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Abstract – In this paper, a modified sampling rate, which is smaller than the usual Nyquist rate, is determined for bandlimited signals using a 

method like single side band (SSB-like). SSB-like method is characterized using the base signal of single side band Amplitude Modulation 

(SSB-AM) instead of the actual AM signal. The sampling should be performed on the base SSB signal, which is a complex valued signal. That 

is, SSB-like sampling is performed on a complex valued signal with a corresponding Nyquist frequency which is half of the actual required 

sampling frequency. Also, a theoretical sampling method is proposed as a theorem that results in sampled values based on the mathematical 

properties of transformations. The proposed complex sampling method is novel in the context of sampling and valid for any band-limited real 

valued signal. 
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I. INTRODUCTION 

This paper presents a new method for data reconstruction 
of a signal from its samples which are taken slower than the 
Nyquist rate.  

The reconstruction of a signal from the samples can be 
achieved if the samples of the signal are taken at a sampling 
frequency fs which is larger than the bandwidth of the sampled 
signal. This rate is known as Shannon’s sampling theorem in 
the communication community since it was introduced and 
applied to communication area by Shannon in 1949 [1]. 

The faster than Nyquist (FTN) is an approach, which 
samples a low-frequency signal fl(t) instead of a high frequency 
band limited signal fh(t), which has the spectrum of fl(t) at high 
frequency. Then fh(t) can be obtained from the samples of fl(t) 
via a frequency shift [5]. In FTN the signal is sampled at a 
lower sampling frequency than the one required by fh(t) based 
on the similarity of the spectrums of fl(t) and fh(t). For FTN, the 
high frequency signal should resemble the low frequency 
signal in terms of the spectrum. However, the proposed 
approach here can be applied to all band-limited signals. 

Here, the proposed method has the potential to increase the 

sampling period 𝑇 =
1

𝑓𝑠
 up to twice the value proposed by the 

Nyquist theory, where fs is the sampling frequency. In this 
paper, the following issues are presented: i) the reconstruction 
of the under sampled signal; ii) the conjecture that the samples 
of a signal can be obtained by adding enough AM signals at 

the center frequencies, kws=2kfs, which are the integral 
multiples of the sampling frequency. 

II. SAMPLING THEORY AND AM 

A. Sampling theory 

Let a band limited signal, g(t), be given (Figure 1). The 
signal g(t) has a bandwidth, 𝐵𝑊 = 2𝑓𝑚𝑎𝑥 , where fmax is the 
maximum frequency component of g(t). 

 

Fig. 1. Spectrum of a band limited signal 

 
The signal g(t) is desired to be stored in a digital system 

through the samples taken at every T second, such that the 
original signal, g(t), can be reconstructed from the samples 
without a loss of information. 

The sampling process is formulated by the use of the 
impulse train called Dirac comb [4] (Figure 2a) of period T,  
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Fig. 2 (a) The Dirac (impulse train) comb function; (b) the samples g*(t) of 

a function with sampling frequency ws=1/T 

𝛿𝑇(𝑡) = ∑ 𝛿(𝑡 − 𝑛𝑇)∞
𝑛=−∞ .          (1) 

Note that, the limits of summation will be the set of integers 
from -∞ to +∞ unless otherwise stated. 

The sampled signal can be represented as follows [2] 

𝑔𝑇(𝑡) = 𝑔(𝑡)𝛿𝑇(𝑡) = ∑ 𝑔(𝑡)𝛿(𝑡 − 𝑛𝑇).         (2) 

Using the properties of impulse functions we have 

𝑔∗(𝑡) = 𝑔𝑇(𝑡) = ∑ 𝑔(𝑛𝑇)𝛿(𝑡 − 𝑛𝑇).         (3) 

That is, we get a weighted impulse train by the weights 
equal to g(nT) (Figure 2b).  

For a causal system, the Laplace transformation of the 
Dirac Comb given in (1) is 

ℒ(𝛿𝑇(𝑡)) = ∫ 𝛿𝑇(𝑡)𝑒−𝑠𝑡𝑑𝑡
∞

0
= ∑ 𝑒−𝑛𝑇𝑠∞

0 .        (4) 

Note that Laplace transform may be defined as two-sided 
and one-sided versions. For causal systems, both definitions 
are equivalent [6]. 

Similarly, the Laplace transform of G*(s) is 

𝐺∗(𝑠) = ∑ 𝑔(𝑛𝑇)𝑒−𝑛𝑇𝑠∞
0 = ∑ 𝑔(𝑛𝑇)∞

0 (𝑒𝑠𝑇)−𝑛.        (5) 

In Figure 3, spectrum of |G*(jw)| is seen as a sampling 
frequency higher than Nyquist frequency, while a spectrum 
with aliasing is given in Figure 4. G*(s), the impulse sampled 
function, has some useful properties, listed below: 

 

Fig. 3. Spectrum |G*(jw)| of a sampled signal (no aliasing), that is, ws>2wmax 

 
Fig. 4. The spectrum of an under-sampled signal (|G*(jw)| with ws<2wmax 

(aliasing) Note: Only ±ws/2 is shown! 

 

i. G*(s) is periodic in s with the period 𝑗
2𝜋

𝑇
= 𝑗𝑤𝑠, 

that is (Figure 3) 

𝐺∗(𝑠) = 𝐺∗ (𝑠 + 𝑗
2𝜋

𝑇
𝑘) ; ∀𝑘 ∈ ℤ.        (6) 

ii. If G(s) has a pole at s=s1, then G*(s) has poles at 

𝑠 = 𝑠1 + 𝑗𝑘𝑤𝑠;  ∀𝑘 ∈ ℤ. 

Note that this is not true for the zeros of G(s) in 
general. 

iii. G*(s) can be expressed as follows: 

𝐺∗(𝑠) =
1

𝑇
∑ 𝐺(𝑠 + 𝑗𝑘𝑤𝑠)∞

𝑘=−∞ .         (7) 

iv. In terms of Fourier Transformation, the frequency 

response G*(jw) is the repeated version of 
𝐺(𝑗𝑤)

𝑇
 

shifted by the integral multiples of sampling 
frequency, ws along the jw- axis. If the sampling 
frequency satisfies the Nyquist rate, then the 
signal can be recovered from the samples.  

v. Since the respective conditions 𝑤𝑠 > 2𝑤𝑚𝑎𝑥  and 
𝑤𝑐 > 𝑤𝑚𝑎𝑥 (see Figure 5) for sampling and AM 
are similar, one can conclude that G*(jw) includes 
the AM modulated versions of g(t) infinitely 
many times with carrier frequencies of kjws, for all 
integer k. Note that, the AM condition should be 
same to satisfy the sampling conditions to extract 
AM signal from the spectrum of a sampled signal 
using a proper bandpass filter (Figure 3). 

 

Fig. 5. The spectrum of a demodulated AM signal before LPF. Aliasing 
occurs when wc<wmax. 

 

vi. Therefore, the AM modulation of g(t) with carrier 
frequency, kws for a given k, can be extracted from 
G*(s) using an appropriate bandpass filter with 
BW=ws centered at kws. 

The recovery of the signal is not possible due to the aliasing 
phenomenon if the sampling frequency is less than twice the 
maximum frequency of the signal according to the Nyquist 
theorem [3]. 
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B. Amplitude Modulation 

The basic AM signal, ma(t), can be expressed as the 
multiplication of the carrier signal with the message signal as 
follows: 

𝑚𝑎(𝑡) = 𝑚(𝑡)𝑐𝑜𝑠(𝑤𝑐𝑡)                        (8) 
where m(t) is the band-limited message signal with a maximum 
frequency of wmax, cos(wct) is the carrier function with the 
carrier frequency, wc>2wmax.  

Since the AM is based on frequency contents, the AM is 
analyzed using Fourier Transform. The Fourier Transform of 
ma(t) is given by (Figure 6) 

 

Fig. 6. A band limited signal (center) and its AM signal at wc (left and right) 

𝑀𝑎(𝑗𝑤) = ℱ{𝑐𝑜𝑠(𝑤𝑐𝑡)𝑚(𝑡)} =
1

2
ℱ{[𝑒−𝑗𝑤𝑐𝑡 + 𝑒𝑗𝑤𝑐𝑡]𝑚(𝑡)}

  

𝑀𝑎(𝑗𝑤) =
1

2
(𝑀(𝑗𝑤 + 𝑗𝑤𝑐) + 𝑀(𝑗𝑤 − 𝑗𝑤𝑐)).        (9) 

III. RECONSTRUCTION WITH AM 

In this section, a novel method, which is a generalization of 
the G** method given in [7-8], is offered to recover an under-
sampled signal. Note that, AM can be formulated as a pole 
placement problem [9]. 

Let a sampling frequency, ws, be chosen such that  

𝑁𝑤𝑠 < 𝑤𝑚𝑎𝑥 < (𝑁 + 1)𝑤𝑠  

for some integer N. This means that the resulting sampled 
signal spectrum exhibits “aliasing” on the base spectrum of 
G(s) by the first N terms in positive and negative directions. 
Figure 4 shows this for N=1. General case is not shown in a 
figure, since it becomes too messy even for N=2. 

Let us assume that the G(s±jkws) for 0<k<(N+1) are 

available. Let GN**(s) be defined as  

𝐺𝑁
∗∗(𝑠) = 𝐺∗(𝑠) +

1

𝑇
[𝐺(𝑠) − ∑ 𝐺(𝑠 + 𝑗𝑘𝑤𝑠)𝑁

𝑘=−𝑁 ].      (10) 

Then it is obvious that GN** is has the terms G(s) and all 
other G(s+jkws) except for 𝑘 ∈ {−𝑁, … , −1,1, … , 𝑁  }.  

These shifted G(s+kjws) terms are all aliased with each 
other including G(s). 

Now, let N=1. Let us assume that the frequency response 
of g(t) is symmetric and G*(s) is the Laplace transform of the 
impulse sampled version with wmax.< ws < 2wmax. Due to non-
Nyquist choice of sampling frequency, G*(jw) exhibits 
aliasing and g(t) cannot be reconstructed from the samples at 
hand (see Figure 4).  

Note that, G**(s)=G1**(s) is used for simplicity. 

Let us assume that G(s±jkws) and G(s-jkws) are available. 

Let G**(s) be defined as  

𝐺∗∗(𝑠) = 𝐺∗(𝑠) −
𝐺(𝑠+𝑗𝑤𝑠)+𝐺(𝑠−𝑗𝑤𝑠)

𝑇
.       (11) 

Then G**(jw) has a non-aliased version of G(jw) around 
w=0 because the parts, which cause aliasing, are removed 
(Figure 7). Then using an appropriate low pass filter, the 
original signal can be recovered from the samples even though 
g(t) was sampled with a non-Nyquist sampling frequency. 

 

Fig. 7. The spectrum of |G**(jw)|. Aliasing is removed 

Note that, considering the Fourier transforms, we can write 

𝐺(𝑠 + 𝑗𝑤𝑠) + 𝐺(𝑠 − 𝑗𝑤𝑠) = 2𝐺𝑎(𝑠).       (12) 

where ga(t) is the AM modulated g(t). This means that, a 
weighted version of AM signal of g(t) should be removed from 
G*(s). On the other hand, shifting G(s) properly provides the 
same result. 

Now, according to the above approach, it seems that we can 
remove all parts that result in aliasing for smaller sampling 
frequencies. Thus, we can recover the signal from very few 
samples. The following remarks should be noted:  

i. It is possible to think as follows: If we have an 
AM modulated version of g(t) at hand, we do not 
need to have samples of the signal for recovery. 
The AM wave can be used to recover it. Indeed, 
this is true if the AM carrier frequency is larger 
than the Nyquist rate. If the carrier has a frequency 
less than the Nyquist frequency, the signal cannot 
be obtained from AM without distortion. 
Therefore, for an under-sampled signal, the above 
procedure can be employed for reconstruction. 

ii. On the other hand, if we think that enough AM 
versions are at hand, then the signal can be 
recovered even from a single sample. This clearly 
makes no sense. At least there should be a limit 
for recovery. The best-known limit is the Nyquist 
rate, which requires the sampling frequency to be 
twice the maximum frequency of G(jw). Note that 
the AM condition and the Nyquist rate are same 
for a full recovery. 

iii. However, the above approach suggests that there 
should be a method to recover the signal from its 
samples, which are taken slower than the Nyquist 
rate. The method should make it possible to 
remove the aliasing, thus, allowing the recovery 
without a need to have an AM version at hand. 

The approach here suggests that the reconstruction of a 
signal from its samples may be achieved for a non-Nyquist 
sampling period. The study continues to devise such a method. 
The approach presented is the preliminary results for recovery 
of an under-sampled signal. The G** method can be seen as a 
possibility that recovery can be achieved with a sampling 
frequency less than the Nyquist rate. 
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IV. OBTAINING SAMPLES USING AM 

In this section, it is conjectured that the sampling of a signal 
can be achieved by addition of sufficiently many AM signals 
based on the above approach.  

Let us define the kth AM-harmonic function, qk(t), for m(t) 
with M(jw)=0 for all w>wmax as follows: 

𝑞𝑘(𝑡) = 𝑚(𝑡)cos (𝑘𝑤𝑠𝑡)         (13) 

where k is an integer, ws=2fs=2/T>2fmax=2wmax is the 
sampling frequency determined by the sampling period T. 

From (9), the Fourier Transform of qk(t) is 

𝑄𝑘(𝑗𝑤) =
1

2
(𝑀(𝑗𝑤 + 𝑗𝑘𝑤𝑠) + 𝑀(𝑗𝑤 − 𝑗𝑘𝑤𝑠))       (14) 

Indeed, qk(t) is the amplitude modulation of m(t) performed 
at the carrier frequency of wck=kws. 

From (8) and (14), (7) can be written as 

𝐺∗(𝑗𝑤) =
1

𝑇
𝑀(𝑗𝑤) +

2

𝑇
∑ 𝑄𝑘(𝑗𝑤)∞

𝑘=1        (15). 

From (15), one can predict that the samples of m(t), which 
are taken at every T second, can be obtained. 

(15) leads to the following theorem stated as [7]: 

Theorem 1:  

Let m(t) be a band limited signal, whose spectrum is zero 
for all w>wmax. Then the samples of m(t), which are taken at 
every T second that satisfies the Nyquist condition (that is, 
1/T=fs>2fmax), can be obtained as a summation of sufficiently 
many AM modulations, Qk(jw) of m(t) without using a 
sampling device. 

The proof of the above theorem can be constructed based 
on (15). Let us consider the inverse Fourier transformation of 
(15) 

𝑔∗(𝑡) =
1

𝑇
𝑚(𝑡) +

2

𝑇
∑ 𝑞𝑘(𝑡)∞

𝑘=1        (16). 

Since g*(t) is defined as the shifted impulses by kT with 
weights, m(kT), (16) can be written as 

𝑔∗(𝑘𝑇) = 𝑚(𝑘𝑇) =
1

𝑇
𝑚(𝑘𝑇) +

2

𝑇
∑ 𝑞𝑘(𝑘𝑇)∞

𝑘=1       (17). 

Here the problem is to determine the limit, M, of 
summation in (17) to obtain a satisfactory list of samples taken 
at every sampling instant, kT. Due to this, the word “many” 
should be figured based on the parameters and properties of the 
sampled signal. The study is continuing on this.  

V. RECONSTRUCTION VIA SSB AM 

As mentioned in section III, the reconstruction of a signal 
from its non-Nyquist samples can be achieved via its AM 
modulation only in continuous time. G** method can remove 
the distortion caused by aliasing in continuous time. However, 
it is not possible to remove the distortion in discrete time due 
to the cyclic nature of the discretization around the unit circle 
in z-plane. This can be explained by considering the starred 
transformation, which is the Laplace transformation of the 
signals that are formed by weighted impulses, which are 
shifted by the sampling period, because of the sampling model 
using Dirac comb given in (1). The z-transformation of the 
starred Laplace is obtained by substituting 𝑧 = 𝑒𝑠𝑇 . This 
results in a mapping of strips of the Laplace domain, which are 
defined as  

𝑆𝑘 = {𝑧 ∈ ℂ |(𝑘 −
1

2
) 𝑤𝑠2 < 𝐼𝑚(𝑠) < (𝑘 +

1

2
) 𝑤𝑠2}, (18) 

where 𝑤𝑠2 =
𝑤𝑠

2
=

𝜋

𝑇
 is the half of the sampling frequency. It 

can be shown that the ℒ∗ → 𝓏 , where 𝓏  denotes the z-
transformation obtained from starred Laplace transformation, 
maps each of the strips Sk as follows,  

|

|𝑧| < 1 𝑓𝑜𝑟 𝑅𝑒(𝑠) < 0

|𝑧| = 1 𝑓𝑜𝑟 𝑅𝑒(𝑠) = 0

|𝑧| > 1 𝑓𝑜𝑟 𝑅𝑒(𝑠) > 0

.         (19) 

(19) is valid for each integer k in (18). This means that the 
removal of aliasing by G** method is not possible since the 
aliased portions cannot be removed in discrete time as soon as 
the z-transformation is completed. This can be seen in Figure 
5-4 (see Figure 8 for a visualization obtained in desmos.com). 
The actual mapping takes s=0 to z=1 and the center of the 
cylinder should be at the origin), since the imaginary axis part 
of the whole strip is mapped on the unit-circle in z-plane. This 
ends up the aliasing is preserved around z=-1. Therefore, the 
G** method cannot be used in discrete time. 

 

Fig. 8. The transformation of a function around a cylindrical surface (Note: 

Here s=0 mapped into z=0) 

The basic question is whether there is a method to avoid 
aliasing in discrete time. The answer is yes as it is explained 
below. 

Note that the Fourier transformation of real valued signals 
is conjugate-symmetric around w=0 [6]. That is, given x(t),  

ℱ(𝑥(𝑡)) = 𝑋(𝑗𝑤) ⇒ ℱ(𝑥∗(𝑡)) = 𝑋∗(−𝑗𝑤). 

If x(t) is real valued, x(t)=x*(t). Then 

ℱ(𝑥(𝑡)) = ℱ(𝑥∗(𝑡)) ⇒ 𝑋(𝑗𝑤) = 𝑋∗(−𝑗𝑤). 

{
|𝑋(𝑗𝑤)| = |𝑋∗(−𝑗𝑤)|

arg (𝑋(𝑗𝑤) = −arg (𝑋∗(−𝑗𝑤))
.      (20). 

(20) means that the Fourier transformation carries the 
whole information of the signal in positive (or negative) 
frequencies only for a real signal. This is the idea behind the 
SSB-AM. SSB-AM is based on the operation of eliminating 
the negative or positive frequency components of the signal 
and then recover it from these one sided information.  

.In the sampling process, it is possible to eliminate the 
negative (or positive) frequency components of the signal 
before sampling then sample it according to the bandwidth of 
the eliminated signal to avoid aliasing. Since the bandwidth of 
the eliminated signal is half of the original signal, the sampling 
frequency can be selected lower than the sampling frequency 
required by the Nyquist criteria. This can be justified by the 
fact that the spectrum of real valued signals is symmetric in 
amplitude and in phase with respect to the vertical axis and the 
origin, respectively, as shown in (20). The principle of single 
side band AM (SSB-AM) is based on this fact. Here, the use of 
basic SSB signal is proposed for a slower sampling since the 
bandwidth of SSB signal is wmax instead of 2wmax.  
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The classical AM uses the modulation of the whole signal. 
That is, the message signal is modulated for both negative and 
positive frequencies. In telecommunication, the reduction of 
energy is an important factor. Message signals generally have 
Fourier transforms, which are symmetric and antisymmetric in 
amplitude and phase of the signal, respectively, with respect to 
the frequency axis. That is, the amplitude of the Fourier 
transformation is the same for positive and negative 
frequencies. Therefore, sending AM wave requires at least 
twice the energy to send and demodulate the signal. SSB-AM 
method attenuates one of the side bands and sends the AM 
signal with a reduced power.  

The SSB-AM can be formulated as follows: 

The linear modulation scheme can be defined as 

𝑠𝑎(𝑡) = 𝑠𝐼(𝑡) + 𝑗𝑠𝑄(𝑡),        (21) 

Where the subscripts I and Q denote the in-phase 
components and the quadrature components, respectively. 

For a given message signal, m(t), with the Hilbert 
transform, �̂�(𝑡), there are three cases: 

i. The linear modulation if 𝑠𝐼(𝑡) = 𝑚(𝑡)  and 
𝑠𝑄(𝑡) = 0. 

ii. Let 𝑠𝐼(𝑡) =
1

2
𝑚(𝑡) 

a. The upper side band (USB) modulation if 

𝑠𝑄(𝑡) =
1

2
�̂�(𝑡). 

b. The lower side band (LSB) modulation if 

𝑠𝑄(𝑡) =
−1

2
�̂�(𝑡). 

Employing the above equations, 

𝑚(𝑡) = 𝑅𝑒{𝑠𝑎(𝑡)} = 𝑅𝑒{𝑠(𝑡) + 𝑗�̂�(𝑡)}.       (22) 

 

It can be shown that the Fourier transform, 𝑆𝑎(𝑗𝑤) , of 
𝑠𝑎(𝑡) is as follows [1]: 

i. 𝑆𝑎(𝑗𝑤) = 𝑀(𝑗𝑤),      (23a) 

ii. 𝑆𝑎(𝑗𝑤) = {
0.5𝑀(𝑗𝑤) 𝑤 ≥ 0

0 𝑤 < 0
,     (23b) 

iii. 𝑆𝑎(𝑗𝑤) = {
0 𝑤 ≥ 0

0.5𝑀(𝑗𝑤) 𝑤 < 0
,     (23c) 

Where M(jw) is the Fourier transform of m(t). Note that 
same relations are also satisfied by Laplace transforms. 

The actual SSB-AM at the carrier frequency of w0 can be 
formulated as follows: 

Here only the upper (right) side band of the signal is 
considered. The same procedure can be applied to the lower 
(left) side band. Let a signal m(t) with a Hilbert transform of 
�̂�(𝑡) is given. Then its SSB modulated signal sssb(t) is defined 
as 

𝑠𝑠𝑠𝑏(𝑡) = 𝑅𝑒{𝑠𝑎(𝑡)𝑒𝑗𝑤0𝑡}        (24) 

 

𝑠𝑠𝑠𝑏(𝑡) = 𝑅𝑒{[𝑚(𝑡) + 𝑗�̂�(𝑡)] [cos(𝑤0𝑡) + 𝑗 sin(𝑤0𝑡)]}  

 

𝑠𝑠𝑠𝑏(𝑡) = 𝑚(𝑡) cos(𝑤0𝑡) − �̂�(𝑡)sin (𝑤0𝑡),      (25) 

where w0 is the angular frequency of the carrier. 

It is obvious from (23) and (24) that sssb(t) is equal to 
Re{sa(t)}=m(t) when w0=0.  

The signal recovery for SSB can be carried out as in the 
case of double side bad (DSB) AM. That is, multiply the SSB 
signal by cos(w0t) and apply an appropriate low pass filter to 
remove the double frequency components at 2w0. 

It is evident that the USB and LSB include only positive 
and negative frequency components of M(jw), respectively. 
Hence, the total bandwidth of USB and LSB are half of the 
message signal m(t). Therefore, the spectrum has no aliasing. 
Since USB and LSB modulation preserve sufficient 
information for the reconstruction of the original signal m(t), 
then same conclusion is valid for the complex sampling of sa(t) 
with a sampling period, T, related to the bandwidth, 
BWa=0.5BW=wmax, where wmax is the maximum frequency 
component of M(jw). The whole modulation-demodulation 
process, which is used for USB and LSB modulated signals, 
can be repeated for the sampling of sa(t). 

Algorithm for sampling at half frequency of Nyquist rate: 

Algorithm 1: (Complex sampling (CS)) 

1. Compute the Hilbert transformation, �̂�(𝑡). 

2. Find USB sa(t) based on (21). Note that sa(t) is a 
complex function, from which m(t) can be extracted 
using (22). The amplitude spectrum for such a signal 
is shown in Figure 9. 

 

Fig. 9. Spectrum of USB-SSB base signal 

3. Then sample sa(t) with the rate ws=wmax to get the 
sequence sa(nT), where T is the sampling period. Note 
that the number of samples for real and imaginary parts 
(or amplitude and phase) of sa(t) are same since it is a 
complex valued signal. In fact, the number of samples 
are the same for fast (real) and slow (complex) 
sampling process. In complex sampling one have more 
time to process the samples. The spectrum of the 
sequence is given in Figure 10. 

 

Fig. 10. Spectrum of the sampled signal 

4. The recovery of m(t) can be carried out as in case of 
SSB-AM signals [10,11,12]. Then the real part of the 
recovered signal will be m(t). This conclusion is true 
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for the signals processed in the discrete time portion of 
the system as in the case of a control system, where the 
output may be different due to the processing of the 
signals. The detailed block diagram of complex 
sampling is still studied. It seems that the blocks given 
in [12] should be modified thoroughly for sampling. 
Therefore, no block diagram is given here. 

Algrithm 1, can be described as follows in a simple way: 

 

1. Given m(t), find the Hilbert transform. 

2. Compute sa(t) using (21), where m(t) is included as 

in (22). 

3. Sample sa(t), that is, use an analog to digital 

converter (ADC). 

4. Process the signals according to the DSP rules. 

5. Obtain the corresponding analog signal using a 

Digital to Analog converter (DAC). 

6. Use an SSB-AM demodulator to get m(t). 

 

Remarks for Algoritm 1 (CS): 

1. The number of samples in CS is same as sampling in 

real sampling (RS). However, the CS samples are 

taken for a longer period. The computational burden 

is expected to be less than for RS compared to the 

longer period for CS. The reason for the reduced 

burden is because any one has longer time for the 

same kind of process with some extra complex 

mathematical operations, for which powerful 

computing tools are available. 

2. Even though CS provides a longer sampling period, 

it needs two slow samplers to get the data in terms of 

complex valued signal instead of one faster sampler. 

3. Only the formulation of CS is presented here since 

the theoretical development of the technique is 

completed recently while some examples are 

performed to show the validity of the approach. 

VI. CONCLUSION 

A signal recovery method is proposed for under sampled 
signals using SSB-AM base signal of the signal that should be 
sampled. The proposed method is expected to be applied any 
band-limited signal contrary to the approach presented in [7-
8], which has a very limited application since it is valid in 
continuous time where the samples are available as the weights 
of shifted impulses of a Dirac comb. The approach in [7] can 
remove the aliasing in continuous time. However, the aliasing 

cannot be avoided when the samples are considered as number 
sequences in discrete time due to the cyclic nature of Fourier 
transforms for discrete time sequences (Figure 8).  

The proposed SSB-AM based complex sampling method 
in this study is a general method for any band limited signal. 
This method is expected to be applied to cases where very high 
frequency components should be handled but it is not possible 
due to the limitations of the available harware. 

It was conjectured in [7] that the samples of the signal 
(taken according to the prescribed Nyquist rate) can be 
obtained using sufficiently many AM signals at integer 
multiples of the sampling frequency mathematically without a 
need to use sampling devices. Here the conjecture is repeated 
with a small modification.  

The future study includes the application of the proposed 
SSB-AM approach to some signals and development and 
implementation of it. Similarly the study for conjecture 1 is 
continuing. 
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Below the figures are given in a larger form! 

 
Figure 1 Spectrum of a band limited signal 

 

 
Figure 3 Spectrum |G*(jw)| of a sampled signal (no aliasing), that is, ws>2wmax 

 

 

 
Figure 6 A band limited signal (center) and its AM signal at wc (left and right) 
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Figure 2 (a) The Dirac (impulse train) comb function; (b) the samples g*(t) of a function with sampling frequency ws=1/T 

 

 
Figure 4 The spectrum of an under-sampled signal (|G*(jw)| with ws<2wmax (aliasing) Note: Only ±ws/2 is shown! 
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Figure 7 The spectrum of |G**(jw)|. Aliasing is removed 

 

 
Figure 5 The spectrum of a demodulated AM signal before LPF. Aliasing occurs when wc<wmax. 

 
Figure 8 The transformation of a function around a cylindrical surface (Note: Here s=0 mapped into z=0) 

  



117 

 

 
Figure 9 Spectrum of USB-SSB base signal 

 
Figure 20 Spectrum of the sampled signal 


