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mathematical solutions due to the technological conditions 
of the day. These studies, which started in the last quarter of 
the 20th century, have gradually become testable and im-
provable with the development of technology. In parallel, 
increasing the processing capacity of electronic equipment 
and computers has accelerated the development of auton-
omous driving technology. This academic and commercial 
research aimed to bring this technology to the end user. 
Because these studies have progressed successfully, many 
automotive companies have now managed to use the auton-
omous driving option on the cars they produce and deliver 
them to the end user.

1. Introduction
A vehicle that can drive itself from one location to anoth-
er or park itself has always been one of the popular topics 
that people have always dreamed of and constantly worked 
on. The early academic studies were mostly theoretical and 
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There are different types of cases within autonomous driv-
ing. Some functions can act for different situations such 
as autonomous parking, autonomous obstacle avoidance, 
emergency maneuvering, and overtaking. Also, path track-
ing is one of them. This problem is usually divided into two 
steps: planning and tracking the path. Path tracking process 
is turned into a control problem and the aim is for the ve-
hicle to perform the desired path as a result (Ritschel et al. 
2019).

Some studies in the literature propose Fuzzy Logic Control 
(FLC) for solving the path-tracking problem of autonomous 
vehicles. The most significant difference between this study 
and our paper is that while no model is needed for FLC, the 
dynamic or kinematic model of the vehicle must be obtained 
in the MPC control method (Aliskan 2025).

In the literature, two distinct types of MPC are employed 
to address this issue: Linear MPC (LMPC) and Nonlinear 
MPC (NPMC). In the LMPC method, a linearized vehicle 
model is used. At each operating point, the vehicle model is 
converted to a linear time-varying model by the linearization 
method (Falcone et al. 2007).

The main difference between this study from previous 
studies in the literature is nonlinear system is chosen for 
applying path-tracking problems using MPC instead of a 
linear system. One of the other differences is the selected 
vehicle model type. Generally kinematic vehicle model is 
used for these studies in literature, but they do not behave 
well at high speeds. The algorithm is based on a dynamic 
vehicle model and provides good results even at high speeds.

Different types of solution methods have been presented 
within Linear MPC in current studies. Linear Time-Varying 
Model Predictive Control (LTV-MPC) is based on discrete 
state-space representations, where the system dynamics are 
linearized to derive the corresponding matrices. 

In addition to these, different MPC methods have been 
used in the literature for the path tracking problem. Robust 
MPC provides more reliable and robust performance by 
accounting for system model errors, parameter uncertainties, 
and the impact of external disturbances (Mata et al. 2019, 
Peng et al. 2019). It is also used to adjust cost function values 
(Rokonuzzaman et al. 2020). It has been explained in many 
review articles why the MPC method gives better results 
and is more effective than other methods for path tracking 
(Li et al. 2021).

As a result, MPC, like other classical control methods, is one 
that approaches solving the problem at hand by utilizing 

specific mathematical functions and gives successful results 
even without using large amounts of data. MPC method has 
the advantages of having a manageable system for systems 
with many inputs and outputs (Cao et al. 2021); good orbit 
tracking performance at medium and high speeds if the 
predictive model is created successfully (Hajiloo et al. 2021) 
and is suitable for systems where more than one control 
method is used like nested (Wang and Liu 2021).

On the other hand, the need for high and fast computational 
capability during online solutions is one of its main 
disadvantages of MPC (Yu et al. 2021). Different software 
and libraries are used to overcome this problem and obtain 
fast solution time. MPC toolbox in MATLAB/Simulink 
(Yakub and Mori 2015), qpOASES solver on ACADO  
(Chowdhri et al. 2021) and CasADI solver are some of them 
(Laurense and Gerdes 2021). In this study, CasADI solver 
library was used during solution of the optimal control issue.

In their study, Falcone et al. (2007) implemented MPC using 
kinematic or linearized vehicle models that could not fully 
capture the reference, especially at higher speeds. Similarly, 
Huang et al. (2021) focused on urban speed conditions 
with fixed horizon values in the MPC application for 
autonomous vehicles.

This study uses a nonlinear dynamic vehicle model to 
more accurately represent the real vehicle behavior under 
changing speed conditions. We evaluate the effects of the 
control horizon, prediction horizon, and weighted matrices 
separately. Finally, the preference for CasADI, which is not 
frequently used in the literature for the solution of nonlinear 
equations, distinguishes our study from previous studies.

The content of this study proceeds as follows: Second 
section presents vehicle dynamics fundamentals, modeling 
methods and equations. Section 3 explains the outline and 
theoretical details of MPC. Section 4 contains simulation 
results and detailed explanations of this paper with MPC 
and PI Control under different path and control parameters. 
At the end, Section 5 concludes all results of the work.

2. Vehicle Dynamic Model
Vehicle dynamics models are critical for predicting the 
motion responses of vehicles to various forces and inputs, 
providing autonomous driving applications. There are 
different vehicle modelling methods in literature such as 
longitudinal models, lateral models, dynamic models and 
kinematic models etc. Dynamic model perspective of vehicle 
is focused in this study.
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The single-track model maintains the vehicle’s fundamental 
dynamic characteristics while condensing the complicated 
system into a single plane (Hu et al., 2020). The related 
force and torque equations based on the vehicle’s center 
of gravity are utilized to get these simplified equations. A 
dynamic vehicle model that accurately captures the motion 
state of the vehicle is necessary for accurate and responsive 
path tracking at high speeds. A three-degree-of-freedom 
dynamics model, based on equations based on Newton’s 
second law, is shown in Figure 1.

According to Newton’s second law, it is used for accurate 
high-speed path following. There are some relations between 
the forces. These include the vehicle’s lateral translational 
motion, where the equation controlling yaw dynamics 
and lateral velocity inside the inertial coordinate system is 
formulated by moment balance about the axis. The vehicle’s 
lateral translational motion, yaw moment relationship, and 
lateral velocity can be explained as follows (Li et al. 2019):

( )m v v F Fy x yf yr}+ = +o o  	 (1)

I l F l Fz f yf r yr} = -p  	 (2)

( ) ( )sin cosY v vx y} }= +o  	 (3)

In this equations, m is mass of the vehicle, Iz is rotational 
inertia, lf is distance of vehicle’s center and front tire and lr 
is distance of vehicle’s center and rear tire respectively (Hu 
et al. 2020). The } is yaw angle, }o  is yaw rate is }p  is yaw 
angle acceleration, vx is longitudinal velocity, vy is lateral 
velocity and vyo  is lateral acceleration.

Fyf, Fyr are lateral tire forces of wheels, and Fxf, Fxr are 
longitudinal tire forces. Longitudinal tire forces are not 

displayed in equations since the speed is taken as a constant 
in this investigation. The front tire’s cornering stiffness is 
denoted by Cf, whereas the rear tire’s is denoted by Cr.

F C2yf f fa=  	 (4)

F C2yr r ra=  	 (5)

Using small angle approximation fa  and ra  slip angle of 
front wheel and rear wheel. fd  is front wheel steering angle 
(Rajamani 2012):
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sin cosY v vx y} }= +o ^ ^h h 	 (10)

The given equations are evaluated linearized vehicle model, 
which describes vehicle’s lateral dynamics. This structure 
allows the MPC to effectively track the reference path. 
Vehicle parameters used in model are given in Table 1 (Hu 
et al. 2020).

Figure 1. Dynamic single-track vehicle model (Hu et al. 2020)
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along the predefined path being another critical objective 
(Cui et al., 2020).

Its state vector, which is continuous time, is shown by 
, , , ,X v Yy f

T} } d= o6 @ , and system input vector is u fd= o6 @. 
Equation of the system model is given below:

( , )X f X U=o  	 (11)

The created system prediction model provides the vehicle 
dynamics equations to be seen within a function.
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Path tracking problem, originally in continuous time, 
was converted into a discrete-time system to facilitate 
implementation. Zero Order Hold (ZOH), one of the 
frequently used methods when converting to a discrete-time 
system, was used. This method is also known as the Euler 
method. Ts represents sampling time. Discrete-time system 
equation is shown below:

( , )x x f x u Tk k k k s1 = ++  	 (13)

Objective function tries to solve the problem by minimizing 
the error for the parameters it uses. Also, this objective 
function used for path tracking is shown as an optimal 
control problem. The optimization problem of MPC has the 
following objective function below:
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3. MPC Controller Formulation
MPC is an advanced technique for optimal control. The ide-
al control sequence is calculated based on the intended and 
anticipated system states using the first sequence element 
as control inputs. The key objectives of this controller are to 
ensure precise path tracking, maintain stable yaw dynamics, 
and optimize computational performance, even under vary-
ing road adhesion conditions. Safe and stable envelopes are 
established to constrain the wheel steering angle while re-
ducing deviations from the reference path (Cui et al. 2020).

Stability and robustness analyses of MPC algorithms are 
analyzed using well-established methodologies in the liter-
ature (Qin & Badgwell 2003). Since this is not the focus 
of this article, a detailed stability analysis is not performed; 
however, some assummptions are based on to ensure stabil-
ity. As in Ławryńczuk (2013), Tatjewski and Ławryńczuk 
(2020), stability is explained by assuming that MPC is 
symptomatically stable and that the optimization problem 
can be applied at every sampling time. 

Nevertheless, it is known that applying higher weight coef-
ficients in the MPC algorithm gives good results in terms of 
stability and robustness (Tatjewski and Ławryńczuk 2020). 
For this reason, precautions such as selecting quadratic cost 
function with positive Q and R matrices and prefer long 
prediction and control horizons were taken to avoid insta-
bility situations (Aliskan  2019, 2021).

To implement MPC, one must establish a state-space equa-
tion for the model. These equations are derived from the ve-
hicle dynamic model relationships discussed in the previous 
chapter. Next, it is necessary to identify the system states and 
system inputs. System states are internal variables used for 
predictions, while system inputs are the decision variables 
that the controller adjusts to achieve optimal performance. 
The primary responsibility of the designed MPC controller 
is to ensure precise path tracking, with vehicle stabilization 

Table 1: Vehicle parameters.

Symbol Value/Unit Description
m 1416 kg Vehicle mass
Iz 1523 kg.m2 Inertia moment
lf 1.016 m Distance between vehicle center and front tire
lr 1.562 m Distance between vehicle center and rear tire
Cf 47000 N/rad Cornering stiffness of front
Cr 48000 N/rad Cornering stiffness of rear
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explains the details of these values and related test scenarios. 
MPC parameters are detailed in the simulation results 
section for each scenario.

4. Simulation Results
All simulations are performed on a computer platform 
with an Intel Core i5-11300H CPU at 3.1GHz and 16GB 
memory. CasADI is used for solving nonlinear equations 
in the model. It is an open-source third-party library for 
nonlinear optimization, similar to MATLAB Symbolic 
Math Toolbox. However, CasADI is much faster and has 
good problem-solving capabilities in complex nonlinear 
equations. In addition, MPC structure diagram in this study 
is shown in Figure 2.

Results are split into five scenarios, and the simulations are 
performed in the MATLAB version 2024a environment. 
These five different simulation scenarios test to model 
under different conditions. Each scenario aims to examine 
a specific aspect of the control system such as prediction 
horizon, control horizon, longitudinal velocity, weight 
matrices, computation times and RMSE value. 

Root mean square error (RMSE) is one of standardized 
methods used to find error rate of a system. It is calculated by 
taking square root of average of squared differences between 
reference and actual position. It is widely employed to assess 
regression models’ accuracy. The RMSE value equation is 
shown below.

RMSE n y y
1

, ,ref i actual i
i

n

1

2= -
=
^ h/  	 (17)

Also, two different paths have been established to test the 
model tracking performance. The sinusoidal path is used in 
first four scenarios and F1 Barcelona path is used in last 
scenario A sinusoidal reference signal is a periodic signal 
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In this equation, Hp  represents prediction horizon value 
and Hc  represents control horizon value. Q and R matrices 
are positive diagonal weight matrices. Tuning matrices are 
defined Q 0 R x5 5$ !  and R 0 R x1 12 ! . Weight matrices 
allow the assignment of different weight matrices to the 
state vectors or input vectors used in the system. At the same 
time, these matrices are used to normalize the parameters 
used in the system if necessary. In this way, it prevents 
deviations. 

Also control horizon values impact to system performance 
in MPC. It is number of future time-steps over which 
control inputs are explicitly optimized. The control horizon 
defines the extent to which control actions or adjustments 
are planned within the current optimization cycle.

In the MPC, some system parameters are constrained for 
preventing a result that is not consistent with the physical 
conditions while following the desired path. The steering 
angle are constrained between ±30 deg.

u u umin maxk# #  	 (15)

x x x, ,min maxk k k# #  	 (16)

The correct control sequence is obtained that should be 
applied to the system by solving this equation. The initial 
element of the control sequence is found because the 
controller applies the obtained solution to the model. MPC 
performs this process in every sample time step until the 
entire path is completed. The simulation results chapter 

Figure 2: MPC structure diagram for path tracking.
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These Q, R matrices are called as “Standart Configuration” 
in the rest of the paper. Standard configuration does not 
impact results, however Scenario 3 will discuss the effect of 
changing weight matrices, which is called Q-tuned. If Hc 
values are changed in model, it is called Hc-tuned Configu-
ration. Also it is analyzed in Scenario 3.

Figure 3 shows the tracking performance under different 
prediction horizons. As demonstrated by the simulation re-
sults, increasing the prediction horizon value provides better 
performance. The MPC controller cannot predict the future 
system behavior well at low Hp values. On the other hand, 
with a longer Hp, the controller can make decisions by tak-
ing the future into account more, which allows the system to 
follow the reference path more successfully. 

Figure 4 shows lateral position error and steering angle 
response. At short prediction horizon the lateral deviation 
of the system was high and fluctuations were observed in 
the steering inputs. At Hp = 20, the system showed a more 
balanced tracking performance; lateral error and steering 
angles remained limited. At the longest prediction horizon, 
both the lateral error decreased and the steering commands 
were softer and lower amplitude. This shows that the 
controller’s ability to predict further points of the reference 
path significantly improves the stability and control effort 
of the system. 

Figure 5 shows the positive and negative maximum lateral 
position errors and RMSE values. The lateral errors reach 

commonly used for sampling or comparison in control 
systems and analyses. Sine function formula is shown below:

sinA T k T
2

s$ $ $
ra k 	 (18)

The amplitude A is selected 5, time period T is selected 30, 
sampling time Ts is selected 0.01 s and k is the discrete-
time index like an integer representing the sample number. 
Discrete-time index k values are between [1,4000] in this 
equation. Details of these five scenarios are explained below. 
These five scenarios will be discussed in detail under each 
heading.

-	 Scenario 1: /v m s10x =  with changing Hp= 10, 20, 30.

-	 Scenario 2: Hp= 30 with changing , , /v m s15 25 35x = .

-	 Scenario 3: Hp= 30 and /v m s35x = , with Standart 
Configuration, Q-tuned Configuration and Hc-tuned 
Configuration.

-	 Scenario 4: Hp= 30 and /v m s11x = , with PI Control 
and MPC.

-	 Scenario 5: Hp= 30, Hc= 10, and /v m s10x =  with F1 
Barcelona path

4.1. Scenario 1: Effect of Prediction Horizon

Scenario 1 analyzes the effect of the prediction horizon on the 
tracking performance. In this scenario, / , ,v m s H10 1x c= =

and Hp= 10, 20, 30, respectively. At the same time, weight 
matrices are selected to , , , ,Q 1 1 1 1 1= 6 @ and . .R 0 25= 6 @

Figure 3. Tracking performance 
with different prediction horizons at 

/v m s10x = .
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Figure 4. Lateral position error and steering angle at different prediction horizons.

Figure 5. Lateral position error and 
RMSE value at different prediction 
horizons.
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Figure 7 shows the lateral position error and steering angle 
under different longitudinal velocities. The error amplitude 
is small at low speed, but the frequency is high, indicating 
faster but controlled corrections. At medium speed, the error 
amplitude increases, but the system is still stable. At high 
speed, the lateral error becomes significantly larger, and the 
damping of oscillations is delayed. When examined in terms 
of steering angles, control actions at low speeds are more 
aggressive, while at high speeds, the system produces a more 
cautious and damped steering response. It shows that the 
effect of control actions on the system response decreases 
with speed, and MPC should be supported with stronger or 
different configurations at high speeds. 

Figure 8 shows the lateral error and RMSE values under 
different longitudinal velocities. While the RMSE value was 
the lowest at low speed, these values increased significantly 
at medium speed, and a severe performance decrease was 
observed at high speed. These findings clearly show that the 
increase in longitudinal speed negatively affects the tracking 
performance, and the control system needs stronger response 
strategies in rapidly changing dynamic conditions. 

The total simulation times in Scenario 2 was observed 
as  . , .v v43 91 43 75, ,x x15 25= =  and .v 43 59,x 35 =  seconds, 
respectively. As these results show, changing longitudinal 
velocity does not impact to computation time.

very high values at Hp = 10. The RMSE value is also 2.91, 
indicating that the overall tracking accuracy is relatively 
poor. At Hp = 20, RMSE value is 0.69. These results show 
that the errors are significantly reduced due to the system’s 
ability to make more forward-looking predictions. At Hp = 
30, RMSE value is approximately 0.3. These results show 
that the system converges more stably and accurately to the 
reference path with longer prediction horizons. However, 
the impact of this improvement on computational cost 
should also be discussed. The total simulation times in 
Scenario 1 was observed as Hp,10 = 24.06, Hp,20 = 33.47, and 
Hp,30 = 43.63, seconds, respectively.

4.2. Scenario 2: Effect of Longitudinal Velocity

Scenario 2 analyzes the effect of the longitudinal velocity on 
the tracking performance. In this scenario, ,H H30 1p c= =  
and , , /v m s15 25 35x =  respectively. Weight matrices are 
selected as Standard configuration. 

Figure 6 shows the tracking performance under different 
longitudinal velocities. The system follows the reference 
path quite successfully at low speeds, and the errors remain 
low. The harmony with the reference path continues at 
medium speed, but some differences are observed in some 
areas, especially in turns. At the highest speed, deviations 
from the reference path become apparent, and the system 
shows sharper oscillations. It shows that the system cannot 
respond quickly enough to reference path changes at high 
speed.

Figure 6. Tracking performance 
with different longitudinal 
speeds.
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Figure 7. Lateral position error and steering angle at different longitudinal speeds.

Figure 8. Lateral position error and 
steering angle at different prediction 
horizon values.
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the Q-tuned structure used the control input more aggres-
sively, while the Hc-tuned structure produced softer and 
lower amplitude steering commands. It shows that the sys-
tem provides more stable and comfortable control with Hc.

Figure 11 shows the lateral position error and RMSE 
values. The lateral errors are the highest in the standard, and 
this structure has the lowest performance. These values have 
decreased significantly in the system with the optimized 
Q matrix, and the error amplitudes have been minimized. 
The most successful result was obtained in the Hc-tuned 
structure. This situation shows that the predictive spreading 
of the control input over time significantly contributes to 
the system’s stability.

The total simulation times in Scenario 3 was observed 
as TStandart = 43.365, and TQ-tuned = 44.535 and THc-tuned = 
44.633 seconds, respectively. As these results show, without 
increasing the prediction horizon, indirectly computing 
time, changing weight matrices and control horizon values 
provides better tracking performance results.

4.4. Scenario 4: PI Control and MPC

Automated vehicle control systems rely on precise lateral 
dynamics regulation to ensure stability and path-following 
accuracy. Among various control strategies, Proportional-
Integral (PI) Control is commonly used because it is simple 
and effective in tracking reference trajectories with minimal 
steady-state error. PI Control and MPC performances are 
examined for sine wave reference path in this scenario. The 
general PI Control equation is given below.

4.3. Scenario 3: Effect of Hc and Q Parameters at High 
Speed

Scenario 3 analyzes the effect of Hc and Q matrice on tracking 
performance. In this scenario, Hp=30 and  /v m s35x =

respectively. This scenario aims to demonstrate the effect 
of control parameters on increasing tracking accuracy at 
high speeds. Therefore, the system performance was tested 
with three different control parameter configurations. These 
configurations are:

-	 Standart configuration: Hc = 1, Q=[1,1,1,1,1], R=[0.25]

-	 Q-tuned configuration: Hc = 1, Q=[10,5,1,100,0.5], 
R=[0.25]

-	 Hc-tuned configuration: Hc = 5, Q=[1,1,1,1,1], R=[0.25]

Figure 9 shows the tracking performance under different 
control horizons and weight matrices. In the standard 
configuration, the system deviates significantly from the 
reference, especially in the first inclined segments. Since the 
controller cannot predict the system’s dynamics very well, the 
tracking performance is low. In contrast, both the Q-tuned 
and Hc-tuned configurations followed the reference path 
very closely and significantly reduced the deviations.

Figure 10 shows the lateral position error and steering an-
gle. The standard configuration exhibited amplitude oscilla-
tions in the lateral error time series, and the error could not 
be damped for a long time. In contrast, the Q-tuned and 
Hc-tuned structures produced error responses with smaller 
amplitudes and faster damping. Regarding steering angle, 

Figure 9. Tracking performance 
with different control horizon 
and weight matrice.
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Figure 10. Lateral position error and steering angle with different control horizon and weight matrice.

Figure 11. Lateral position error and steering angle with different prediction horizon values.
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are selected as Kp = 0.54, Ki = 0.1125. MPC parameters are 
selected as Hp = 30 and Hc = 1 and standart configuration. 

Figure 12 shows the tracking performance under different 
control methods. Both control methods track the reference 
path, but when examined carefully, significant differences are 
observed. The PI controller’s response on the reference path 
contains more oscillations, especially in regions with high 
slopes or rapid changes of direction, and slight fluctuations 
are seen in the tracking. The MPC controller’s response is 
smoother and converges more smoothly to the reference 
path. The main reason for this difference is that the MPC 
optimizes by considering future system behaviors and has 
a limits sudden changes in control inputs. This situation 
reveals that the MPC is more advantageous, especially 
regarding comfort and system stability.

Figure 13 shows the lateral position error and steering 
angle. It shows that the PI controller responds quickly and 
accurately to the reference, but these responses are high-
frequency and continuous oscillations. The error signal 
contains high-frequency oscillations and is not damped. 
Conversely, MPC produced a larger error at the beginning 
but damped this error over time, providing a more stable 
and smooth tracking performance. The steering angle results 
explains this difference: the PI controller applies continuous 
high-frequency steering corrections, while the MPC 
controller acts with lower-frequency and lower-amplitude 
control actions.

K e K e dtf p id = + #  	 (25)

Kp is proportional gain coefficient and Ki is integral gain 
coefficient in this formula. Suitable values is obtained using 
the Ziegler-Nichols method. The Ziegler-Nichols method 
is a widely used heuristic tuning approach to determine 
proportional and integral gains for a controller.

At the beginning of Ziegler-Nichols, Ki is set to 0 in the 
simulation. Then gradually increase Kp until sustained 
oscillations appear in the lateral error response. Oscillation 
period of it is obtained as Tu. Then ultimate gain Ku is 
obtained by observing the point where oscillations first 
appear. Ultimate gain Ku = 1.2 is found and oscillation 
period Tu = 4 sec respectively. 

Then, applying Ziegler-Nichols and we used these Kp and Ki  
values in PI controller:

. . .K 0 45 1 2 0 54p := = 	 (26)
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$= = =  	 (27)

Scenario 4 analyzes the effect of control methods on tracking 
performance. In this scenario, two different control methods 
are tested. Longitudinal velocity is constant 11 m/s because 
this speed is the maximum limit of PI Control to work 
in a stable region. The PI controller becomes unstable at 
constant speeds greater than 11 m/s. PI Control parameters 

Figure 12. Tracking 
performance with PI 
Control and MPC.
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values are achieved at the expense of control effort. The 
total simulation times in Scenario 4 was observed as TPI = 
0.012 and TMPC = 43.463 seconds, respectively. As can be 
seen from these results, even though PI control computation 
time is much faster than MPC but MPC is better than PI 
Control in terms of accuracy and comfort.

Figure 14 shows the lateral position errors and RMSE 
values. The PI controller performed better and its RMSE 
value was lower. Although the RMSE value of MPC was 
higher, this difference is mainly due to the initial delay. 
However, when the high-frequency oscillations in the PI 
controller are considered, it is understood that low error 

Figure 13: Lateral position error and steering angle with PI Control and MPC.

Figure 14. Lateral position 
error and steering angle with 
PI Control and MPC.
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Barcelona circuit path is created in the MATLAB Simulink 
environment using data available as open source on the 
web and the latest papers in the literature. The coordinate 
(0,0) is the starting point. Figure 16 shows the tracking 
performance of the model. The path’s road boundaries are 
set with ±5 m intervals. The vehicle’s longitudinal speed was 
selected as /v m s20x = , which corresponds to 72 km/h. Hp 
= 30 and Hc = 10. In this scenario, Q-tuned and Hc-tuned are 
applied to model together.

4.5. Scenario 5: Real-world Path Test

In this scenario, reference path is F1 Barcelona circuit. 
Located in Barcelona, Spain, Circuit de Barcelona is a 
world-famous racing track spanning 4.675 km. Known for 
its blend of high-speed straights and challenging technical 
corners, it frequently hosts prominent motorsport events. 
The circuit also plays a crucial role as a testing ground for 
advancing racing vehicle performance and development 
( Jiménez Elbal et al. 2024). F1 Barcelona circuit is shown 
in Figure 15.

Figure 15: Formula 1 Barcelona circuit (Circuit de Catalunya 2025).

Figure 16. Tracking 
performance of the model.
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The system initially gives low-amplitude responses, pro-
ducing higher amplitude and sudden steering commands. 
When evaluated in general, the lateral error suppression 
performance of the current MPC configuration is not very 
good, making the control system increasingly aggressive. As 
a solution, the Q matrix’s weights can be optimized, or the  
Hc value can be increased. These development possibilities 
will be considered in future studies. RMSE value of this sce-
nario is 1.259 and the total simulation times ​in Scenario 5 
was observed as TF1 = 51.38 seconds.

Since the path is too long, it prevents us from seeing the 
accuracy of result. Therefore, details are in Figure 17 from 
points where the lateral position error is higher on the path. 
In addition, lateral position error values will also allow us to 
understand the results better.

Figure 18 shows lateral position error and steering angle 
results. It is observed that the system exhibits significant 
deviations in the reference path tracking at certain time 
intervals. When the steering angle responses are examined, 
it is seen that the system exhibits a very aggressive structure 
toward the control inputs. 

Figure 17. Details of actual path.

Figure 18. Lateral 
position error and steering 
angle of actual path.
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5. Conclusion
This study introduces path tracking for autonomous vehicles 
with MPC. A dynamic single-track vehicle model is used 
while creating the MPC algorithm, and it relies on this 
vehicle model. The path tracking controller is designed with 
these assumptions. Longitudinal speed is used as a constant. 
Lateral position is, therefore, necessary to follow the intended 
course. The model is tested with different constant speeds, 
and parameters are updated to obtain good performance for a 
wide range of speeds. Also, the model is tested with different 
prediction horizon and control horizon values. Another 
challenging topic is to create different scenarios for path 
tracking. Sinusoidal and F1 Barcelona circuits are the used 
paths. The algorithm also has good lateral position control 
performance under different constant longitudinal speeds 
and at different paths. Despite these positive results, the 
study does have some limitations. Furthermore, the dynamic 
structure of the vehicle imposes nonholonomic constraints, 
which prevent it from performing certain instantaneous 
motions, such as direct lateral displacement. Instead, such 
motions can only be achieved over time through feasible 
combinations of steering and longitudinal movement.

Table 2 includes the simulation times for all scenarios.

Table 2. Simulation times of all scenarios

Test Scenario Constant Parameters Variable Parameters Total Simulation

Scenario 1
Standart Configuration

vx = 10 m/s
Hc = 1

Hp = 10, 20, 30
THp,10 = 24.06 sec
THp,20 = 33.47 sec
THp,30 = 43.63 sec

Scenario 2
Standart Configuration

Hp = 30
Hc = 1

vx = 15, 25, 35 m/s
Tvx,15 = 43.91 sec
Tvx,25 = 43.75 sec
Tvx,35 = 43.59 sec

Scenario 3 vx = 35 m/s
Hp= 30

Standart Configuration
Q-tuned Configuration
Hc-tuned Configuration

TStandart = 43.36 sec 
TQ-tuned = 43.53 sec
THc-tuned = 44.63 sec

Scenario 4

Standart Configuration
vx = 11 m/s

Kp= 0.54, Ki = 0.1125
Hp= 30, Hc = 1

PI Control
MPC

TPI = 0.012 sec
TMPC = 43.46 sec

Scenario 5

Q-tuned Configuration 
vx = 20 m/s

Hp= 30
Hc = 5

- TF1 = 51.38 sec

First, road–tire friction variations are not accounted for in 
the model, and these variations can have considerable im-
pacts on the stability of the vehicle—especially when trav-
eling at higher speeds or in adverse weather conditions. 
Second, increased prediction horizons lengthen the com-
putational complexity of the MPC and potentially create 
challenges for real-time implementation on low-resource 
embedded systems. 

In future studies, a dual-loop MPC architecture could mod-
ify the current assumption of constant longitudinal velocity. 
Under such a configuration, the inner loop would handle 
lateral path tracking under time-varying velocity referenc-
es. In contrast, the outer loop would produce good tracking 
performance. 

Another possible development in the future is the 
incorporation of real-time obstacle detection, avoidance, or 
emergency braking ability. LIDAR sensor data combined 
with the predictive model would allow one to update the 
feasible trajectory set inside the MPC horizon dynamically. 
The controller could then re-optimize the path responding 
to sensed hazards, ensuring collision-free path tracking. 
Lastly, adding tube-based or stochastic MPC techniques to 
the current MPC structure would increase its durability to 
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real-world uncertainties such as model mismatch, actuation 
delays, and sensor noise. These techniques would especially 
take into account limited disturbances and guarantee 
constraint satisfaction under uncertainty, enhancing safety 
and reliability for autonomous uses.
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