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Abstract

This paper examines the challenges associated with path tracking in autonomous vehicles, employing Model Predictive Control
(MPC) based on a single-track vehicle model. An MPC controller is developed based on the state-space representation of this vehicle
model. Longitudinal speed is constant, and the algorithm’s performance is tested with different vehicle longitudinal speeds. The
generated reference path is sent to the algorithm as a reference lateral position, and the MPC controller predicts the future parameters
to correctly track these given reference paths. The Proportional-Integral (PI) control method also tested on model and it is compared
with MPC. The model is tested with two different paths, sinusoidal and F1 Barcelona circuit paths. It has also been tested with five
different simulation scenarios. These scenarios examine the effects of parameters such as prediction horizon, control horizon, weight
matrices, longitudinal velocity, computation time, and control methods. MPC optimization algorithms and simulation results are
realized on the MATLAB/Simulink environment using CasADI, an open-source third-party library for nonlinear optimization and
solving nonlinear equations.

Keywords: CasADI, F1 Barcelona circuit, nonlinear vehicle model, path tracking, PI control.

Oz

Bu makale, tek izli bir arag modeline dayali Model Ongbriilii Kontrol (MPC) kullanarak otonom araglarda yol takibiyle iliskili
zorluklari incelemektedir. Bu ara¢ modelinin durum-uzay gésterimine dayali bir MPC denetleyicisi gelistirilmistir. Boylamsal hiz
sabittir ve algoritmanin performans: farkli ara¢ boylamsal hizlariyla test edilmistir. Olugturulan referans yolu, algoritmaya referans
yanal konum olarak génderilir ve MPC denetleyicisi, bu verilen referans yollarini dogru sekilde izlemek i¢in gelecekteki parametreleri
tahmin eder. Orantili-Integral (PI) kontrol yontemi de model iizerinde test edilmis ve MPC ile karsilastirilmustir. Model, siniizoidal
ve F1 Barselona pisti olmak tizere iki farkli yolla test edilmistir. Ayrica bes farkli similasyon senaryosu ile test edilmistir. Bu senaryolar,
tahmin ufku, kontrol utku, agirlik matrisleri, boylamsal hiz, hesaplama stiresi ve kontrol yéntemleri gibi parametrelerin etkilerini
inceler. MPC optimizasyon algoritmalar: ve simiilasyon sonuglari, dogrusal olmayan optimizasyon ve dogrusal olmayan denklemlerin
¢6zumi i¢in agik kaynakli Gglined taraf bir kiitiiphane olan CasADI kullanilarak MATLAB/Simulink ortaminda gergeklestirildi.

Anahtar Kelimeler: CasADI, dogrusal olmayan ara¢ modeli, F'1 Barselona pisti, PI kontrol, yol takibi.

1. Introduction mathematical solutions due to the technological conditions

of the day. These studies, which started in the last quarter of

A vehicle that can drive itself from one location to anoth-
er or park itself has always been one of the popular topics
that people have always dreamed of and constantly worked
on. The early academic studies were mostly theoretical and
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the 20th century, have gradually become testable and im-
provable with the development of technology. In parallel,
increasing the processing capacity of electronic equipment
and computers has accelerated the development of auton-
omous driving technology. This academic and commercial
research aimed to bring this technology to the end user.
Because these studies have progressed successfully, many
automotive companies have now managed to use the auton-
omous driving option on the cars they produce and deliver
them to the end user.
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There are different types of cases within autonomous driv-
ing. Some functions can act for different situations such
as autonomous parking, autonomous obstacle avoidance,
emergency maneuvering, and overtaking. Also, path track-
ing is one of them. This problem is usually divided into two
steps: planning and tracking the path. Path tracking process
is turned into a control problem and the aim is for the ve-
hicle to perform the desired path as a result (Ritschel et al.
2019).

Some studies in the literature propose Fuzzy Logic Control
(FLC) for solving the path-tracking problem of autonomous
vehicles. The most significant difference between this study
and our paper is that while no model is needed for FLC, the
dynamic or kinematic model of the vehicle must be obtained

in the MPC control method (Aliskan 2025).

In the literature, two distinct types of MPC are employed
to address this issue: Linear MPC (LMPC) and Nonlinear
MPC (NPMC). In the LMPC method, a linearized vehicle
model is used. At each operating point, the vehicle model is
converted to alinear time-varying model by the linearization
method (Falcone et al. 2007).

The main difference between this study from previous
studies in the literature is nonlinear system is chosen for
applying path-tracking problems using MPC instead of a
linear system. One of the other differences is the selected
vehicle model type. Generally kinematic vehicle model is
used for these studies in literature, but they do not behave
well at high speeds. The algorithm is based on a dynamic
vehicle model and provides good results even at high speeds.

Different types of solution methods have been presented
within Linear MPC in current studies. Linear Time-Varying
Model Predictive Control (LTV-MPC) is based on discrete
state-space representations, where the system dynamics are
linearized to derive the corresponding matrices.

In addition to these, different MPC methods have been
used in the literature for the path tracking problem. Robust
MPC provides more reliable and robust performance by
accounting for system model errors, parameter uncertainties,
and the impact of external disturbances (Mata et al. 2019,
Peng et al. 2019). It is also used to adjust cost function values
(Rokonuzzaman et al. 2020). It has been explained in many
review articles why the MPC method gives better results
and is more effective than other methods for path tracking
(Lietal. 2021).

As aresult, MPC, like other classical control methods, is one
that approaches solving the problem at hand by utilizing
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specific mathematical functions and gives successful results
even without using large amounts of data. MPC method has
the advantages of having a manageable system for systems
with many inputs and outputs (Cao et al. 2021); good orbit
tracking performance at medium and high speeds if the
predictive model is created successfully (Hajiloo et al. 2021)
and is suitable for systems where more than one control
method is used like nested (Wang and Liu 2021).

On the other hand, the need for high and fast computational
capability during online solutions is one of its main
disadvantages of MPC (Yu et al. 2021). Different software
and libraries are used to overcome this problem and obtain
fast solution time. MPC toolbox in MATLAB/Simulink
(Yakub and Mori 2015), gpOASES solver on ACADO
(Chowdhri et al. 2021) and CasADI solver are some of them
(Laurense and Gerdes 2021). In this study, CasADI solver

library was used during solution of the optimal control issue.

In their study, Falcone et al. (2007) implemented MPC using
kinematic or linearized vehicle models that could not fully
capture the reference, especially at higher speeds. Similarly,
Huang et al. (2021) focused on urban speed conditions
with fixed horizon values in the MPC application for
autonomous vehicles.

This study uses a nonlinear dynamic vehicle model to
more accurately represent the real vehicle behavior under
changing speed conditions. We evaluate the effects of the
control horizon, prediction horizon, and weighted matrices
separately. Finally, the preference for CasADI, which is not
frequently used in the literature for the solution of nonlinear
equations, distinguishes our study from previous studies.

The content of this study proceeds as follows: Second
section presents vehicle dynamics fundamentals, modeling
methods and equations. Section 3 explains the outline and
theoretical details of MPC. Section 4 contains simulation
results and detailed explanations of this paper with MPC
and PI Control under different path and control parameters.
At the end, Section 5 concludes all results of the work.

2. Vehicle Dynamic Model

Vehicle dynamics models are critical for predicting the
motion responses of vehicles to various forces and inputs,
providing autonomous driving applications. There are
different vehicle modelling methods in literature such as
longitudinal models, lateral models, dynamic models and
kinematic models etc. Dynamic model perspective of vehicle
is focused in this study.
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'The single-track model maintains the vehicle’s fundamental
dynamic characteristics while condensing the complicated
system into a single plane (Hu et al., 2020). The related
force and torque equations based on the vehicle’s center
of gravity are utilized to get these simplified equations. A
dynamic vehicle model that accurately captures the motion
state of the vehicle is necessary for accurate and responsive
path tracking at high speeds. A three-degree-of-freedom
dynamics model, based on equations based on Newton’s
second law, is shown in Figure 1.

According to Newton’s second law, it is used for accurate
high-speed path following. There are some relations between
the forces. These include the vehicle’s lateral translational
motion, where the equation controlling yaw dynamics
and lateral velocity inside the inertial coordinate system is
formulated by moment balance about the axis. The vehicle’s
lateral translational motion, yaw moment relationship, and

lateral velocity can be explained as follows (Li et al. 2019):

m, +v.y) =F;+F, 1)
1 = 1,F,— LF, )
Y = v.sin(y) + v, cos () 3)

In this equations, m is mass of the vehicle, I_ is rotational

inertia, / is distance of vehicle’s center and front tire and /.

is distance of vehicle’s center and rear tire respectively (Hu

et al. 2020). The Y is yaw angle, / is yaw rate is Y/ is yaw

angle acceleration, v_ is longitudinal velocity, v is lateral
. . x . y

velocity and v, is lateral acceleration.

Fy » F  are lateral tire forces of wheels, and Fx/, F_ are
longitudinal tire forces. Longitudinal tire forces are not

displayed in equations since the speed is taken as a constant
in this investigation. The front tire’s cornering stiffness is
denoted by C, ' whereas the rear tire’s is denoted by C.

]:)f = 2Cf O(f (4)
F,=2Ca, 5)

Using small angle approximation ¢, and o, slip angle of
front wheel and rear wheel. §; is front wheel steering angle

(Rajamani 2012):

v+ Ly
o, =[5, -2V 6)
v, — Ly

o ==\ (7)
At the end, vehicle motion equations are presented as
follows:
. 2C;+ 2C, 2C1,—2C,1,\ -
vy = <_ ;nvx )Vy+<_v-*_ ‘ ;nvx )

2C
), ®
. 2C1,—2C1, 2Ci e+ -
e e e e e

2C,1 ©)
+< [z”)&
Y= v.sin(y)+ v, cos(y) (10)

'The given equations are evaluated linearized vehicle model,
which describes vehicle’s lateral dynamics. This structure
allows the MPC to effectively track the reference path.
Vehicle parameters used in model are given in Table 1 (Hu

et al. 2020).

YA

o

Figure 1. Dynamic single-track vehicle model (Hu et al. 2020)
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Table 1: Vehicle parameters.

Symbol Value/Unit Description

m 1416 kg Vehicle mass

I 1523 kg.m? Inertia moment

l, 1.016 m Distance between vehicle center and front tire
A 1.562 m Distance between vehicle center and rear tire
C, 47000 N/rad Cornering stiffness of front

C 48000 N/rad Cornering stiffness of rear

3. MPC Controller Formulation

MPC is an advanced technique for optimal control. The ide-
al control sequence is calculated based on the intended and
anticipated system states using the first sequence element
as control inputs. The key objectives of this controller are to
ensure precise path tracking, maintain stable yaw dynamics,
and optimize computational performance, even under vary-
ing road adhesion conditions. Safe and stable envelopes are
established to constrain the wheel steering angle while re-
ducing deviations from the reference path (Cui et al. 2020).

Stability and robustness analyses of MPC algorithms are
analyzed using well-established methodologies in the liter-
ature (Qin & Badgwell 2003). Since this is not the focus
of this article, a detailed stability analysis is not performed;
however, some assummptions are based on to ensure stabil-
ity. As in Eawryriczuk (2013), Tatjewski and Eawryriczuk
(2020), stability is explained by assuming that MPC is
symptomatically stable and that the optimization problem
can be applied at every sampling time.

Nevertheless, it is known that applying higher weight coef-
ficients in the MPC algorithm gives good results in terms of
stability and robustness (Tatjewski and Lawrynczuk 2020).
For this reason, precautions such as selecting quadratic cost
function with positive Q_and R matrices and prefer long
prediction and control horizons were taken to avoid insta-
bility situations (Aliskan 2019,2021).

To implement MPC, one must establish a state-space equa-
tion for the model. These equations are derived from the ve-
hicle dynamic model relationships discussed in the previous
chapter. Next, it is necessary to identify the system states and
system inputs. System states are internal variables used for
predictions, while system inputs are the decision variables
that the controller adjusts to achieve optimal performance.
'The primary responsibility of the designed MPC controller
is to ensure precise path tracking, with vehicle stabilization
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along the predefined path being another critical objective
(Cui et al., 2020).

Its state vector, which is continuous time, is shown b
X =[v,y,y,Y,8,], and system input vector is u = [5,]),.
Equation of the system model is given below:

X =f(X,U)

The created system prediction model provides the vehicle

(11)

dynamics equations to be seen within a function.

Vy
v
-4l
X:— l// =
dt
v (12)
S
—(2C;+2C)) 2C.1,—2C,l, . 2C
vim Vy+( Vo - r_Vx>W+(Wf>5f
2C.1,—2C,l, 2C,;+2C 17 . 2C,1,
< vl )Vy‘< vl V"7 )o
viesin(y) v cos ()
o,

Path tracking problem, originally in continuous time,
was converted into a discrete-time system to facilitate
implementation. Zero Order Hold (ZOH), one of the
frequently used methods when converting to a discrete-time
system, was used. This method is also known as the Euler
method. 7" represents sampling time. Discrete-time system
equation is shown below:

Xi+1 = Xk +f(xk, u)T, (13)

Objective function tries to solve the problem by minimizing
the error for the parameters it uses. Also, this objective
function used for path tracking is shown as an optimal
control problem. The optimization problem of MPC has the
following objective function below:

o U) = min( X" (| v =y [}

+30 (| dueiei 1)

(14)
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subjected to,

u €U vke(t,t+H.]
x. € X Vke(t,t+H,]
Auy =ty — Ui
i=1,..,H,

In this equation, H, represents prediction horizon value
and H. represents control horizon value. Q_and R matrices
are positive diagonal weight matrices. Tuning matrices are
defined 0 >0 € R™ and R > 0 € R™. Weight matrices
allow the assignment of different weight matrices to the
state vectors or input vectors used in the system. At the same
time, these matrices are used to normalize the parameters
used in the system if necessary. In this way, it prevents
deviations.

Also control horizon values impact to system performance
in MPC. It is number of future time-steps over which
control inputs are explicitly optimized. The control horizon
defines the extent to which control actions or adjustments
are planned within the current optimization cycle.

In the MPC, some system parameters are constrained for
preventing a result that is not consistent with the physical
conditions while following the desired path. The steering
angle are constrained between +30 deg.

(15)
(16)

Unin S Uk S U max
Xk,m]n S Xk S X k,max

The correct control sequence is obtained that should be
applied to the system by solving this equation. The initial
element of the control sequence is found because the
controller applies the obtained solution to the model. MPC
performs this process in every sample time step until the
entire path is completed. The simulation results chapter

explains the details of these values and related test scenarios.
MPC parameters are detailed in the simulation results
section for each scenario.

4. Simulation Results

All simulations are performed on a computer platform
with an Intel Core i5-11300H CPU at 3.1GHz and 16GB
memory. CasADI is used for solving nonlinear equations
in the model. It is an open-source third-party library for
nonlinear optimization, similar to MATLAB Symbolic
Math Toolbox. However, CasADI is much faster and has
good problem-solving capabilities in complex nonlinear
equations. In addition, MPC structure diagram in this study
is shown in Figure 2.

Results are split into five scenarios, and the simulations are
performed in the MATLAB version 2024a environment.
These five different simulation scenarios test to model
under different conditions. Each scenario aims to examine
a specific aspect of the control system such as prediction
horizon, control horizon, longitudinal velocity, weight
matrices, computation times and RMSE value.

Root mean square error (RIMISE) is one of standardized
methods used to find error rate of a system. It is calculated by
taking square root of average of squared differences between
reference and actual position. It is widely employed to assess
regression models’ accuracy. The RMSE value equation is
shown below.

RMSE = \/%27:1 (yref,i - yacmal,i)z (17)

Also, two different paths have been established to test the
model tracking performance. The sinusoidal path is used in
first four scenarios and F1 Barcelona path is used in last
scenario A sinusoidal reference signal is a periodic signal

Reference
Path

» |Optimization

Prediction

MPC Controller

Control Input Outputs

Vehicle
Model

System States

Figure 2: MPC structure diagram for path tracking.
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commonly used for sampling or comparison in control
systems and analyses. Sine function formula is shown below:

A-sin(2 k1)) (18)

'The amplitude A is selected 5, time period T is selected 30,
sampling time T is selected 0.01 s and k is the discrete-
time index like an integer representing the sample number.
Discrete-time index k values are between [1,4000] in this
equation. Details of these five scenarios are explained below.
These five scenarios will be discussed in detail under each
heading.

Scenario 1: v. = 10 m/s with changing H; 10, 20, 30.
Scenario 2: [—Ip= 30 with changing v, = 15,25,35 m/s.

Scenario 3: [—6}= 30 and v, =35 m/s, with Standart
Configuration, Q-tuned Configuration and / -tuned
Configuration.

Scenario 4: Hp =30 and v, = 11 m/s,with PI Control
and MPC.

Scenario 5: Hp: 30, H=10,and v, =10 m/s with F1
Barcelona path

4.1. Scenario 1: Effect of Prediction Horizon

Scenario 1 analyzes the effect of the prediction horizon on the
tracking performance. In this scenario, v. = 10 m/s, H. = 1,

and I—IP = 10, 20, 30, respectively. At the same time, weight
matrices are selected to Q = [1, 1,1,1, 1] and R = [0.25].

These Q, R matrices are called as “Standart Configuration”
in the rest of the paper. Standard configuration does not
impact results, however Scenario 3 will discuss the effect of
changing weight matrices, which is called Q-tuned. If /A
values are changed in model, it is called /7-tuned Configu-
ration. Also it is analyzed in Scenario 3.

Figure 3 shows the tracking performance under different
prediction horizons. As demonstrated by the simulation re-
sults, increasing the prediction horizon value provides better
performance. The MPC controller cannot predict the future
system behavior well at low /, values. On the other hand,
with a longer H, the controller can make decisions by tak-
ing the future into account more, which allows the system to
follow the reference path more successfully.

Figure 4 shows lateral position error and steering angle
response. At short prediction horizon the lateral deviation
of the system was high and fluctuations were observed in
the steering inputs. At H, =20, the system showed a more
balanced tracking performance; lateral error and steering
angles remained limited. At the longest prediction horizon,
both the lateral error decreased and the steering commands
were softer and lower amplitude. This shows that the
controller’s ability to predict further points of the reference
path significantly improves the stability and control effort
of the system.

Figure 5 shows the positive and negative maximum lateral
position errors and RMSE values. The lateral errors reach

v, = 10 m/s
10, .
= = :Reference Path
——H, = 10
—_—, =20
—, = 30
g 5-
=
=
=
E 0
A
&
-
&
< -5+
—
10 & i I 1
0 50 100 150 200 250 300 350
Longitudinal Position (m)

400 | Figure 3. Tracking performance

| with different prediction horizons at
v.=10m/s.
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Figure 4. Lateral position error and steering angle at different prediction horizons.

v, =10 m/s
T T T
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29111
2+ i
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-0.5009
oL 14752 |
4 _
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61 i
Hp=10 Hp=20 Hp=30 Figure 5. Lateral position error and

RMSE value at different prediction
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Lateral Position (m)

_6I 1 | 1 1

— = -Reference Path

0 50 100 150 200 250

Longitudinal Position (m)

Figure 6. Tracking performance
with different longitudinal
speeds.

300 350 400

very high values at H;j = 10. The RMSE value is also 2.91,
indicating that the overall tracking accuracy is relatively
poor. At H = 20, RMSE value is 0.69. These results show
that the errors are significantly reduced due to the system’s
ability to make more forward-looking predictions. At [—[P =
30, RMSE value is approximately 0.3. These results show
that the system converges more stably and accurately to the
reference path with longer prediction horizons. However,
the impact of this improvement on computational cost
should also be discussed. The total simulation times in
Scenario 1 was observed as [{1210 = 24.06, ]{P’ZO =33.47,and
H . =43.63, seconds, respectively.

2,30

4.2. Scenario 2: Effect of Longitudinal Velocity

Scenario 2 analyzes the effect of the longitudinal velocity on
the tracking performance. In this scenario, H, = 30, H. = 1
and v, = 15,25,35m/s respectively. Weight matrices are
selected as Standard configuration.

Figure 6 shows the tracking performance under different
longitudinal velocities. The system follows the reference
path quite successfully at low speeds, and the errors remain
low. The harmony with the reference path continues at
medium speed, but some differences are observed in some
areas, especially in turns. At the highest speed, deviations
from the reference path become apparent, and the system
shows sharper oscillations. It shows that the system cannot
respond quickly enough to reference path changes at high
speed.

Karaelmas Fen Miih. Derg., 2025; 15(3):56-73

Figure 7 shows the lateral position error and steering angle
under different longitudinal velocities. The error amplitude
is small at low speed, but the frequency is high, indicating
faster but controlled corrections. At medium speed, the error
amplitude increases, but the system is still stable. At high
speed, the lateral error becomes significantly larger, and the
damping of oscillations is delayed. When examined in terms
of steering angles, control actions at low speeds are more
aggressive, while at high speeds, the system produces a more
cautious and damped steering response. It shows that the
effect of control actions on the system response decreases
with speed, and MPC should be supported with stronger or
different configurations at high speeds.

Figure 8 shows the lateral error and RMSE values under
different longitudinal velocities. While the RMSE value was
the lowest at low speed, these values increased significantly
at medium speed, and a severe performance decrease was
observed at high speed. These findings clearly show that the
increase in longitudinal speed negatively affects the tracking
performance, and the control system needs stronger response
strategies in rapidly changing dynamic conditions.

The total simulation times in Scenario 2 was observed
as Vs = 4391, v, =43.75 and v.ss = 43.59 seconds,
respectively. As these results show, changing longitudinal
velocity does not impact to computation time.
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Figure 7. Lateral position error and steering angle at different longitudinal speeds.
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3
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4.3. Scenario 3: Effect of H and Q Parameters at High
Speed

Scenario 3 analyzes the effect of 4 and Q matrice on tracking
performance. In this scenario, H,=30 and v.=35m/s
respectively. This scenario aims to demonstrate the effect
of control parameters on increasing tracking accuracy at
high speeds. Therefore, the system performance was tested
with three different control parameter configurations. These
configurations are:

- Standart configuration: A =1, Q=[1,1,1,1,1], R=[0.25]

- Q:tuned configuration: A = 1, Q=[10,5,1,100,0.5],
R=[0.25]

- H-tuned configuration: H = 5,Q=[1,1,1,1,1], R=[0.25]

Figure 9 shows the tracking performance under different
control horizons and weight matrices. In the standard
configuration, the system deviates significantly from the
reference, especially in the first inclined segments. Since the
controller cannot predict the system’s dynamics very well, the
tracking performance is low. In contrast, both the Q-tuned
and H-tuned configurations followed the reference path
very closely and significantly reduced the deviations.

Figure 10 shows the lateral position error and steering an-
gle. The standard configuration exhibited amplitude oscilla-
tions in the lateral error time series, and the error could not
be damped for a long time. In contrast, the Q-tuned and
H -tuned structures produced error responses with smaller
amplitudes and faster damping. Regarding steering angle,

the Q-tuned structure used the control input more aggres-
sively, while the /-tuned structure produced softer and
lower amplitude steering commands. It shows that the sys-
tem provides more stable and comfortable control with 7.

Figure 11 shows the lateral position error and RMSE
values. The lateral errors are the highest in the standard, and
this structure has the lowest performance. These values have
decreased significantly in the system with the optimized
Q_matrix, and the error amplitudes have been minimized.
The most successful result was obtained in the H -tuned
structure. This situation shows that the predictive spreading
of the control input over time significantly contributes to
the system’s stability.

The total simulation times in Scenario 3 was observed

as T, . = 43.365, and Ty e = 44535 and T, , . =
44.633 seconds, respectively. As these results show, without
increasing the prediction horizon, indirectly computing
time, changing weight matrices and control horizon values

provides better tracking performance results.
4.4. Scenario 4: PI Control and MPC

Automated vehicle control systems rely on precise lateral
dynamics regulation to ensure stability and path-following
accuracy. Among various control strategies, Proportional-
Integral (PI) Control is commonly used because it is simple
and effective in tracking reference trajectories with minimal
steady-state error. PI Control and MPC performances are
examined for sine wave reference path in this scenario. The
general PI Control equation is given below.

H, = 30 and v, = 35 m/s

Lateral Position (m)

B 1 1 1 1

= = :Reference Path

Standart Configuration
e () = tuned Comfiguration

——— H, - tuned Configuration

0 50 100 150 200 250

300
Longitudinal Position (m)

Figure 9. Tracking performance
with different control horizon
and weight matrice.

350 400
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Lateral Position Error (m)

Steering Angle (deg)

Hy, =30 and v, = 35 m/s s Standart Configuration
() - tuned Configuration
s [, - tuned Configuration

10 15 20 25 30 35 40
Time (s)
H, = 30 and v, = 35 m/s
s Standart Configuration

e () - tuned Configuration
e [, - tuned Configuration

10 15 20 25 30 35 40

Time (s)

Figure 10. Lateral position error and steering angle with different control horizon and weight matrice.

H,=30and v, =35 m/s
T T

1.5

I Negative Maximum Lateral Error
I Positive Maximum Lateral Error

1.4494 [ IRMSE Value |

-1.7056

Standart Configuration ~ Q-tuned Configuration =~ Hg-tuned Configuration

Figure 11. Lateral position error and steering angle with different prediction horizon values.
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5_f=Kp€+K,’/€ dt (25)

Kz> is proportional gain coefficient and K is integral gain
coeflicient in this formula. Suitable values is obtained using
the Ziegler-Nichols method. The Ziegler-Nichols method
is a widely used heuristic tuning approach to determine
proportional and integral gains for a controller.

At the beginning of Ziegler-Nichols, K, is set to 0 in the
simulation. ‘Then gradually increase K, until sustained
oscillations appear in the lateral error response. Oscillation
period of it is obtained as 7. Then ultimate gain K is
obtained by observing the point where oscillations first
appear. Ultimate gain K = 1.2 is found and oscillation
period 7' = 4 sec respectively.

Then, applying Ziegler-Nichols and we used these K and K,
values in PI controller:

K,=0.45-12=0.54 (26)
_ K, _ 054 _
Ki=137 =15 4=01125 27)

Scenario 4 analyzes the effect of control methods on tracking
performance. In this scenario, two different control methods
are tested. Longitudinal velocity is constant 11 m/s because
this speed is the maximum limit of PI Control to work
in a stable region. The PI controller becomes unstable at
constant speeds greater than 11 m/s. PI Control parameters

are selected as K, = 0.54, K, = 0.1125. MPC parameters are
selected as /7, = 30 and A, = 1 and standart configuration.

Figure 12 shows the tracking performance under different
control methods. Both control methods track the reference
path, but when examined carefully, significant differences are
observed. The PI controller’s response on the reference path
contains more oscillations, especially in regions with high
slopes or rapid changes of direction, and slight fluctuations
are seen in the tracking. The MPC controller’s response is
smoother and converges more smoothly to the reference
path. The main reason for this difference is that the MPC
optimizes by considering future system behaviors and has
a limits sudden changes in control inputs. This situation
reveals that the MPC is more advantageous, especially
regarding comfort and system stability.

Figure 13 shows the lateral position error and steering
angle. It shows that the PI controller responds quickly and
accurately to the reference, but these responses are high-
frequency and continuous oscillations. The error signal
contains high-frequency oscillations and is not damped.
Conversely, MPC produced a larger error at the beginning
but damped this error over time, providing a more stable
and smooth tracking performance. The steering angle results
explains this difference: the PI controller applies continuous
high-frequency steering corrections, while the MPC
controller acts with lower-frequency and lower-amplitude
control actions.

Lateral Position (m)

K, =054, K; =01125 , H, = 30 and v, = 11 m/s

= = :Reference Path
——PI Control

-6 I ! I I I

0 50 100 150 200 250
Longitudinal Position (m)

Figure 12. Tracking
| performance with PI

Control and MPC.

300 350 400
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Figure 14 shows the lateral position errors and RMSE
values. The PI controller performed better and its RMSE
value was lower. Although the RMSE value of MPC was
higher, this difference is mainly due to the initial delay.
However, when the high-frequency oscillations in the PI
controller are considered, it is understood that low error

values are achieved at the expense of control effort. The
total simulation times in Scenario 4 was observed as 7, =
0.012 and 7, = 43.463 seconds, respectively. As can be
seen from these results, even though PI control computation
time is much faster than MPC but MPC is better than PI
Control in terms of accuracy and comfort.

=
@

K, =054, K; =01125, H, = 30 and v, = 11 m/s

e 1 Comtrol
[P C

Lateral Position Error (m)

20 25 30 35 40

Time (s)
K, =054, K = 0.1125 , H, = 30 and v, = 11 m/s

s 1 Comtrol
M PC

AMARAAMRAARAAAL
i PV

Figure 13: Lateral position error and steering angle with PI Control and MPC.

s K,=0.54,K;=0.1125,H,=30 and v, = 11 m/s
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0
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Figure 14. Lateral position
error and steering angle with

PI Control and MPC.
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4.5. Scenario 5: Real-world Path Test

In this scenario, reference path is F1 Barcelona circuit.
Located in Barcelona, Spain, Circuit de Barcelona is a
world-famous racing track spanning 4.675 km. Known for
its blend of high-speed straights and challenging technical
corners, it frequently hosts prominent motorsport events.
The circuit also plays a crucial role as a testing ground for

advancing racing vehicle performance and development
(Jiménez Elbal et al. 2024). F1 Barcelona circuit is shown
in Figure 15.

Barcelona circuit path is created in the MATLAB Simulink
environment using data available as open source on the
web and the latest papers in the literature. The coordinate
(0,0) is the starting point. Figure 16 shows the tracking
performance of the model. The path’s road boundaries are
set with +5 m intervals. The vehicle’s longitudinal speed was
selected as v, = 20 m/s, which corresponds to 72 km/h. [—!P
=30and A = 10.In this scenario, Q-tuned and /7 -tuned are
applied to model together.

Figure 15: Formula 1 Barcelona circuit (Circuit de Catalunya 2025).
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Figure 16. Tracking
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Since the path is too long, it prevents us from seeing the  The system initially gives low-amplitude responses, pro-
accuracy of result. Therefore, details are in Figure 17 from  ducing higher amplitude and sudden steering commands.
points where the lateral position error is higher on the path. ~ When evaluated in general, the lateral error suppression
In addition, lateral position error values will also allow us to  performance of the current MPC configuration is not very
understand the results better. good, making the control system increasingly aggressive. As
a solution, the Q_matrix’s weights can be optimized, or the
H_value can be increased. These development possibilities
will be considered in future studies. RIMSE value of this sce-
nario is 1.259 and the total simulation times in Scenario 5
was observed as 7, = 51.38 seconds.

Figure 18 shows lateral position error and steering angle
results. It is observed that the system exhibits significant
deviations in the reference path tracking at certain time
intervals. When the steering angle responses are examined,
it is seen that the system exhibits a very aggressive structure
toward the control inputs.
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Table 2 includes the simulation times for all scenarios.

Table 2. Simulation times of all scenarios

Test Scenario Constant Parameters Variable Parameters Total Simulation
Standart Configuration THp,m =24.06 sec
Scenario 1 v =10 m/s [-IP= 10, 20, 30 THp,zo = 33.47 sec
H=1 Ty .. =43.63 sec
c ‘£30
Standart Configuration T, s =43.91 sec
Scenario 2 H =30 v =15,25,35 m/s T, ,s = 43.75 sec
H=1 T, . = 43.59 sec
. v = 35 m/s Standart Conﬁgurat{on T, = 43.36 seC
Scenario 3 1230 Q-tuned Configuration T e = 43.53 sec
r H -tuned Configuration T, ey = 44.63 sec
Standart Configuration
Scenario 4 v =11 m/s PI Control T,,=0.012 sec
sz 0.54, K. =0.1125 MPC T,,pe = 43.46 sec
sz 30,H =1
Q-tuned Configuration
. v =20m/s ~
Scenario 5 sz 30 - T, =51.38 sec
H=5

5. Conclusion

'This study introduces path tracking for autonomous vehicles
with MPC. A dynamic single-track vehicle model is used
while creating the MPC algorithm, and it relies on this
vehicle model. The path tracking controller is designed with
these assumptions. Longitudinal speed is used as a constant.
Lateral position is, therefore, necessary to follow the intended
course. The model is tested with different constant speeds,
and parameters are updated to obtain good performance fora
wide range of speeds. Also, the model is tested with different
prediction horizon and control horizon values. Another
challenging topic is to create different scenarios for path
tracking. Sinusoidal and F1 Barcelona circuits are the used
paths. The algorithm also has good lateral position control
performance under different constant longitudinal speeds
and at different paths. Despite these positive results, the
study does have some limitations. Furthermore, the dynamic
structure of the vehicle imposes nonholonomic constraints,
which prevent it from performing certain instantaneous
motions, such as direct lateral displacement. Instead, such
motions can only be achieved over time through feasible
combinations of steering and longitudinal movement.

Karaelmas Fen Miih. Derg., 2025; 15(3):56-73

First, road—tire friction variations are not accounted for in
the model, and these variations can have considerable im-
pacts on the stability of the vehicle—especially when trav-
eling at higher speeds or in adverse weather conditions.
Second, increased prediction horizons lengthen the com-
putational complexity of the MPC and potentially create
challenges for real-time implementation on low-resource
embedded systems.

In future studies, a dual-loop MPC architecture could mod-
ify the current assumption of constant longitudinal velocity.
Under such a configuration, the inner loop would handle
lateral path tracking under time-varying velocity referenc-
es. In contrast, the outer loop would produce good tracking
performance.

Another possible development in the future is the
incorporation of real-time obstacle detection, avoidance, or
emergency braking ability. LIDAR sensor data combined
with the predictive model would allow one to update the
teasible trajectory set inside the MPC horizon dynamically.
The controller could then re-optimize the path responding
to sensed hazards, ensuring collision-free path tracking.
Lastly, adding tube-based or stochastic MPC techniques to
the current MPC structure would increase its durability to
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real-world uncertainties such as model mismatch, actuation
delays, and sensor noise. These techniques would especially
take into account limited disturbances and guarantee
constraint satisfaction under uncertainty, enhancing safety
and reliability for autonomous uses.

Yazar Katkilari: All authors contributed equally to all stages
of this work.
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