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THE NOVEL HEWMA EXPONENTIAL TYPE MEAN ESTIMATOR
UNDER RANKED SET SAMPLING
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Abstract: This study introduces a novel HEWMA-based exponential estimator for Ranked Set
Sampling (RSS). The proposed estimator integrates HEWMA control chart statistics with the
exponential ratio estimator to enhance efficiency. By incorporating control chart statistics,
memory-type estimators improve estimation accuracy by utilizing not only the mean of the
current sample but also historical means, if available. This approach enables using time-
dependent repeated survey data or data collected from the same population at different time
points. Given that the only existing estimator for the RSS method in the literature is the ratio
estimator using EWMA, the proposed estimator offers a more efficient alternative. Its efficiency
is evaluated through simulation studies using synthetic datasets with varying correlation
coefficients to simulate diverse scenarios, as well as an empirical study employing real-world
data with a distinct structure. The results demonstrate that incorporating at least one old sample
mean value enhances efficiency. Additionally, the estimator's effectiveness improves as
correlation and the number of old means used (T) increase. The selection of HEWMA weight
parameters is crucial, depending on sample size and correlation. The proposed estimator
performs optimally at low to medium correlation levels in the simulation studies and
consistently outperforms alternatives in the real data analysis.
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1. INTRODUCTION

Ranked Set Sampling (RSS), originally proposed by McIntyre (1952), offers a more efficient
alternative to Simple Random Sampling (SRS), especially in scenarios where measuring the
study variable is costly, time-consuming, or destructive. RSS improves estimator precision by
incorporating rankings before actual measurements, thus utilizing available information more
effectively. In parallel, memory-type estimators like the Exponentially Weighted Moving
Average (EWMA) chart by Roberts et al. (1959) and its extension, the Hybrid Exponentially
Weighted Moving Average (HEWMA) chart introduced by Haq (2013), are widely used for
monitoring processes that evolve over time. These methods integrate historical and recent data,
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giving more weight to recent observations while still considering past trends. HEWMA
enhances its flexibility by allowing a dynamic weighting scheme to capture shifts in the
underlying process better. Arslan et al. (2023) demonstrated that the hybrid HEWMA control
chart is more sensitive than existing control charts, including the classical EWMA, in detecting
early shifts in process parameters. This feature makes HEWMA particularly suitable in the RSS
context, where the efficient use of auxiliary and temporal information is crucial. Combining
RSS with HEWMA can further improve estimation accuracy.

Aslam et al. (2020) introduced memory-type ratio and product-type mean estimators utilizing
EWMA in stratified and rank-based sampling techniques. Shahzad et al. (2022) proposed
EWMA-type memory-type estimators in two-stage sampling. Alomaie and Iftikhar (2024)
introduced calibrated EWMA estimators for time-dependent survey data to the literature with
various applications. Aslam et al. (2024) introduced a novel memory-based ratio estimator for
survey sampling, whereas Kumar and Bhushan (2025) proposed a logarithmic memory-type
estimator for time-dependent studies. Kumar et al. (2024) presented a class of memory-type
general variance estimators under SRS. Singh et al. (2024) enhanced the accuracy of memory-
type mean estimators, and Sharma et al. (2024) designed procedures for the EWMA mean
estimator in time-dependent studies. Recently, Kumari et al. (2025) proposed a memory-type
estimator using two auxiliary variables, and Kogyigit (2025) introduced a new and effective
HEWMA-type estimator under SRS. This method has been frequently studied and developed
differently in recent years (Singh et al. 2021, Bhushan et al. 2022, Shahzad et al. 2022, Yadav
et al. 2023, Aslam et al. 2023, Alomair and Shahzad 2023, Qureshi 2024, Tariq et al. 2024,
Kumar et al. 2024). However, no study has proposed a estimator using HEWMA under RSS in
the literature. Studies have shown that both the RSS method and HEWMA control chart,
proposed as alternatives, produce more effective results than the SRS method and EWMA
control chart.

This study evaluates the effectiveness of the HEWMA exponential type estimator proposed for
the RSS method, comparing it to other estimators in the literature through simulation studies
using synthetic datasets and real data from Tiirkiye. As a result, a new estimator for the RSS
method is developed, improving estimation accuracy by integrating historical sample means.

2. MEAN ESTIMATORS UNDER RSS

Cingi and Kadilar (2009) generally classified the mean estimators as basic, ratio/product and
regression type. However, these estimators have expanded with the development of technology
and the expansion of literature, including exponential type, logarithmic type estimators,
estimator families, etc. Aslam et al. (2020) included memory-type estimators among these
estimator groups. This section presents the basic mean, ratio, regression type, and memory-type
mean estimators for RSS, followed by introducing the new proposed estimator.

2.1. Estimators in the literature

In RSS, the mean estimation is primarily performed using the formula in Equation (1), where
Y represents the study variable of interest and X serves as the auxiliary variable.

Hprss = ii}’(i;,/)/sc (D

j=1 =1
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Here, s is the RSS set size, and ¢ is the number of repetitions/ cycles. This estimator does not
use any auxiliary variable information. Equation (2) presents the ratio estimator in RSS.

Hy = (luRSS /;SKO)X > )

where xgss = ii%:,x) /sc is the sample mean of the auxiliary variable drawn with RSS. RSS's

j=1 i=1

exponential ratio and regression type estimators are as in Equations (3) and (4), respectively.
Hy = Hpss exp[()_( — Xass )/()_(‘H_CRSS ):| (3)

ILI4=,URSS+b(}—;RSS) (4)

In Equation (4), b denotes the regression coefficient, which can be estimated using
b=p(s,/¥)(s./x), where s, and s are the standard deviations of Y and X samples, respectively.

p is the correlation coefficient between X and Y. In Equations (2), (3), and (4), X is the

population mean of the auxiliary variable.

The following formula presents the EWMA-based memory-type ratio estimator in RSS
proposed by Aslam et al. (2020).

Hsr :(ﬂEWMAy/)_CEWMAX)X (5)

Here, Hemmay(r) = X Hgss(r) +(]_a):uEWMAY(T—1) and Hemvax(ry = OXRss(r) + (]_a)luEWMAX(T—I) are the
EWMA statistics for Y and X. a is the weight parameter of the EWMA statistic and chosen in

0<a<l.

2.2. Proposed estimator

The following formulas calculate the HEWMA statistics for variables Y and X, respectively:
Hygwmar(ry = (]_ﬂ) Hpwaay(r-1) +ﬂ/uEWMAY(T) (6)

Hppwmax(rty = (I_ﬂ) H pEwmax(r-1) +ﬂ:uEWMAX(T) (7)

In this case, f is the weight parameter of the HEWMA statistic, and, similar to the EWMA
weight parameter «, it should be chosen from the range 0 < # < 1. Both a and f determine the
weight given to old mean(s) in the estimation. When T = 1, only the current sample data is used,
and no old mean are included. According to Kogyigit (2025), the initial value of the EWMA
statistic should be the oldest mean value.

Inspired by the estimators from Aslam et al. (2020) and Kogyigit (2025), the HEWMA type
exponential proportional estimator is proposed as in Equation (8):
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X- M upwmax(r
HMpror = Hugwmay(r) EXP ==l 3
X+ Mypwaax(r)

3. SIMULATION STUDY

The simulation study was conducted using the R program. The populations were derived from
the bivariate normal distribution with pxy = 0.6, 0.7, and 0.8, with N(3,1) random parameters
and a size of N = 3600. For RSS, we consider the set size as s = 3, 4, and 5 and the number of
cycles as ¢ =1, 2, and 3. For EWMA and HEWMA statistics, we used T =2, a = 0.1, 0.3, 0.5,
0.7, and 0.9, and g = 0.3, 0.5, 0.7, and 0.9. Kogyigit (2025) emphasized that the S coefficient
should be selected higher than 0.5, but since that study was carried out under SRS, we also tried
S = 0.3 for RSS in this simulation study. The simulation draws 100,000 samples from the
populations defined using RSS and calculates the corresponding estimator values. The
flowchart in Figure 1 summarizes the process for calculating the memory type estimators in
simulation. In both EWMA and HEWMA, only sample means were utilized.

Determination of population parameters (N, p)

Delermining' sample size (n)
__and selecting appropriate sand ¢

Determining the number and Sample seleclit;n with RSS and
value(s) of old mean(s) (T) obtaining sample means of Y and X

3

Selecting ot weight for EWMA / Calculating EWMA for Y and X /

.

Selecting f# weight for HEWMA / Calculating HEWMA for Y and X

( Calculate memory type estimator(s) )

Figure 1. Flowchart of the estimation process using memory type estimators under RSS

Equation (9) calculated the estimators' mean square error (MSE) values , and Equation (10)
calculated the relative Efficiency (RE) values . The results are given in Tables 1, 2, and 3. The
highest RE value in each s, ¢ combination is written in bold.

100000

MSE (4, ) = I z(“hi—?)z’

100000 = ©)
j=RSS,2,3,4,5T, PROT
MSE (u
RE, =M,v:2,3,4,5T,PR0T (10)
MSE (1)

Table 1 shows that the proposed ,,,, estimator produces the most effective results for each s,

¢ combination. The estimator achieves its highest RE value for the low correlation case,
(approximately 2.59) with a=0.3, f=0.5, s=3, ¢=3). At a correlation of 0.7, the estimator reaches
the maximum RE value of roughly 2.91 for 0=0.1, p=0.5, s=3, ¢=3.

As shown in Table 2, an increase in correlation leads to a rise in the RE value of the proposed
estimator. However, at 0.8 correlation, the best estimator is u,,. The highest RE value of x;,

is calculated as approximately 3.64 in the case of a=0.5, s= 3, ¢=3. The highest RE value of the
proposed estimator (Approximately 3.42) is obtained from the case of a=0.1, f =0.5, s= 3, ¢=3.
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The simulation study results indicate that memory-type estimators ( u;, and s, ) outperform

simple, ratio, and regression-type estimators across all conditions. The efficiency of the
estimators is significantly influenced by the sample size and selected weight parameters. The
proposed estimator does not yield the best result when $=0.3.

Table 1. Simulation results for different values of a, £, s and ¢ when p,, =0.6 and 0.7

s 3 4 5 3 4 5 3 4 s
2600 c 1 ] 7 2 2 2 3 3 3

NGLD RE; _ 1.03827 1.05589 1.06075 1.09609 1.08367 108518 110936 109328 1.08272
e 0.6 RE; _ 1.25847 1.21574 1.18709 1.27761 1.22552 119435 1.28021 1.22719 1.19083

RE, 1.287531.235311.178851.224881.20972 1.20183 1.28686 1.23867 1.19462

REsr  1.301571.30544 1.30144 1.326851.31298 1.34863 1.35661 1.33690 1.32216

B =0.3 REpror 2.214692.10293 2.041532.20185 2.09172 2.09546 2.22210 2.12243 2.05426

a=0.1 B =0.5 REpror 2.567562.435332.36323 2.56853 2.45429 2.40789 2.57041 2.45682 2.38237
B =0.7 REpror 2.177492.10191 2.05036 2.20117 2.12996 2.07416 2.20654 2.12532 2.04804

B =0.9 REpror 1.54458 1.49053 1.44977 1.55480 1.49701 1.45651 1.55909 1.49974 1.45835

REsr  1.870451.855551.836161.903661.88491 1.86952 1.928291.92067 1.87710

B =0.3 REpror 2.191982.106802.030302.197162.107552.052412.21036 2.13958 2.05861

a=03 f=0.5 REpror 2.543472.451012.38094 2.54243 2.40403 2.40403 2.57889 2.47459 2.40235
p=0.7 REsr 1.871161.858231.859921.91629 1.89130 1.882971.936061.917571.87419

B =0.9 REpror 1.54298 1.48893 1.45378 1.55632 1.49288 1.45563 1.55607 1.49787 1.45944

REsr  2.177352.185942.160452.219522.176302.18858 2.24010 2.225002.20119

B =0.3 REpror 2.196212.12283 2.05344 2.19055 2.10245 2.06332 2.19892 2.14335 2.08463

a=0.5 S =0.5 REpror 2.537542.46909 2.34902 2.55542 2.44093 2.412782.57101 2.45728 2.39840
B =0.7 REpror 2.182462.088712.051872.192772.12178 2.052502.224852.111552.04398

B =0.9 REpror 1.54087 1.48638 1.44718 1.54645 1.49748 1.45324 1.559401.50007 1.45801

REsr  1.860061.87156 1.852241.90002 1.90263 1.87861 1.92958 1.89252 1.85782

B =0.3 REpror2.175192.123882.037562.180772.13098 2.047822.21263 2.11167 2.05253

a=0.7 B =0.5 REpror 2.548762.464182.375462.55920 2.45890 2.38594 2.57237 2.46256 2.37859
B =0.7 REpror2.185112.112562.037062.19553 2.118282.06539 2.20901 2.13174 2.05784

B =0.9 REpror 1.535871.48573 1.44864 1.54803 1.49401 1.45977 1.56293 1.49580 1.45798

REsr  1.288191.303501.295261.34522 1.32956 1.32866 1.35068 1.34160 1.33102

B =0.3 REpror 2.199472.10816 2.04508 2.20933 2.104122.05324 2.191722.12957 2.09137

a=0.9 p=0.5 REpror2.521772.45059 2.38297 2.54296 2.457112.407802.57742 2.45623 2.39420
B =0.7 REpror 2.188382.108402.049362.195572.117752.06097 2.20296 2.12245 2.06982

B =0.9 REpror 1.541271.48337 1.44640 1.552251.48995 1.45576 1.55453 1.50515 1.45537

RE;  1.285241.264091.22942 1.33026 1.288971.244271.35187 1.30136 1.25375

Pry =0.7 RE;  1.423341.356491.30386 1.43916 1.36387 1.30863 1.44499 1.368791.31182
RE; 0.600141.275261.28698 1.41231 1.37369 1.322751.46180 1.39479 1.33560

REsr  1.584271.54658 1.526231.63093 1.59357 1.51809 1.66136 1.59525 1.52967

B =0.3 REpror 2.473212.342262.279312.46763 2.36939 2.24809 2.50271 2.37281 2.26240

0=0.1 B =0.5 REpror2.880722.711072.63621 2.88851 2.743422.63976 2.91038 2.740502.63173
f =0.7 REpror 2.470922.351342.266812.50079 2.35965 2.277022.511122.36703 2.26626

p =0.9 REpror 1.745791.66187 1.60074 1.75841 1.66942 1.60817 1.76944 1.66421 1.60211

REsr  2.300832.241052.15997 2.33875 2.25400 2.16533 2.33605 2.242502.17058

B =0.3 REpror 2.481452.37561 2.263212.50040 2.35665 2.26556 2.48271 2.34634 2.26420

a=03 S =0.5 REpror 2.889672.730332.62868 2.896172.729132.64257 2.89261 2.755992.61064
f =0.7 REpror 2.471382.346162.251452.48208 2.358872.271502.49077 2.37263 2.26508
B =0.9 REpror 1.74693 1.656821.594101.75640 1.67228 1.60721 1.76531 1.67352 1.60265
REsr  2.697372.583482.495982.74704 2.619252.50818 2.74215 2.62053 2.52764

f =0.3 REpror 2.493112.347122.253422.517522.36419 2.24776 2.49824 2.36048 2.26732

a=0.5
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5 =05

REpror 2.853092.73925 2.64020 2.88351 2.733192.63591 2.91015 2.73432 2.63693

5 =0.7

REpror 2.473082.35013 2.274722.49945 2.35813 2.26392 2.49802 2.36501 2.27307

£ =0.9

REpror 1.742991.65974 1.59630 1.75930 1.66637 1.59996 1.76675 1.66896 1.60455

REsr  2.277442.212522.165712.327922.241182.18926 2.36342 2.25382 2.18927

£ =03

REpror 2.480192.351082.27082 2.48714 2.35460 2.28343 2.50964 2.37472 2.27329

a=0.7 B=0.5

REpror 2.878132.732222.64701 2.90152 2.76709 2.64577 2.88916 2.76265 2.62201

5 =0.7

REpror 2.469542.36128 2.26442 2.484372.359852.26196 2.49180 2.35276 2.27840

£ =0.9

REpror 1.74608 1.66120 1.60053 1.76175 1.66982 1.59997 1.76455 1.67369 1.60522

REsr  1.574341.546381.517201.66016 1.597151.53764 1.63648 1.59688 1.54721

5 =03

REpror 2.460352.344572.278552.515282.38194 2.26781 2.49001 2.36282 2.28444

a=09 B=0.5

REpror 2.888132.729902.64183 2.90448 2.73948 2.63637 2.90833 2.75378 2.60945

5 =0.7

REpror 2.467112.36513 2.254582.50194 2.36655 2.26593 2.48736 2.36286 2.27238

B=0.9

REpror 1.75000 1.66460 1.59557 1.76381 1.66726 1.59706 1.76706 1.67426 1.60151

Table 2. Simulation results for different values of a, £, s and ¢ when p,, =0.8

S 3 4

5 3 4 5

3 4 5

=2

c 1 1

1 2 2 2

3 3 3

N=3600
N@3,1)

RE, 1.712831.60795

1.539051.762131.636401.55552

1.792361.651201.58990

RE;  1.673281.56290

1.492311.679761.572941.49022

1.692761.573881.50565

Py =0.8

RE; 0.711951.43372

1.527061.753561.673241.59336

1.842941.705531.62942

REsr  2.137541.97525

1.885012.181231.990221.89744

2.184782.039531.93649

5 =03

REpror2.942022.70619

2.550472.924952.699152.57440

2.929972.722452.61241

a=0.1 =05

REpror3.366263.17044

2.999303.394943.170552.99719

3.423503.120732.99669

5 =0.7

REpror2.895842.70702

2.585122.940662.740962.58620

2.931272.733042.58188

B=0.9

REpror2.042471.91750

1.820742.052551.922561.81501

2.064741.933351.82418

REsT

3.108422.8527342.700973.136752.846182.72654

3.121792.878432.73210

B =03

REPror2.935122.7228042.589912.949512.714532.60093

2.937412.725972.58702

a=03 B=0.5

REpror3.386533.14022

2.983653.399323.161302.98032

3.400113.181363.01476

5 =0.7

REpror2.895342.70602

2.581682.916482.724162.59685

2.920612.725992.57661

5 =0.9

REpror2.054591.91103

1.817542.064731.919691.82450

2.066041.926221.82251

REsr  3.563803.31011

3.092623.627823.345203.13156

3.637383.381553.14342

B =03

REpror2.914702.72525

2.549722.934772.741952.57426

2.938442.753332.58317

a=0.5 B =0.5

REpror3.360353.18900

2.983373.370953.145162.98391

3.401093.140073.01310

5 =0.7

REpror2.912052.71697

2.574192.907982.698102.58530

2.920612.741562.58744

5 =0.9

REpror2.052611.91254

1.813322.063341.934181.83043

2.067851.929101.82562

REsr  3.059642.85001

2.670183.100722.893792.69481

3.094492.880602.71351

5 =023

REpror2.921982.72438

2.565042.914652.737832.59153

2.891562.763262.58293

0=0.7 =0.5

REpror3.374073.15686

3.004653.395583.174732.99640

3.402943.146452.99577

5 =0.7

REpror2.899092.70666

2.589382.922252.713782.58114

2.908812.739452.57079

5 =0.9

REpror2.049121.91097

1.815182.061231.919061.82088

2.074281.924871.83668

REsr  2.119181.98502

1.904942.196242.010121.90776

2.181612.038321.90143

5 =023

REpror2.873222.73399

2.578162.940792.697312.57410

2.916092.724832.56854

a=09 B =05

REpror3.388363.16588

2.986103.380813.180383.00487

3.415283.175183.00461

5 =0.7

REpror2.918362.72530

2.574912.920542.708792.57103

2.933322.732642.58685

5 =0.9

REpror2.051991.90913

1.820962.064101.922801.8291392.073811.926441.82675
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4. REAL DATA

This section uses a dataset compiled from the highway statistics of the provinces in Turkey for
the years 2024-2022, provided by TUIK and the EGM Traffic Department. In this dataset, the
variables include traffic accidents with death/injury in 2024 as Y (Y2024) and registered motor
vehicles in 2024 as X (X2024). The population parameters are summarized in Table 3. The
correlations between reveal strong positive relationships among all variables across the years.
X022 shows perfect correlation with both X2023 and X2024 (=1.00), and strong correlations with
Y2022 (0.88), Y2023 (0.87), and Y2024 (0.91). Similarly, X2023 is perfectly correlated with X024
(=1.00), and also shows high correlations with Y2022 (0.91), Y2023 (0.89), and Y2024 (0.93). X2024
maintains strong correlations with Y2022 (0.92), Y2023 (0.91), and Y2024 (0.94). Among the Y
variables, Y2022 and Y2023 are perfectly correlated (=1.00), and both have a very high correlation
with Y2024 (0.98). It is noteworthy that, unlike the synthetic data sets derived from the bivariate
normal distribution in the simulation study, the real data set is quite skewed and has a higher
correlation.

Table 3. Population parameters

Variables N Min. Max. Mean Std. Dev. Skewness Kurtosis
Y2024 81 102 33622 3134.469 4756.553 3.8753 19.5151
X2024 81 1355 651282  32084.15 76892.09 6.6006 49.2155
Y2023 81 175 25622 2902.111 3888.364 3.3178 13.9347
X2023 81 816 637591 28275.06 74762.91 6.8143 51.7037
Y2022 81 129 22914 2435.321 3425.946 3.5234 15.4720
X2022 81 354 412631 15677.93 47566.93 7.2630 57.0207

For the simulation number 100,000, samples were drawn from the abovementioned population
with s =3, 4, and 5, c =1, 2, and 3. Based on the results obtained from the simulation study, a,
£=0.5,0.7, and 0.9 were determined. In addition, it was observed how the effectiveness of the
estimators changed when the old means number was increased by taking T = 2 and 3. The
variable to be estimated belongs to the year 2024 for each T. In the case of T = 2, the variables
belonging to the years 2024 and 2023, and in the case of T = 3, the variables belonging to the
years 2024, 2023, and 2022 were included in the EWMA and HEWMA algorithms. All other
calculations in this section were carried out similarly to the simulation study in Section 3. Table
4 presents the RE values of the estimators.

Table 4 shows the most efficient estimator, the proposed ,,,, estimator. In the case of T=2,

when the sample size is minimal, the estimator gives the best values when s=3, c=1 is selected
as a=0.5, and in all other cases, a>0.5, and in all cases,  =0.9 should be chosen. For T=3, a>0.5
and g =0.9 should be selected. The efficiency of the estimator increases as the number of T
increases. The highest efficiency values are also seen for T=2 and 3, s=3, c=1, while the max.
RE is 10.45350 for T=2, a=0.5 and £ =0.9, and the max. RE value of 13.75371 is obtained for
T=3, 0=0.9, and f =0.9.

Since the year of interest is 2024 and the correlation with previous years decreases as we move
further back in history with an increase in T, choosing a=£=0.9 causes the oldest average to
receive the lowest weight, while the years closer to the present are given more weight. Including
the variables with the highest correlation in the estimator with weight positively impacts the
efficiency.
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Table 4. Simulation Results for Real Data
K 3 4 5 3 4 5 3 4 5
c 1 1 1 2 2 2 3 3 3
RE> 405980 3.76254 3.34796 3.547712.975352.503683.016642.462332.01799
RE; 471821 4.98895 5.18671 5.290685.681175.963775.741446.114196.32070
RE, 0.55629 3.13484 3.56586 3.801054.014573.938224.107334.019803.64466

REsr 4.38971 3.97931 3.70130 1.258331.373861.455340.939640.918931.00415
p =0.5 REpror8.51374 6.67309 5.56744 2.734852.860382.848551.895531.980912.10372
f =0.7 REpror9.83821 7.73143 6.69895 3.574613.742123.717842.525952.613782.73821
B =0.9 REpror10.453508.93427 7.83421 4.587514.723554.734173.335583.426633.57875

REsr 5.09934 4.65513 4.37873 2.219342.251292.229471.730001.603561.62076
B =0.5 REpror9.84340 7.91933 6.75985 3.562023.706043.698922.532002.593112.72194
p =0.7 REpror10.389189.11879 8.40121 5.065565.148515.222113.714353.838014.03975
f =0.9 REpror9.64148 9.13816 8.83723 6.657416.783016.971925.302395.534395.73087

REsr 4.90734 4.51157 4.00190 3.569793.164472.747993.016122.496982.14923
B =0.5 REpror10.365848.90518 7.73983 4.646624.676804.716573.368153.454533.57188
B =0.7 REpror9.55911 9.20972 8.85166 6.658926.771146.934135.320735.525745.73164
f =0.9 REpror7.28685 7.42025 7.61141 7.161817.493487.893186.915367.275967.57546

REsr 3.43619 3.17004 2.93587 1.369321.420251.431931.057770.993891.02447
B =0.5 REpror11.242148.94697 7.74689 4.337934.452084.494753.039443.132753.34494
B =0.7 REpror13.4508411.4101510.007786.024096.086226.326404.314804.377934.73140
f =0.9 REpror13.7434112.1999911.298417.397637.611357.745925.605545.750406.19978

REsr 4.68708 4.41981 4.05342 2.397042.339882.268111.918411.716081.69744
B =0.5 REpror13.3496011.4420510.148125.911766.114316.311614.249424.358184.79750
B =0.7 REpror13.3163512.0516911.415027.723558.027078.252535.901446.086676.45808
B =0.9 REpror10.8190010.4488310.454338.480308.644909.049917.077887.363127.86653

REsr 491418 4.48625 4.01227 3.531113.135672.725483.009842.466112.16603
f =0.5 REpror13.7537112.2795211.420457.267027.581687.808835.566295.674076.18815
B =0.7 REpror10.7257810.5141410.625488.472848.774069.005127.059507.321097.76861
B =0.9 REpror7.23490 7.54251 7.78024 7.476797.791078.154637.348407.670258.13815

5. CONCLUSIONS

In this study, a new HEWMA type memory exponential ratio estimator for RSS is introduced.
Thus, a new alternative that gives more effective results than the only estimator in the literature
1s obtained.

The simulation studies found that the x,,,, outperformed others at low and medium correlation

values, as well as in the entire real data study. As the correlation and the number of old mean(s)
used (T) increase, the effectiveness of the proposed estimator increases. The selection of
HEWMA weight parameters is essential depending on the sample size and correlation. Like
Kogyigit (2025), it should be selected as S >0.5.

Future research should focus on integrating the HEWMA control chart statistics, which have
been demonstrated to outperform EWMA in certain contexts, with a broader set of estimators
under RSS. Comparative simulation studies involving different memory-type estimators, such
as adaptive EWMA variants or Bayesian-based memory estimators, could provide deeper
insights into their relative efficiency. Additionally, rather than relying on arbitrarily chosen
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weight parameters in HEWMA, optimization techniques—such as grid search, cross-validation,
or data-driven methods based on mean squared error minimization—should be employed to
determine optimal weight values. Potential application areas include quality control in
manufacturing, environmental monitoring, and medical studies where measurement costs are
high but auxiliary information is available.
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