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ASYMPTOTIC BEHAVIOR OF THE NON-AUTONOMOUS
REACTION-DIFFUSION EQUATION WITH ROBIN BOUNDARY

CONDITION

EYLEM ÖZTÜRK

Abstract. In this paper, we investigate the long-time behavior of the time-
dependent reaction-diffusion equation ut−∆u+a(x)|u|ρu−b(x)|u|νu = h(x, t)

with Robin boundary condition. We begin this paper with the existence and
uniqueness results of the solution to the problem. For the asymptotic behavior,
we firstly prove the existence of an absorbing set in W 1

2 (Ω) ∩ Lρ+2(Ω). The
existence of a uniform attractor is obtained in W 1

2 (Ω) ∩ Lρ+2(Ω).

1. Introduction

We are concerned with the existence of uniform attractors for the process asso-
ciated with the solutions of the following reaction-diffusion equation:

ut −∆u+ a(x)|u|ρu− b(x)|u|νu = h(x, t), (x, t) ∈ QT ,

subject to the Robin boundary condition,

(
∂u

∂η
+ k(x′)u)|∂Ω = 0, x′ ∈ ∂Ω,

and the initial condition,

u(x, τ) = uτ (x), x ∈ Ω,∀τ ∈ R

where Ω ⊂ Rn, n ≥ 3, is a bounded domain with suffi ciently smooth boundary ∂Ω;
ρ, ν > 0 are given some numbers; T is a positive number; τ ∈ R; QT = Ω× (τ , T ),
ΣT = ∂Ω × [τ , T ]; ∆ is the n dimensional Laplace operator; a : Ω → R1

+, b : Ω →
R1

+ and k : ∂Ω → R1 are given functions; h is given generalized function. The
nonlinearity part and the external force h satisfy some conditions specified later.
∂u
∂η denotes the normal derivative of the function u in direction of the outer normal
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vector η. Here u(x, t) is an unknown function which can represent temperature,
population density, or in general the quantity of a substance.
Equation (1.1) generally arises as a mathematical model in various areas such as

population dynamics and biological sciences, hydrodynamics and the heat transfer
theory. Although reaction-diffusion equations with Dirichlet and Neumann bound-
ary conditions have been extensively studied, very little work has been done for
Robin boundary conditions.
The study of uniform attractor for non-autonomous dynamical systems has at-

tracted much attention and has made a lot of progress in recent years(see, [6], [7],
[10] and reference therein). But in the last two decades, the dynamical systems
have been extensively studied for the autonomous case by using of the concept of
global attractors( see, for example [6], [11], [12], [32] and the reference therein).
In general a proper extension of the notion of a global attractor for semigroups
to the case of process is the so called uniform attractor. Uniform attractors for
the non-autonomous systems are the minimal compact sets which uniformly(w.r.t.
time symbol) attract every bounded set of the initial data spaces.
The long time behavior of solutions of reaction-diffusion equation with Neu-

mann or Dirichlet conditions has been studied extensively for both autonomous
and non-autonomous cases. Moreover, the reaction-diffusion equation with Dirich-
let boundary condition, has investigated widely, the existence and uniqueness of
solution have been proven in (see [24], [29]), by the Faedo-Galerkin method, and
the existence of attractors has been obtained in [2], [3],[12], [14], [15], [23]-[27].
Also, for the reaction-diffusion equations with homogeneous nonlinear boundary
condition, the dynamical behavior was considered for both autonomous and non-
autonomous cases(see [1], [30], [31]). On the other hand, for the reaction-diffusion
equation with Robin boundary condition, the blow-up of solution was discussed in
[4], [17], [20]-[22]. In [9], one of the first papers is made to the understanding of
this problem with a homogeneous Robin boundary condition in a bounded domain
Ω ⊂ Rn, n ≤ 3, it is shown that there exists a compact attractor.
In [19], We showed before the existence and uniqueness of the solution for con-

sidered problem as taking initial condition is zero. Moreover in [16], for the au-
tonomous case of this problem, we obtained the existence of global attractor in
W 1

2 (Ω) ∩ Lρ+2(Ω), also proved some asymptotic regularity by using the relative
stationary problem. After that in [17], we obtained some conditions for blow-up of
solutions of problem (1.1)-(1.3) in finite time.
For the existence of the uniform attractor, we need to show that some kind

of compactness of the family of processes. Since here our boundary condition is
Robin type (linear boundary condition) and also has some negative coeffi cient, we
come across some additional diffi culties in proving the asymptotic compactness in
Lρ+2(Ω). To overcome this, we used some different inequalities such as Young,
Hölder and which was given in Lemma 2 as well as Sobolev embedding theorems.
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This paper is organized as follows. In the next section, we give some basic defi-
nitions and abstract results concerning the uniform attractors for non-autonomous
dynamical systems. In section 3, we show that the existence and uniqueness of
weak solution and the existence of weak continuity of family of processes associ-
ated to the problem. In section 4, we prove the existence of an absorbing set in
W 1

2 (Ω) ∩ Lρ+2(Ω) and a uniform attractor in W 1
2 (Ω) ∩ Lρ+2(Ω).

2. Preliminaries

We begin with some useful definitions from the theory of uniform attractors
for non-autonomous systems which we will use throughout the paper. We refer to
[5]-[8] for more details.
Let X, Y be two Banach spaces such that Y ↪→ X continuously, and Σ be a

parameter set. {Uσ(t, τ), t ≥ τ ∈ R}, σ ∈ Σ, is said to be a family of processes in
X if for any σ ∈ Σ
Uσ(t, s)oUσ(s, τ) = Uσ(t, τ), ∀t ≥ s ≥ τ , τ ∈ R,
Uσ(τ , τ) = Id is the identity operator, τ ∈ R.
Denote by B(X), B(Y ) the set of all bounded subsets of X and Y respectively.

Definition 1. A set B0 ∈ B(Y ) is said to be a uniform (w.r.t. σ ∈ Σ) absorbing
set in Y for {Uσ(t, τ)}, σ ∈ Σ if for any τ ∈ R and any B ∈ B(X), there exists
T0 = T0(B, τ) such that

⋃
σ∈Σ

Uσ(t, τ)B ⊂ B0 for all t ≥ T0.

Definition 2. A family of processes {Uσ(t, τ)}, σ ∈ Σ is called uniformly (w.r.t.
σ ∈ Σ) asymptotically compact in Y if for any τ ∈ R and any B ∈ B(X), we
have {Uσn(tn, τ)xn} is relatively compact in Y , where {xn} ⊂ B, tn ⊂ [τ ,+∞),
tn → +∞, σn ⊂ Σ are arbitrary.

Definition 3. A subset A ⊂ Y is said to be the uniform attractor in Y of the
family of processes {Uσ(t, τ)}, σ ∈ Σ if

(i) A is compact in Y ;
(ii) for any fixed τ ∈ R and B ∈ B(X) we have

limit
t→∞

(sup
σ∈Σ

(distY (Uσ(t, τ)B,A)) = 0

where distY (A,B) = supx∈A infy∈B ‖x− y‖Y for A, B ⊂ Y ;
(iii) if A′ is closed subset of Y satisfying (ii), then A ⊂ A′(minimality property).

Definition 4. The kernel K of a process {U(t, τ)}σ∈Σ acting on X consists of all
bounded complete trajectories of the process {U(t, τ)}σ∈Σ:

K = {u(.) : U(t, τ)u(τ) = u(t), dist(u(t), u(0)) ≤ Cu, ∀t ≥ τ , τ ∈ R}.

The set K(s) = {u(s) : u(.) ∈ K} is said to be kernel section at time t = s, s ∈ R.



NON-AUTONOMOUS REACTION-DIFFUSION EQUATION 425

Definition 5. A function ϕ is said to be translation bounded in Lloc2 (R;X), if

‖ϕ‖2b = sup
t∈R

t+1∫
t

‖ϕ(s)‖2Xds <∞.

Denote by Lb2(R;X) the set of all translation bounded functions in Lloc2 (R;X).

Definition 6. A function ϕ ∈ Lloc2 (R;X) is said to be normal if for any ε > 0,
there exists η > 0 such that

sup
t∈R

t+η∫
t

‖ϕ(s)‖2Xds ≤ ε.

Denote by Ln2(R;X) the set of all normal functions in Lloc2 (R;X).

Lemma 1. ([31]) If ϕ0 ∈ Ln2(R;X), then for any τ ∈ R,

lim
γ→∞

sup
t≥τ

t∫
τ

e−γ(t−s)‖ϕ(s)‖2Xds = 0.

Lemma 2. ([4]) For 1 ≤ p <∞ there exists a positive constant c0(Ω, p) such that
for every ϕ ∈W 1

p (Ω),

‖ϕ− 1

meas(∂Ω)

∫
∂Ω

ϕ‖Lp(Ω) ≤ c0(Ω, p)‖∇ϕ‖Lp(Ω).

3. Existence and Uniqueness Results

We shall assume h ∈ Lb2(R;L2(Ω)). We will understand the solution of the
considered problem in the following sense:

Definition 7. A function u(x, t), is called the weak solution of problem (1.1)-(1.3)
on the interval [τ , T ] if it satisfies the followings;

u ∈ L2(τ , T ;W 1
2 (Ω)) ∩ Lρ+2(τ , T ;Lρ+2(Ω)), ut ∈ L2(τ , T ;L2(Ω)),

u(x, τ) = uτ (x) for a.e. x ∈ Ω,

and
T∫
τ

∫
Ω

utϕdxdt+

T∫
τ

∫
Ω

Du.Dϕdxdt+

T∫
τ

∫
Ω

(a(x) |u|ρ u− b(x) |u|ν u)ϕdxdt

+

T∫
τ

∫
∂Ω

k(x′)uϕdx′dt =

T∫
τ

∫
Ω

hϕdxdt (3.1)

for all ϕ ∈ L2(τ , T ;W 1
2 (Ω)) ∩ Lρ+2(τ , T ;Lρ+2(Ω)).
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Theorem 1. We assume that the following conditions are satisfied:
(i) ρ, ν > 0, ν ≤ ρ and uτ ∈W 1

2 (Ω) ∩ Lρ+2(Ω),

(ii) a and b are positive functions, a ∈ L∞(Ω), b ∈
{

L ρ+2
ρ−ν

(Ω), if ν < ρ,

L∞(Ω), if ν = ρ.

• If ν < ρ then there exists a number a0 > 0 such that a(x) ≥ a0 for a.e.
x ∈ Ω.
• If ν = ρ then there exists a number b0 > 0 such that a(x)− b(x) ≥ b0

for a.e. x ∈ Ω.
(iii) k ∈ Ln−1 (∂Ω) and there exists a number k0 ≥ 0 such that k(x′) ≥ −k0 for

a.e. x′ ∈ ∂Ω,

k0 <


min{a′,1}

c23
, if 0 < ν < ρ,

min{b′,1}
c23

, if ν = ρ.

Then problem (1.1)-(1.3) is solvable for any τ ∈ R (here a′ and b′ are positive
numbers such that a′ < a0, b′ < b0, c3 comes from Sobolev embedding 1).

Proof. Although the existence of a weak solution was proved in [16], we present an-
other proof with some weaker conditions on relations between coeffi cient functions.
Consider the approximating solution un in the form,

un(t) =

n∑
j=1

unj(t)wj ,

where wj ⊂W 1
2 (Ω)∩Lρ+2(Ω) is a Hilbert basis of L2(Ω) such that span{wj}j≥1 is

dense in W 1
2 (Ω) ∩ Lρ+2(Ω). We get un from solving the following problem:

d

dt
〈un, wj〉+ 〈∇un,∇wj〉+ 〈a(x)|un|ρun − b(x)|un|νun, wj〉+ 〈k(x′)un, wj〉∂Ω

= 〈h(x, t), wj〉
〈un(x, τ), wj〉 = 〈uτ , wj〉; j = 1, . . . , n

In (3.2) replacing wj by un, we get

1

2

d

dt
(‖un‖2L2(Ω)) + ‖∇un‖2L2(Ω) +

∫
Ω

(a(x)|un|ρ+2 − b(x)|un|ν+2)dx+

∫
∂Ω

k(x′)u2
ndx

′

=

∫
Ω

h(x, t)undx,

1

2

d

dt
(‖un‖2L2(Ω))+

1

2
(min{1, a0−ε}−k0c

2
3)(‖un‖2W 1

2 (Ω)+‖un‖
ρ+2
Lρ+2(Ω)−c

′)−c(ε)‖b‖
ρ+2
ρ−ν
L ρ+2
ρ−ν

(Ω)−k0c
2
3c
′

≤ ‖h‖L2(Ω)‖un‖L2(Ω),

1‖u‖L2(∂Ω) ≤ c3‖u‖W1
2 (Ω)
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1

2

d

dt
(‖un‖2L2(Ω)) + (K1 − ε1)‖un‖2W 1

2 (Ω) +K1‖un‖ρ+2
Lρ+2(Ω) ≤

c22c(ε1)‖h‖2L2(Ω) + ε1 +K1c
′ + c(ε)‖b‖

ρ+2
ρ−ν
L ρ+2
ρ−ν

(Ω) + k0c
2
3c
′,

where K1 = 1
2 (min{1, a0− ε}− k0c

2
3) > 0 and ε1 < K1. Integrating (3.3) from τ to

t, t ∈ [τ , T ], we have

‖un(t)‖2L2(Ω) + (K1 − ε1)

t∫
τ

‖un(s)‖2W 1
2 (Ω)ds+K1

t∫
τ

‖un(s)‖ρ+2
Lρ+2(Ω)ds ≤

‖un(τ)‖2L2(Ω)+c
2
2c(ε1)

t∫
τ

‖h(s)‖2L2(Ω)ds+c(ε)

t∫
τ

‖b‖
ρ+2
ρ−ν
L ρ+2
ρ−ν

(Ω)ds+(k0c
2
3c
′+ε1+K1c

′)(t−τ).

This inequality implies that

{un} is bounded in L∞(τ , T ;L2(Ω)) ∩ Lρ+2(τ , T ;Lρ+2(Ω)) ∩ L2(τ , T ;W 1
2 (Ω)).

Then there exists a subsequence of {un} (still denoted by {un}) such that
un ⇀ u weakly star in L∞(τ , T ;L2(Ω)),

∆un ⇀ ∆u weakly in L2(τ , T ; (W 1
2 (Ω))∗).

On the other hand, replacing wj by ∂tun in (3.2), we have

‖∂tun‖2L2(Ω) +
1

2

d

dt
(‖∇un‖2L2(Ω) +

∫
∂Ω

k(x′)u2
ndx

′ +
2

ρ+ 2

∫
Ω

a(x)|un|ρ+2dx

− 2

ν + 2

∫
Ω

b(x)|un|ν+2dx) =

∫
Ω

h(x, t)∂tun. (3.8)

Using the Cauchy inequality, we have

‖∂tun‖2L2(Ω) +
d

dt
(‖∇un‖2L2(Ω) +

∫
∂Ω

k(x′)u2
ndx

′ +
2

ρ+ 2

∫
Ω

a(x)|un|ρ+2dx

− 2

ν + 2

∫
Ω

b(x)|un|ν+2dx) ≤ ‖h‖2L2(Ω). (3.9)

Integrating (3.9) from τ to T and using previous arguments, we obtain

{∂tun} is bounded in L2(τ , T ;L2(Ω)), (3.10)

then we have,
∂tun ⇀ ∂tu weakly in L2(τ , T ;L2(Ω)). (3.11)

Let
f(x, u) := a(x) |u|ρ u− b(x) |u|ν u.
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Also f(x, �) : R1 −→ R1 is a continuous function and we have

‖f‖L ρ+2
ρ+1

(QT ) ≤ 2
ρ+2
ρ+1 ‖a‖

ρ+2
ρ+1

L∞(QT )‖u‖
ρ+2
Lρ+2(QT ) + 2

ρ+2
ρ+1 ‖b‖

ρ+2
ρ+1

L ρ+2
ρ−ν

(QT )‖u‖
(ρ+2)(ν+1)

ρ+1

Lρ+2(QT ) .

(3.12)
So, f is a bounded mapping from Lρ+2(QT ) to L ρ+2

ρ+1
(QT ). So we obtain that

{f(., un)} is bounded in L ρ+2
ρ+1

(QT ), then

f(un) ⇀ η weakly in L ρ+2
ρ+1

(QT ). (3.13)

Then we can conclude that un → u strongly in L2(τ , T ;L2(Ω)). Hence un → u a.e.
in Ω× [τ , T ]. Since f is continuous, it follows that f(un)→ f(u) a.e. in Ω× [τ , T ].
Then according to Lemma 1.3 (see [13], Chapter 1), we have

f(un) ⇀ f(u) weakly in L ρ+2
ρ+1

(QT ).

Thus η = f(u).

Let g(x′, u) := k(x′)u, g : L2(τ , T ;W 1
2 (Ω)) → L2(τ , T ;W

− 1
2

2 (∂Ω)), g satisfies
the following,

‖g(u)‖
L2(τ,T ;W

− 1
2

2 (∂Ω))
≤ c23c24‖k‖Ln−1(∂Ω)‖u‖

L2(τ,T ;W
1
2
2 (∂Ω))

.

Thus
g(un) ⇀ g(u) weakly in L2(τ , T ;W

− 1
2

2 (∂Ω)).

Now, combining (3.6), (3.7), (3.11), (3.14) and (3.15) we see that u satisfies (3.1).
�

Now we recall the following result for the uniqueness of the solution:

Theorem 2. ([16]) We assume that the conditions of Theorem 1 are satisfied. If
there exists a positive number b1 such that b(x) ≤ b1, b1 < a0 for almost every
x ∈ Ω when 0 < ν < ρ, then the solution is unique. Moreover u and v are solutions
of problem (1.1)-(1.3), with initial data uτ and vτ , respectively, then

‖u(x, t)− v(x, t)‖2L2(Ω) ≤ ‖uτ − vτ‖2L2(Ω)e
2(b1(ρ+1)+1)t as ν < ρ,

‖u(x, t)− v(x, t)‖2L2(Ω) ≤ ‖uτ − vτ‖2L2(Ω)e
2t as ν = ρ.

We now define the symbol space Σ for the problem (1.1)-(1.3). Taking a fixed
symbol

σ0(s) = h0(s), h0(s) ∈ Lb2(R;L2(Ω)).

We denote by Lloc2,w(R;L2(Ω)) the space Lloc2 (R;L2(Ω)) endowed with local conver-
gence topology. Set Σ0 = {h0(s + h) : h ∈ R}, and let Σ be the closure of Σ0 in
Lloc2,w(R;L2(Ω)).
Problem (1.1)-(1.3) can be rewritten in the following form:

∂ty = Aσ(t)(y), y|t=τ = yτ
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where the function σ(t) = h(t) is the symbol of the equation. Thanks to these
existence and uniqueness theorems, we know that problem (1.1)-(1.3) is well posed,
and generates a family of processes {Uσ(t, τ)}, σ ∈ Σ as follows

Uσ(t, τ) : W 1
2 (Ω) ∩ Lρ+2(Ω)→W 1

2 (Ω) ∩ Lρ+2(Ω), Uσ(t, τ)yτ = y(., t),

where Uσ(t, τ)yτ is the unique weak solution of problem (1.1)-(1.3)(with σ in place
of h) at the time t with the initial data yτ at τ .
We obtain the following corollary immediately by using existence and uniqueness

theorems:

Corollary 1. The family of process {Uσ(t, τ)}, σ ∈ Σ is (W 1
2 (Ω) ∩ Lρ+2(Ω))× Σ,

W 1
2 (Ω)∩Lρ+2(Ω)-weakly continuous, that is for any unτ ⇀ uτ in W 1

2 (Ω)∩Lρ+2(Ω)
and σn ⇀ σ0 in Σ, we have

Uσn(t, τ)unτ ⇀ Uσ0(t, τ)uτ , t ≥ τ .

4. Existence of a Uniform Attractor in W 1
2 (Ω) ∩ Lρ+2(Ω)

In this section we will show that the existence of uniform attractor in W 1
2 (Ω) ∩

Lρ+2(Ω). Now we state our main result obtained in this section.

Theorem 3. We assume that the conditions of Theorem 2 are satisfied. Suppose
that for almost every x ∈ Ω and x′ ∈ ∂Ω,

(i) if ν < ρ then there exists a number a1 > 0 such that a(x) ≤ a1,
(ii) if 0 < ρ ≤ 2 then k(x′) ≥ 0, if ρ > 2 then k(x′) satisfies the condition (iii)

of Theorem 1.

Then the processes {Uσ(t, τ)}, σ ∈ Σ possesses a uniform attractor A inW 1
2 (Ω)∩

Lρ+2(Ω) for all h(x, t) in L∞(R;L2(Ω)), h′(t) ∈ Lb2(R;L2(Ω)).

For the proof of this theorem , we will use Theorem 3.9 (which is in [5]). To see
that the conditions of this theorem are satisfied, we give the following lemmas and
useful a priori estimate for the uniformly asymptotic compactness and the existence
of an absorbing set in corresponding space:

Lemma 3. Assume that the conditions of Theorem 3 are satisfied. Then the
processes {Uσ(t, τ)}, σ ∈ Σ has a bounded uniform absorbing set B in W 1

2 (Ω) ∩
Lρ+2(Ω) for all h(t) ∈ Lb2(R;L2(Ω)) .

Proof. Multiplying (1.1) by u, after the integrating by parts, we get

1

2

d

dt
‖u‖2L2(Ω) = −

∫
Ω

|∇u|2dx−
∫
∂Ω

k(x′2dx′−
∫
Ω

a(x)|u|ρ+2dx+

∫
Ω

b(x)|u|ν+2dx+

∫
Ω

h0(t)udx,

applying Hölder and Young inequality for the last three terms we deduce that

d

dt
‖u‖2L2(Ω) −K1‖u‖2L2(Ω) ≤ 2c(ε1)‖h0(t)‖2L2(Ω) + 2c(ε2)meas(Ω)(b1)

ρ+2
ρ−ν
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where K1 := 2
c22

(−min{1, a0 − ε2} + k0c
2
3) < 0, c2 comes from Sobolev embedding

inequality. 2 By Gronwall’s lemma we obtain the following inequality :

‖u‖2L2(Ω) ≤ ‖uτ‖2L2(Ω)e
K1(t−s) + 2c(ε1)

t∫
τ

‖h0(s)‖2L2(Ω)e
K1(t−s)ds

+2c(ε2)meas(Ω)(b1)
ρ+2
ρ−ν

e−K1(t−τ)

−K1
,

here we have used the fact that
t∫
τ

‖h0(s)‖2L2(Ω)e
K1(t−s)ds

≤
t∫

t−1

eK1(t−s)‖h0‖2L2(Ω)ds+

t−1∫
t−2

eK1(t−s)‖h0‖2L2(Ω)ds+

t−2∫
t−3

eK1(t−s)‖h0‖2L2(Ω)ds+ ...

≤
t∫

t−1

‖h0‖2L2(Ω)ds+

t−1∫
t−2

eK1‖h0‖2L2(Ω)ds+

t−2∫
t−3

e2K1‖h0‖2L2(Ω)ds+ ...

≤ (1 + eK1 + e2K1 + ...)‖h0‖2Lb2(R;L2(Ω))

≤ (
1

1− eK1
)‖h0‖2Lb2(R;L2(Ω)).

Thus we get

‖u‖2L2(Ω) ≤ ‖uτ‖2L2(Ω)e
K1t +

2c(ε1)

1− eK1
‖h0‖2Lb2(R;L2(Ω)) +

2c(ε2)meas(Ω)(b1)
ρ+2
ρ−ν

−K1
eK1τ

for convenience we denote all terms but except the first term in the right side by r0

‖u(t)‖2L2(Ω) ≤ ‖uτ‖2L2(Ω)e
K1t + r0.

Consequently we can find a T0 for given δ > 0,

T0 :=
1

−K1
ln(
‖uτ‖2L2(Ω)

δ
),

such that ‖u‖2L2(Ω) ≤ r1 for all t ≥ T0, r1 = r0 + δ.
On the other hand, multiplying (1.1) by ut, after the integration by parts, we

have

‖ d
dt
u‖2L2(Ω) +

1

2

d

dt
‖∇u‖2L2(Ω) +

d

dt

∫
Ω

(
a(x)|u|ρ+2

ρ+ 2
− b(x)|u|ν+2

ν + 2
)dx+

d

dt

1

2

∫
∂Ω

k(x′2dx′

2‖u‖L2(Ω) ≤ c2 ‖u‖W1
2 (Ω)
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=

∫
Ω

h0utdx,

from here

d

dt
{‖∇u‖2L2(Ω)+

∫
Ω

2(
a(x)|u|ρ+2

ρ+ 2
− b(x)|u|ν+2

ν + 2
)dx+

∫
∂Ω

k(x′2dx′} ≤ 2‖h0‖2L2(Ω). (4.8)

We will show that there exists a constant M2 = M2(r1, a1) > 0 such that for all
t ≥ T0 + 1 the following inequality is satisfied:

t+1∫
t

{‖∇u(x, s)‖2L2(Ω) +

∫
Ω

2(
a(x)|u(x, s)|ρ+2

ρ+ 2
− b(x)|u(x, s)|ν+2

ν + 2
)dx

+

∫
∂Ω

k(x′2(x′, s)dx′}ds ≤M2.

(4.9)

For (4.9), if we multiply (1.1) by u, after the integrating by parts, and use the
conditions of theorem, we have

d

dt
‖u‖2L2(Ω) + 2{

∫
Ω

|∇u|2dx+ (a0 − b1)

∫
Ω

|u|ρ+2dx+

∫
∂Ω

k(x′2dx′}

≤ 2b1meas(Ω) +

∫
Ω

2h0udx.

Now we can separate the end term of the left side such that 0 < A < 1, and applying
Young-Hölder inequalities, we have

d

dt
‖u‖2L2(Ω) + 2{

∫
Ω

|∇u|2dx+
(a0 − b1)

a1

∫
Ω

(
a(x)|u|ρ+2

ρ+ 2
− b(x)|u|ν+2

ν + 2
)dx+

A

∫
∂Ω

k(x)|u|2dx′} ≤ 2b1meas(Ω) + c(ε1)‖h0‖2L2(Ω) + ε1‖u‖2L2(Ω) + ε1‖u‖2W 1
2 (Ω)

+4c24c(ε1)(1−A)2‖k‖2Ln−1(∂Ω).

We integrate last inequality from t to t+ 1 where t ≥ T0 + 1, we have:

t+1∫
t

{(2−ε1)

∫
Ω

|∇u|2dx+
2(a0 − b1)

a1

∫
Ω

(
a(x)|u|ρ+2

ρ+ 2
−b(x)|u|ν+2

ν + 2
)dx+2A

∫
∂Ω

k(x′2dx′}dτ

≤ ‖h0‖2Lb2(R;L2(Ω)) + 4c24c(ε1)(1−A)2‖k‖2Ln−1(∂Ω) + r1(1 + 2ε1) + 2b1meas(Ω).
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Here A := a0−b1
a1

and ε1 := 2−A, then we have
t+1∫
t

{
∫
Ω

|∇u|2dx+ 2

∫
Ω

(
a(x)|u|ρ+2

ρ+ 2
− b(x)|u|ν+2

ν + 2
)dx+

∫
∂Ω

k(x′2dx′}dτ

≤ 1

A
(‖h‖2Lb2(R;L2(Ω)) + 4c24c(ε1)(1−A)2‖k‖2Ln−1(∂Ω) + r1(1 + 2ε1) + 2b1meas(Ω)).

So we obtain inequality (4.9). Denoting by

y = {
∫
Ω

|∇u|2dx+ 2

∫
Ω

(
a(x)|u|ρ+2

ρ+ 2
− b(x)|u|ν+2

ν + 2
)dx+

∫
∂Ω

k(x′2dx′}

combining with (4.8), (4.9), we have the following inequalities for all t ≥ T0 + 1:

d

dt
y(t) ≤ 2‖h0(t)‖2L2(Ω) and

t+1∫
t

y(s)ds ≤M2.

Let T0 + 1 ≤ t < s ≤ t + 1. Then d
dsy(s) ≤ 2‖h0(s)‖2L2(Ω). Integrating in s on

[z; t + 1], where z : t < z < t + 1, we obtain y(t + 1) ≤
t+1∫
z

2‖h0‖2L2(Ω)ds + y(z) ≤

2‖h0‖2Lb2(R;L2(Ω))
+ y(z). Finally if we integrate in z on [t; t+ 1] we get the wanted

estimate,

‖∇u‖2L2(Ω) + 2

∫
Ω

(
a(x)|u|ρ+2

ρ+ 2
− b(x)|u|ν+2

ν + 2
)dx+

∫
∂Ω

k(x′2dx′ ≤ 2‖h0‖2Lb2(R;L2(Ω)) +M2

by using the conditions of Theorem 3 and the last inequality, we have ∀t ≥ T0 + 1:

‖u‖W 1
2 (Ω) ≤M3, ‖u‖Lρ+2(Ω) ≤M3.

Thus {Uσ(t, τ)}, σ ∈ Σ has a bounded absorbing set in W 1
2 (Ω) ∩ Lρ+2(Ω).

�

Now we give an a priori estimate for the solution of the problem to verifying the
uniformly asymptotic compactness in Lρ+2(Ω).

Lemma 4. Assume that the conditions of Theorem 3 are satisfied. Then for any
ε > 0 and any bounded subset B ⊂W 1

2 (Ω)∩Lρ+2(Ω) there exist T2 = T2(ε,B) and
M =M(ε,B) such that∫

Ω(|Uσ(t,τ)uτ |≥M)

|Uσ(t, τ)uτ |ρ+2dx < ε ∀t ≥ T2, ∀uτ ∈ B, (4.11)

where Ω(|Uσ(t, τ)uτ | ≥ M) = {(x, t) : |Uσ(t, τ)uτ | ≥ M} for all normal function h
in Lloc2 (R;L2(Ω)).
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Proof. We multiply (1.1) by (u−M)ρ+1
+ and integrating on Ω, we obtain

1

ρ+ 2

d

dt

∫
Ω(u≥M)

|(u−M)|ρ+2dx+
4(ρ+ 1)

(ρ+ 2)2

∫
Ω(u≥M)

(∇(u−M)
ρ+2
2 )2dx

+

∫
Ω(u≥M)

a(x)|u|ρ+1(u−M)ρ+1dx−
∫

Ω(u≥M)

b(x)|u|ν+1(u−M)ρ+1dx

+

∫
∂Ω(u≥M)

k(x′)u(u−M)ρ+1dx′ =

∫
Ω(u≥M)

h0(x, t)(u−M)ρ+1dx

where (u−M)+ denotes the positive part of (u−M), that is

(u−M)+ :=

{
u−M, if u ≥M,
0, if u ≤M.

Set Ω1 := Ω(u(t) ≥M), ∂Ω1 := ∂Ω(u(t) ≥M), we have

1

ρ+ 2

d

dt

∫
Ω1

|(u−M)|ρ+2dx+
4(ρ+ 1)

(ρ+ 2)2

∫
Ω1

(∇(u−M)
ρ+2
2 )2dx+

∫
Ω1

a(x)|u|ρ+1(u−M)ρ+1dx−

∫
Ω1

b(x)|u|ν+1(u−M)ρ+1dx+

∫
∂Ω1

k(x′)u(u−M)ρ+1dx′ =

∫
Ω1

h0(x, t)(u−M)ρ+1dx.

Let 0 < c < a0 − b1 andM is taken asM≥ ( b1
a0−b1−c )

1
ρ+1 , then on Ω1 we have,

a(x)|u|ρ+1 − b(x)|u|ν+1 ≥ c|u|ρ+1

if we use this inequality in (4.13), we have:

1

ρ+ 2

d

dt

∫
Ω1

|(u−M)|ρ+2dx+
4(ρ+ 1)

(ρ+ 2)2

∫
Ω1

(∇(u−M)
ρ+2
2 )2dx+

∫
Ω1

c|u|ρ+1(u−M)ρ+1dx+

∫
∂Ω1

k(x′)u(u−M)ρ+1dx′ ≤
∫
Ω1

h0(x, t)(u−M)ρ+1dx (4.14)

by applying Hölder and Young inequality for the last term and using the condition
on k, we deduce that

1

ρ+ 2

d

dt

∫
Ω1

|(u−M)|ρ+2dx+
4(ρ+ 1)

(ρ+ 2)2

∫
Ω1

(∇(u−M)
ρ+2
2 )2dx+

∫
Ω1

c|u|ρ+1(u−M)ρ+1dx

−(k0 + k0M)

∫
∂Ω1

(u−M)ρ+2dx′ − k0Mmeas(∂Ω1) ≤
∫
Ω1

h0(x, t)(u−M)ρ+1dx
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by applying Young inequality for the term of right side, we have

1

ρ+ 2

d

dt

∫
Ω1

|(u−M)|ρ+2dx+
4(ρ+ 1)

(ρ+ 2)2

∫
Ω1

(∇(u−M)
ρ+2
2 )2dx+

∫
Ω1

c

2
|u|ρ+1(u−M)ρ+1dx

−(k0 + k0M)

∫
∂Ω1

(u−M)ρ+2dx′ − k0Mmeas(∂Ω1) ≤ 1

2c

∫
Ω1

h2
0dx

by using u ≥M and u−M ≤ u for the third term of left side we obtain,

1

ρ+ 2

d

dt

∫
Ω1

|(u−M)|ρ+2dx+
4(ρ+ 1)

(ρ+ 2)2

∫
Ω1

(∇(u−M)
ρ+2
2 )2dx+

c

2
Mρ

∫
Ω1

(u−M)ρ+2dx

−(k0 + k0M)

∫
∂Ω1

(u−M)ρ+2dx′ − k0Mmeas(∂Ω1) ≤ 1

2c

∫
Ω1

h2
0dx

by using Lemma 2 and the equation

|∇((u−M)ρ+2| = 2(|(u−M)
ρ
2+1∇((u−M)

ρ+2
2 )|)

we have,

1

ρ+ 2

d

dt

∫
Ω1

|(u−M)|ρ+2dx+
4(ρ+ 1)

(ρ+ 2)2

∫
Ω1

(∇(u−M)
ρ+2
2 )2dx+

c

2
Mρ

∫
Ω1

(u−M)ρ+2dx−

(k0 + k0M)
meas(∂Ω1)

meas(Ω1)
(

∫
Ω1

(u−M)ρ+2dx+ 2c0

∫
Ω1

|(u−M)
ρ
2+1∇((u−M)

ρ+2
2 )|dx)

≤ 1

2c

∫
Ω1

h2
0dx+ k0Mmeas(∂Ω1)

and by using Young inequality we have,

d

dt

∫
Ω1

|(u−M)|ρ+2dx+ µ

∫
Ω1

(u−M)ρ+2dx ≤ ρ+ 2

2c

∫
Ω1

h2
0dx+ (ρ+ 2)k0Mmeas(∂Ω1)

where

µ = (ρ+ 2)[
c

2
Mρ − k0(M+ 1)

meas(∂Ω1)

meas(Ω1)
− [c0(1 +M)k0

meas(∂Ω1)

meas(Ω1)
]
2 1

ε2
],

and ε2 = ρ+1
(ρ+2)2 . Since ρ > 2, we can choose M suffi ciently large enough such

that µ > 0, we integrate this inequality on (`, t) after the multiplying by eµt where
` ≥ T0 + 1, we have∫

Ω1

|u−M|ρ+2dx ≤ ‖u−M‖ρ+2
Lρ+2(Ω1)(`)e

−µ(t−`) +
ρ+ 2

2c

t∫
`

(e−µ(t−s)
∫
Ω1

h2
0dx)ds+
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1

µ
(1− eµ(l−t))(ρ+ 2)k0Mmeas(∂Ω1)

for any ε > 0, we can takeM large enough such that

ρ+ 2

2c

t∫
`

e−µ(t−s)
∫
Ω1

h2
0dxds <

ε

3
, (4.15)

1

µ
(1− eµ(l−t))(ρ+ 2)k0Mmeas(∂Ω1) <

ε

3
. (4.16)

If we choose T2 as the following,

T2 :=
1

µ
ln(

3Mρ+2
3

ε
) + `

where M3 is in the proof of Lemma 3. Then ∀t > T2, we have

‖u−M‖ρ+2
Lρ+2(Ω1)(`)e

−µ(t−`) <
ε

3
. (4.17)

From (4.15), (4.16), (4.17) we have∫
Ω1

|u−M|ρ+2dx < ε, ∀t > T2. (4.18)

Repeating the same step above, just taking |(u +M)−|ρ(u +M)−, we have that
there existsM4 and T ′2 such that∫

Ω(u≤−M)

|(u+M)−|ρ+2dx < ε, for any t ≥ T ′2, M≥M4 (4.19)

where (u+M)− denotes the negative part of (u+M), that is

(u+M)− :=

{
u+M, if u ≤ −M,
0, if u ≥ −M.

We obtain by using (4.18) and (4.19),∫
Ω(|u|≥M′)

|(|u|−M′ρ+2dx =

∫
Ω(u≥M′)

|(u−M′ρ+2dx+

∫
Ω(u<−M′)

|(u+M′ρ+2dx < 2ε,

where t ≥ max{T2, T
′
2},M

′
= max{M,M4} then∫

Ω(|u|≥2M′)

|u|ρ+2dx =

∫
Ω(|u|≥2M′)

((|u| −M′) +M′ρ+2dx

≤ 2ρ+1(

∫
Ω(|u|≥2M′)

(|u| −M′ρ+2dx) +

∫
Ω(|u|≥2M′)

M′ρ+2dx)
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≤ 2ρ+1(

∫
Ω(|u|≥M′)

(|u| −M′ρ+2dx+

∫
Ω(|u|≥M′)

(|u| −M′ρ+2dx).

Thus, we have ∫
Ω(|u|≥2M′)

|u|ρ+2dx < 2ρ+3ε.

Last inequality completes the proof of lemma. �

For the proof of uniformly asymptotic compactness in W 1
2 (Ω), first we will give

some a priori estimate on ut in L2(Ω)-norm.

Lemma 5. Assume that the conditions of Theorem 3 are satisfied. Then for any
τ ∈ R and any bounded subset B ⊂W 1

2 (Ω)∩Lρ+2(Ω) there exists a positive constant
T1 = T1(B, τ) > 0 such that:∫

Ω

u2
tdx ≤ R for all t ≥ T1, uτ ∈ B (4.20)

for any translation bounded h0(t) and h′0(t) in Lloc2 (R, L2(Ω)), where ut(s) = d
dt (Uσ(t,τ)uτ ) |t=s,

R depends on r1, a1, ‖k‖Ln−1(∂Ω).

Proof. We denote by ut = v and by differentiating (1.1),(1.2) in time, we get

vt −∆v + va(x)(ρ+ 1) |u|ρ − vb(x)(ν + 1) |u|ν = h′0(t),

∂v

∂η
+ k(x′)v = 0,

multiplying the first equality by v integrating over Ω and using the conditions of
Theorem 1 we obtain that

d

dt

∫
Ω

v2dx ≤ 2(b1(ρ+ 1) + k0c
2
3 +

1

2
)

∫
Ω

v2dx+ ‖h′0(t)‖2L2(Ω). (4.21)

We will show that there exist T1 > 0 and M ′2 > 0 such that ∀t ≥ T1,

t+1∫
t

∫
Ω

v2dxds ≤M ′2. (4.22)

Integrating inequality (4.7) from t to t+ 1, we have:

t+1∫
t

‖ut‖2L2(Ω)ds+(
1

2
‖∇u‖2L2(Ω)+

∫
Ω

(
a(x)|u|ρ+2

ρ+ 2
−b(x)|u|ν+2

ν + 2
)dx+

1

2

∫
∂Ω

k(x′2dx′)(t+1) =

(
1

2
‖∇u‖2L2(Ω) +

∫
Ω

(
a(x)|u|ρ+2

ρ+ 2
− b(x)|u|ν+2

ν + 2
)dx+

1

2

∫
∂Ω

k(x′2dx′)(t)
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+

t+1∫
t

∫
Ω

h0(t)utdxds,

here we use inequality (4.3), then ∀t ≥ T0 + 1 (which is the proof of Lemma 3), we
obtain that:

1

2

t+1∫
t

‖ut‖2L2(Ω)ds+(
1

2
‖∇u‖2L2(Ω)+

∫
Ω

(
a(x)|u|ρ+2

ρ+ 2
−b(x)|u|ν+2

ν + 2
)dx+

1

2

∫
∂Ω

k(x′2dx′)(t+1) ≤

M2 +
1

2
‖h0‖2Lb2(R;L2(Ω))

then

1

2

t+1∫
t

‖ut‖2L2(Ω)ds+ (

∫
Ω

(
a(x)|u|ρ+2

ρ+ 2
− b(x)|u|ν+2

ν + 2
)dx)(t+ 1) ≤

k0c
2
3

2
‖u‖2L2(Ω)(t+ 1) +M2 +

1

2
‖h0‖2Lb2(R;L2(Ω)),

applying Hölder inequality and using Lemma 3, we have the following inequality
∀t ≥ T0 + 1 :

1

2

t+1∫
t

‖ut‖2L2(Ω)ds ≤
k0c

2
3

2
r1 +M2 +

1

2
‖h0‖2Lb2(R;L2(Ω)) +

b1meas(Ω)

ν + 2
+
Mρ+2

1 b1
ν + 2

.

Thus we obtain (4.22). Consequently combining (4.21) with (4.22) and uniform
Gronwall lemma we obtain (4.20).

�

Corollary 2. We assume that the conditions of Theorem 3 are satisfied. Then the
processes {Uσ(t, τ)}, σ ∈ Σ possesses a uniform global attractor A in L2(Ω) for any
translation bounded h ∈ Lloc2 (R;L2(Ω)).

Proof. If we consider Lemma 3 and embedding W 1
2 (Ω) ∩ Lρ+2(Ω) ⊂ L2(Ω), we

have an absorbing set in L2(Ω). Asymptotic compactness property of the processes
{Uσ(t, τ)}, σ ∈ Σ is clear because of compact embedding W 1

2 (Ω) ∩ Lρ+2(Ω) ↪→
L2(Ω). Hence, we have the existence of the uniform attractor A in L2(Ω) immedi-
ately. �

Lemma 6. We assume the conditions of Theorem 3, then the family of process
{Uσ(t, τ)}, σ ∈ Σ is uniform asymptotically compact in W 1

2 (Ω) .

Proof. We need to show that for any {uτn} ⊂ B1, σn ⊂ Σ and tn →∞, {Uσn(tn, τn)}∞n=1

is precompact inW 1
2 (Ω). Denote by uσnn (tn) := {Uσn(tn, τn)}uτn . We need to prove

that {uσnn (tn)} is a Cauchy sequence in W 1
2 (Ω) :

‖uσnn (tn)−uσmm (tm)‖2W 1
2 (Ω) = ‖uσnn (tn)−uσmm (tm)‖2L2(Ω)+‖∇uσnn (tn)−∇uσmm (tm)‖2L2(Ω),
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here

‖∇uσnn (tn)−∇uσmm (tm)‖2L2(Ω) =

∫
Ω

(∇uσnn (tn)−∇uσmm (tm))(∇uσnn (tn)−∇uσmm (tm))dx,

= −
∫
Ω

(∆uσnn (tn)−∆uσmm (tm))(uσnn (tn)−uσmm (tm))dx−
∫
∂Ω

k(x′)(uσnn (tn)−uσmm (tm))2dx′,

= −
∫
Ω

(uσnn (tn)− uσmm (tm))(
d

dt
uσnn (tn)− d

dt
uσmm (tm))dx

−
∫
Ω

(uσnn (tn)− uσmm (tm))(a(x)|uσnn |ρuσnn − b(x)|uσnn |νun − a(x)|uσmm (tm)|ρuσmm (tm)

+b(x)|uσmm (tm)|νuσmm (tm))dx−
∫
Ω

(uσnn (tn)− uσmm (tm))(σm − σn)dx

−
∫
∂Ω

k(x′)(uσnn (tn)− uσmm (tm))2dx′,

by using conditions we have:

(1− k0c
2
3)‖∇uσnn (tn)−∇uσmm (tm)‖2L2(Ω)

≤ ‖uσnn (tn)− uσmm (tm)‖L2(Ω)‖‖
d

dt
uσnn (tn)− d

dt
uσmm (tm)‖L2(Ω) + (b1(ρ+ 1)

+k0c
2
3)‖uσnn (tn)− uσmm (tm)‖2L2(Ω) + ‖σn − σm‖L2(Ω)‖uσnn (tn)− uσmm (tm)‖L2(Ω).

Consequently

‖uσnn (tn)− uσmm (tm)‖2W 1
2 (Ω)

≤ 1

1− k0c23
(‖uσnn (tn)− uσmm (tm)‖L2(Ω)‖

d

dt
(uσnn (tn)− uσmm (tm))‖L2(Ω))

+(
b1(ρ+ 1) + k0c

2
3

1− k0c23
+ 1)‖uσnn (tn)− uσmm (tm)‖2L2(Ω)

+
1

1− k0c23
‖σn − σm‖L2(Ω)‖uσnn (tn)− uσmm (tm)‖L2(Ω).

Here if we use asymptotic compactness in L2(Ω) and inequality (4.20) then we
obtain asymptotic compactness in W 1

2 (Ω). �

Now we are ready to prove Theorem 3.

Proof of Theorem 3. From Corollary 2 and Lemma 5, it is easy to verify that
{Uσ(t, τ)}, σ ∈ Σ has uniformly asymptotic compactness in Lρ+2(Ω). If we consider
also Lemma 3 and Lemma 6, we can obtain the existence of uniform global attractor
in W 1

2 (Ω) ∩ Lρ+2(Ω) immediately by using Theorem 3.9(which is in [5]). �
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