grounded in robust empirical evidence and aligned with the evolving needs of both learners and educators.

Acknowledgement

Due to the scope and method of the study, ethics committee permission was not required.

Author Contribution Statement

Fatma ERDOĞAN: Conceptualization, design, literature review, writing, and editing.

References

Akkuş, E. B., & Gök, B. (2024). The effect of digital technology tools used in elementary school mathematics teaching on achievement - a review study. *Journal of Computer and Education Research*, 12(23), 164-183. <https://doi.org/10.18009/jcer.1394932>

Ashcraft, M. H., & Krause, J. A. (2007). Working memory, math performance, and math anxiety. *Psychonomic Bulletin & Review*, 14, 243-248. <https://doi.org/10.3758/BF03194059>

Chen, Y. C. (2019). Effect of mobile augmented reality on learning performance, motivation, and math anxiety in a math course. *Journal of Educational Computing Research*, 57(7), 1695-1722. <https://doi.org/10.1177/0735633119854036>

Cirneanu, A. L., & Moldoveanu, C. E. (2024). Use of digital technology in integrated mathematics education. *Applied System Innovation*, 7, 66. <https://doi.org/10.3390/asi7040066>

Çırak, S., & Uygun, T. (2023). The effects of mathematics teaching enriched by technological activities on mathematics achievement of gifted students: An experimental study. *Journal of Theory and Practice in Education*, 19(2), 355-369. <https://doi.org/10.17244/eku.1264051>

Deci, E. L., & Ryan, R. M. (2000). The “what” and “why” of goal pursuits: Human needs and the self-determination of behavior. *Psychological Inquiry*, 11(4), 227-268.

Dockendorff, M., & Zaccarelli, F. G. (2025). Successfully preparing future mathematics teachers for digital technology integration: A literature review. *International Journal of Mathematical Education in Science and Technology*, 56(5), 948-979. <https://doi.org/10.1080/0020739X.2024.2309273>

Drijvers, P. (2019). Embodied instrumentation: Combining different views on using digital technology in mathematics education. In U. T. Jankvist, Van den M. Heuvel-Panhuizen, & M. Veldhuis (Eds.), *Eleventh Congress of the European Society for Research in Mathematics Education* (pp. 8–28). Utrecht University and ERME.

Drijvers, P., & Sinclair, N. (2024). The role of digital technologies in mathematics education: Purposes and perspectives. *ZDM-Mathematics Education*, 56, 239–248. <https://doi.org/10.1007/s11858-023-01535-x>

Engelbrecht, J., & Borba, M. C. (2024). Recent developments in using digital technology in mathematics education. *ZDM-Mathematics Education*, 56(2), 281-292. <https://doi.org/10.1007/s11858-023-01530-2>

Ersözlu, Z. (2024). The role of technology in reducing mathematics anxiety in primary school students. *Contemporary Educational Technology*, 16(3), ep517.

Hillmayr, D., Ziernwald, L., Reinhold, F., Hofer, S. I., & Reiss, K. M. (2020). The potential of digital tools to enhance mathematics and science learning in secondary schools: A

context-specific meta-analysis. *Computers & Education*, 153, 103897. <https://doi.org/10.1016/j.compedu.2020.103897>

Hoyles, C. (2018). Transforming the mathematical practices of learners and teachers through digital technology. *Research in Mathematics Education*, 20(3), 209–228. <https://doi.org/10.1080/14794802.2018.1484799>

Kaya, D., & Kutluca, T. (2024). E-learning in mathematics education: A bibliometric analysis (2012-2022). *Turkish Online Journal of Distance Education*, 25(1), 213-246. <https://doi.org/10.17718/tojde.1248777>

Kaya D., Kutluca T. & Dağhan G. (2023). Transforming education with augmented reality, metaverse and virtual reality technologies in the 21st century. *Hacettepe Üniversitesi Eğitim Fakültesi Dergisi*, 38(4), 470 - 497. <https://doi.org/10.16986/HUJE.2023.503>

Kutluca, T. (2019). The effect on students' achievements of computer assisted instruction designed for quadratic functions. *Journal of Research and Reflections in Education*, 13(2), 347-358.

Kutluca, T. & Akran, K. (2025). Realistic mathematics education and integration of digital tools: A model development study for secondary school mathematics education. *International e-Journal of Educational Studies*, 9 (20), 169-185. <https://doi.org/10.31458/iejes.1604874>

Mamolo, L. A., & Sugano, S. G. C. (2024). Digital interactive app and students' mathematics self-efficacy, anxiety, and achievement in the "new normal". *E-Learning and Digital Media*, 21(5), 427-443. <https://doi.org/10.1177/20427530231167646>

McCulloch, A. W., Hollebrands, K. F., Lee, H. S., Harrison, T., & Mutlu, A. (2018). Factors that influence secondary mathematics teachers' integration of technology in mathematics lessons. *Computers & Education*, 123, 26-40 <https://doi.org/10.1016/j.compedu.2018.04.008>

Ministry of National Education. (2024). *Middle school mathematics curriculum (Grades 5, 6, 7, and 8): Türkiye Century Education Model*. <https://tymm.meb.gov.tr/upload/program/2024programmat5678Onayli.pdf>

Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. *Teachers College Record*, 108(6), 1017–1054. <https://doi.org/10.1111/j.1467-9620.2006.00684.x>

Niess, M., Ronau, R., Shafer, K., Driskell, S., Harper, S., Jhonston, C., Browning, C., Özgun-Koca, S. A., & Kersaint, G. (2009). Mathematics teacher TPACK standards and development model. *Contemporary Issues in Technology and Teacher Education*, 9(1), 4–24. [https://doi.org/10.1016/0014-2999\(88\)90271-3](https://doi.org/10.1016/0014-2999(88)90271-3)

OECD. (2021). *21st-century readers: Developing literacy skills in a digital world*. OECD Publishing.

Öztop, F. (2023). Effectiveness of digital technology use in mathematics instruction on reducing students' mathematics anxiety: A meta-analysis. *Erciyes Journal of Education*, 7(1), 22-40. <https://doi.org/10.32433/eje.1068755>

Öztop, F., & Toptaş, B. (2022). Effectiveness of instructional interventions in reducing mathematics anxiety: A meta-analysis on studies conducted in Turkey. *Inonu University Journal of the Faculty of Education*, 23(3), 1324-1347. <https://doi.org/10.17679/inuefd.1148039>

Ran, H., Kim, N. J., & Secada, W. G. (2022). A meta-analysis on the effects of technology's functions and roles on students' mathematics achievement in K-12 classrooms. *Journal of Computer Assisted Learning*, 38(1), 258-284. <https://doi.org/10.1111/jcal.12611>

Rao, T. S. S., & Bhagat, K. K. (2024). Computational thinking for the digital age: A systematic review of tools, pedagogical strategies, and assessment practices. *Educational Technology Research and Development*, 72, 1893–1924. <https://doi.org/10.1007/s11423-024-10364-y>

Simsek, A., Clark-Wilson, A., Bretscher, N., & Hoyles, C. (2025). Exploring mathematics teachers' integration of technology into classroom teaching practice: A focus on geometric similarity. *International Journal of Mathematical Education in Science and Technology*, 1-31. <https://doi.org/10.1080/0020739X.2025.2469865>

Thurm, D., & Barzel, B. (2022). Teaching mathematics with technology: A multidimensional analysis of teacher beliefs. *Educational Studies in Mathematics*, 109(1), 41-63. <https://doi.org/10.1007/s10649-021-10072-x>

Trouche, L. (2004). Managing the complexity of human/machine interactions in computerized learning environments: Guiding students' command process through instrumental orchestrations. *International Journal of Computers for Mathematical Learning*, 9, 281-307.

Trouche, L., & Drijvers, P. (2014). Webbing and orchestration. Two interrelated views on digital tools in mathematics education. *Teaching Mathematics and Its Applications: International Journal of the IMA*, 33(3), 193-209.

Viberg, O., Grönlund, Å., & Andersson, A. (2023). Integrating digital technology in mathematics education: A Swedish case study. *Interactive Learning Environments*, 31(1), 232-243. <https://doi.org/10.1080/10494820.2020.1770801>

Weigand, H. G., Trgalova, J., & Tabach, M. (2024). Mathematics teaching, learning, and assessment in the digital age. *ZDM-Mathematics Education*, 56(4), 525-541. <https://doi.org/10.1007/s11858-024-01612-9>

Zeynivandnezhad, F., Mousavi, A., & Kotabe, H. (2020). The mediating effect of study approaches between perceptions of mathematics and experiences using digital technologies. *Computers in the Schools*, 37(3), 168-195. <https://doi.org/10.1080/07380569.2020.1793050>