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Abstract: Parkinson’s disease (PD) is a progressive neurodegenerative disorder with both motor and non-
motor symptoms, and currently, there is currently no disease-modifying therapy. Due to their potential 

anti-inflammatory effects, antidepressants have gained attention as therapeutic agents in inflammation-
related neurological conditions. In this study, we aimed to investigate the effects of vortioxetine on 

rotenone-induced enteric inflammation in an in vitro model using enteric glial cells and whether these 

effects involve modulation of the TLR4/NF-κB signaling pathway. Cells were treated with rotenone (10 
μM) and vortioxetine (1 and 5 μM). TLR4 and NF-κB mRNA expression levels were analyzed by RT-

qPCR, and the levels of TNF-α, IL-1β, and IL-6 were measured via ELISA. The findings showed that 

rotenone significantly suppressed TLR4 and NF-κB expression by impairing the immune responses of 
glial cells, and the administration of 5 μM vortioxetine further enhanced this effect. Additionally, the 

decrease observed in TNF-α and IL-1β levels in the rotenone groups was reversed by vortioxetine 

administration. The results suggest that vortioxetine may regulate inflammatory responses in enteric glial 
cells through the TLR4/NF-κB pathways and could be investigated as a potential therapeutic compound 

in inflammation-based models of the gut-brain axis in PD. 
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Özet: Parkinson hastalığı (PH) progresif bir nörodejeneratif hastalık olup günümüzde hastalığı 

durdurmaya yönelik kesin bir tedavi seçeneği bulunmamaktadır. Gastrointestinal inflamasyon, PH ile 
ilişkili motor-olmayan bulgulardan biridir. Son yıllarda antidepresanların potansiyel antiinflamatuvar 

etkileri nedeniyle nörodejeneratif hastalıkların tedavisinde kullanılabileceğine dair ilgi artmıştır. Bu 

çalışmada, vortioksetinin enterik glia hücrelerinde rotenon ile indüklenen inflamatuvar yanıtlar üzerindeki 
etkisi ve bu etkisinde TLR4/NF-κB sinyal yolağının rolü araştırılmıştır. Rotenon (10 μM) ve vortioksetin 

(1 ve 5 μM) ile muamele edilmiş hücre örneklerinde TLR4 ve NF-κB mRNA ekspresyonları RT-qPCR 

ile, TNF-α, IL-1β ve IL-6 düzeyleri ise ELISA yöntemiyle değerlendirilmiştir. Bulgular, rotenonun glial 
hücrelerin immün yanıtlarını bozarak TLR4 ve NF-κB ekspresyonunu belirgin şekilde baskıladığını ve bu 

etkinin 5 μM vortioksetin uygulamasıyla daha da arttığını göstermiştir. Ayrıca rotenon gruplarında TNF-α 

ve IL-1β düzeylerinde gözlenen düşüş, vortioksetin uygulaması ile tersine dönmüştür. Sonuçlar, 
vortioksetinin enterik glia hücrelerinde TLR4/NF-κB yolakları üzerinden inflamatuvar yanıtı 

düzenleyebileceğini ve PH’nin bağırsak-beyin eksenine dayalı inflamasyon modelinde potansiyel bir 

terapötik madde olarak çalışılabileceğini göstermektedir. 
Anahtar Kelimeler: Enterik inflamasyon, Enterik glia, Rotenon, Toll-benzeri reseptör, Vortioksetin. 
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1. Introduction 

Post-mortem studies have shown that Lewy body 

pathology, a characteristic feature of Parkinson’s 

disease (PD), exists in the enteric nervous system 

(ENS) beyond the central nervous system (CNS) in 

nearly all PD patients (1). The ENS referred to as the 

"second brain" functions as the intrinsic neural 

network of the gastrointestinal tract and exhibits 

numerous similarities to the CNS (2). The ENS has a 

very large number of neurons and a larger 

population of glial cells  (3). Enteric glial cells 

(EGCs) closely resemble CNS astrocytes and 

microglia in both structure and function (4). During 

inflammation, EGCs activate signaling pathways 

that result in the release of cytokines, including 

tumor necrosis factor-alpha (TNF-α), interleukin-1 

beta (IL-1β), and IL-6 (5).  

Gastrointestinal dysfunction, which belongs to the 

non-motor symptoms of PD, is believed to emerge 

years before the onset of motor symptoms  (6). With 

the identification of Lewy body pathology in enteric 

neurons obtained from biopsies of PD patients, the 

potential involvement of the ENS in PD 

pathophysiology has gained attention (7). Studies 

have shown that EGCs actively regulate the 

neuroimmune axis via pattern recognition receptors 

such as Toll-like receptors (TLRs) (8). TLR4 plays a 

crucial role in the pathogenesis of PD by mediating 

neuroinflammation, responding to alpha-synuclein 

aggregates, and contributing to both CNS and ENS 

dysfunction, making it a promising therapeutic target 

(9, 10). 

Pharmacological approaches have been used to 

develop experimental models that mimic 

nigrostriatal neurodegeneration and PD-like 

pathology in animals (2). Exposure to rotenone, a 

pesticide, is widely utilized both in vitro and in vivo 

as a disease model because it replicates key 

pathological and behavioral features of PD (11, 12). 

Rotenone administration has been shown to induce 

pathological alterations not only in the CNS but also 

in the ENS, leading to both motor and non-motor 

symptoms, including gastrointestinal dysfunction (6, 

13). Rotenone is a highly lipophilic molecule and a 

well-characterized inhibitor of mitochondrial 

complex I. In addition to inducing dopaminergic 

neurodegeneration, rotenone exposure activates 

inflammatory pathways through mechanisms such as 

p38 MAPK activation and mTOR inhibition, leading 

to increased oxidative stress, ATP depletion, and 

apoptosis (14). Furthermore, rotenone exposure has 

been shown to upregulate pro-inflammatory 

cytokines and TLR-related signaling in both 

neuronal and glial cells (15). In enteric neuronal cell 

cultures, rotenone exposure has been shown to 

increase the number of α-synuclein inclusions within 

non-neuronal (16). Moreover, following rotenone 

exposure, TLR4 knockout mice displayed reduced 

intestinal inflammation, gut and motor dysfunction, 

neuroinflammation, and neurodegeneration 

compared to wild-type mice (17), indicating that PD 

symptomatology could be related to disrupted 

immune responses mediated by EGCs (8).  

Experimental studies have shown that certain 

antidepressants can reduce proinflammatory 

cytokine levels in inflammatory conditions (18). 

Vortioxetine is an antidepressant that works in 

multiple ways by blocking 5-HT3, 5-HT7, and 5-

HT1D receptors with 5-HT1B partial agonism and 5-

HT1A agonism. It also inhibits the serotonin 

transporter (SERT) (19). Previous research has 

reported that vortioxetine may exert beneficial 

effects on TLR2-mediated inflammatory 

mechanisms (20, 21). Identifying strategies that can 

prevent enteric neurodegeneration may contribute to 

the development of new therapeutic principles for 

neurodegenerative diseases. This study aims to 

investigate the inhibitory effects of vortioxetine on 

rotenone-induced inflammatory changes in EGCs 

through modulation of the TLR4/NFκB signaling 

pathway. 

2. Materials and Methods 

2.1.In vitro studies 

2.1.1.Chemicals and reagents 

Vortioxetine was sourced by H. Lundbeck A/S 

(Denmark). For experimental treatments, rotenone 

and the solvent dimethyl sulfoxide (DMSO) were 

purchased from Sigma-Aldrich (St. Louis, MO, 

USA). Vortioxetine was prepared in 10% 2-

hydroxypropyl-β-cyclodextrin, while rotenone was 

dissolved in DMSO. The final concentration of 

DMSO in the culture medium was kept below 0.2% 

to prevent cytotoxicity. 

2.1.2. Enteroglial cell culture 

The EGC cell line used in this study, derived from 

rat tissue, was generously obtained from Dr. Luca 

Antonioli (University of Pisa). Cells were cultured 

in DMEM enriched with 10% fetal bovine serum 

(FBS), 2 mM L-glutamine, and 100 U/mL penicillin-

streptomycin. Cultures were maintained at 37 °C in a 

humidified incubator with 5% CO2. When cells 
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reached 70–80% confluency, they were detached 

using trypsin-EDTA and subsequently seeded into 

T-25 flasks or 96-well plates for experimental 

procedures. 

2.1.3. Study design 

The selection of rotenone and vortioxetine 

concentrations was based on our previous study, 

where we optimized these concentrations through 

viability and functional assays (21). The 

experimental groups established for the study are 

detailed in Table 1.  

Table 1. Experimental groups 

Group Treatment 

I. CONTROL Culture medium without any additives 

II. ROTENON Culture medium containing 10 μM rotenone 

III. VORTIOXETINE (V1)  Culture medium containing 1 μM vortioxetine 

IV. VORTIOXETINE (V2)  Culture medium containing 5 μM vortioxetine 

V. ROT+V1  
Culture medium containing 10 μM rotenone and 1 μM 

vortioxetine 

VI. ROT+V2  
Culture medium containing 10 μM rotenone and 5 μM 

vortioxetine 

 

2.1.4. Reverse transcription quantitative 

polymerase chain reaction (RT-qPCR) 

Total RNA was isolated from cultured cells using a 

commercial RNA extraction kit (HibriGen, Cat. No. 

MG-RNA-01-100) in accordance with the supplier’s 

guidelines. After cell lysis, RNA was collected using 

spin column-based purification. RNA quality and 

quantity were evaluated using spectrophotometric 

analysis, and only samples with a 260/280 

absorbance ratio between 1.7 and 2.0 were selected 

for subsequent steps. For cDNA synthesis, 1 µg of 

RNA was converted to cDNA using the OneScript® 

Plus cDNA synthesis kit (ABM, G236). Reverse 

transcription was performed at 25 °C for 10 min, 

50 °C for 15 min, and 85 °C for 5 min. cDNA was 

stored at −80 °C until further use. 

Specific primers for TLR4 and NFκB that are used 

in the study are listed in Table 2. PCR amplification 

was performed using a Roche LightCycler 96 

system. Cycling conditions included an initial 

denaturation at 95 °C for 5 min, followed by 40 

cycles of 95 °C for 15 s and 60 °C for 20 s. A 

melting curve analysis (60 °C to 95 °C, with 0.5 °C/s 

increments) confirmed specificity. Gene expression 

levels were quantified using the 2−ΔΔCT method 

(22) using the reference gene beta-actin (β-act) for 

normalization. 

 

Table 2. Primer sequences used for RT-qPCR  

Gene Primer Sequence 

TLR4 F: GGATGATGCCTCTCTTGCAT 

R: TGATCCATGCATTGGTAGGTAA 

NFκB F: GCCTGACACCAGCATTTGA 

R: CAAACCAAACAGCCTCACG 

β-actin F: CGGCAATGAGCGGTTCC 

R: TGCCACAGGATTCCATACCC 

 

2.1.5. Measurements of TNF-α, IL-1β, and IL-6 

levels 

Levels of TNF-α, IL-1β, and IL-6 in EGC lysates 

were measured using enzyme-linked immunosorbent 

assay (ELISA) kits (BT Lab; TNF-α: E0764Ra, IL-

1β: E0119Ra, IL-6: E0135Ra), following the 

manufacturers’ protocols. Briefly, cells were washed 

with PBS, detached with trypsin, and collected by 

centrifugation at 1000 g for 5 minutes. After 

discarding the supernatant, cells were washed three 

times with PBS. A total of 1 × 10⁶ cells were 

resuspended in PBS and subjected to three freeze-

thaw cycles. Lysates were centrifuged at 1500 g for 

10 minutes at 2–8 °C, and the resulting supernatants 

were collected and stored at −20 °C until analysis. 

All measurements were performed in duplicate.  

2.3. Statistical Analysis 

All data were expressed as mean ± standard error of 

the mean (SEM). The Kolmogorov–Smirnov test 

was used to assess the normality of distribution. 

Group differences were assessed with one-way 
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ANOVA followed by Tukey’s post-hoc test. For 

non-normally distributed data, the Kruskal–Wallis 

test was applied, followed by Dunn’s post-hoc test 

for multiple comparisons. Statistical analyses were 

performed on GraphPad Prism 10.0 software 

(SanDiego, CA, USA), and a p-value < 0.05 was 

considered statistically significant. 

3. Results 

3.1 Changes in TLR4 and NFκB mRNA 

expression  

The mRNA expression levels of TLR4 and NFκB 

were assessed in EGCs to compare differences 

among experimental groups. As shown in Figure 1a, 

Rotenone exposure caused a marked decrease in 

TLR4 expression (p < 0.0001), indicating a toxic 

impairment of inflammatory signaling in EGCs. Co-

administration of vortioxetine (5 µM) with rotenone 

further decreased TLR4 expression (p < 0.05 vs. 

rotenone alone), suggesting that vortioxetine 

potentiated the rotenone-induced TLR4 

downregulation rather than reversing it. 

Interestingly, vortioxetine administered alone at both 

concentrations (1 µM and 5 µM) also significantly 

reduced TLR4 expression compared to the control 

group (p < 0.0001 for both), indicating that 

vortioxetine may directly modulate basal TLR4 

signaling even in the absence of rotenone Unlike 

TLR4, NF-κB expression did not show significant 

differences between groups (Figure 1b). However, in 

the rotenone-treated group, NF-κB expression was 

reduced by 48.83%, indicating a marked toxic effect. 

When high-concentration vortioxetine (5 µM) was 

co-administered with rotenone, NF-κB levels 

decreased even further (52.67% reduction), 

suggesting that vortioxetine at this concentration did 

not mitigate, and may even potentiate, rotenone-

induced suppression. Interestingly, the combination 

of rotenone with a lower concentration of 

vortioxetine (1 µM) resulted in a slight 18.61% 

increase in NF-κB expression compared to rotenone 

alone; however, this change did not reach statistical 

significance (p > 0.05).  

 

Figure 1. Fold changes in TLR4 and NF-κB mRNA levels in EGCs. Data are presented as mean ± SEM. Experiments were 

performed in duplicate and repeated three times. Statistically significant results are marked with an asterisk (*). CONT: Control, 

ROT: 10 μM Rotenone, V1: 1 μM vortioxetine. V2: 5 μM vortioxetine. *p < 0.05, ****p < 0.0001. 

3.2. Changes in proinflammatory cytokines levels in EGCs 

TNF-α levels were significantly reduced in the 

rotenone-treated group compared to the control (p < 

0.05), indicating a suppressive effect of rotenone 

alone (Figure 2a). When vortioxetine was co-

administered with rotenone, both low (1 µM) and 

high (5 µM) concentrations, did not change the 

TNF-α levels. Moreover, vortioxetine alone (at both 

concentrations) did not significantly alter TNF-α 

levels compared to the control group. 
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For IL-1β levels, although there was a 32% 

reduction following rotenone administration 

compared to the control group, which may be 

considered physiologically relevant, the difference 

did not reach statistical significance (Figure 2b). Co-

treatment with vortioxetine at 1 µM significantly 

increased IL-1β levels compared to rotenone alone 

(p < 0.01), while 5 µM vortioxetine showed non-

significant reversal. Vortioxetine alone (at both 

concentrations) did not significantly alter IL-1β 

levels compared to the control group. 

IL-6 levels did not differ significantly between the 

treatment groups, indicating that neither rotenone 

nor its combination with vortioxetine led to a 

significant modulation of IL-6 expression (Figure 

2c). 

 

 

 

Figure 2. Changes in TNF-α (a), IL-1β (b) and IL-6 (c) levels in enteric glial cells. Data are presented as mean ± SEM. Experiments 

were performed in duplicate and repeated three times. Statistically significant results are marked with an asterisk (*). CONT: 

Control, ROT: 10 μM Rotenone, V1: 1 μM vortioxetine. V2: 5 μM vortioxetine. *p < 0.05. 

4. Discussion 

PD pathology is estimated to begin in the ENS and 

transfer to the CNS via vagal nerve (23) supported 

by the research indicating pathological α-synuclein 

aggregates detected in gastrointestinal tissues several 

years prior to clinical diagnosis of PD (24). Given 

the importance of ENS in the disease progression, 

our study provides valuable insight into the potential 

neuroprotective role of vortioxetine in rotenone-

induced EGC dysfunction. By examining both gene 

expression and inflammatory cytokine levels, our 

findings demonstrated that rotenone, a complex I 

inhibitor, disrupted the cellular inflammatory 

response and led to a reduction in inflammatory 

marker levels. On the other hand, vortioxetine 

appeared to enhance this response, as indicated by 

an increase in the expression of these markers. These 

findings highlight vortioxetine’s potential in 

modulating early enteric inflammatory pathways 

relevant to PD pathogenesis. 

Rotenone is a pesticide that inhibits the complex I of 

the mitochondrial electron transport chain. It is 

widely used in research to model PD because it can 

replicate many of the disease's key features (25). 

Exposing the stomach to the rotenone caused the 

propagation of α-synuclein to the brain (26, 27). 

Rotenone has also been shown to induce 

pathological changes in enteric neuronal culture (16, 

28) and primary enteric neurons (29). In our 

previous study, we also demonstrated the toxic 
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effects of rotenone on EGCs (21). We performed 

this study in EGCs due to their essential roles in the 

gut inflammation (30). These cells functionally and 

morphologically resemble astrocytes in the CNS and 

are activated during inflammation through TLRs 

(31). Especially, the TLR4/NF-κB pathway plays a 

significant role in the pathogenesis of PD by 

mediating neuroinflammation and contributing to 

neuron damage (32). The TLR4/NF-κB pathway is 

activated in response to α-synuclein and other 

inflammatory stimuli, leading to increased 

expression of inflammatory genes and cytokines 

such as TNF-α and IL-1β (33, 34). Perez-Pardo et al. 

demonstrated that patients with PD exhibit increased 

intestinal TLR4 expression, mucosal immune 

activation, and disrupted gut barrier integrity, all of 

which were replicated in rotenone-treated wild-type 

mice (17). Our results showed that rotenone reduced 

TLR4 and NFκB levels in EGCs, suggesting that 

exposure to neurotoxins like rotenone may impair 

glial responses to inflammation by disrupting 

mitochondrial function. Consistent with our study, 

Rabaneda-Lombarte et al. demonstrated that 

rotenone impairs glial immune responses by 

disrupting cellular metabolism and interfering the 

metabolic reprogramming essential for glial 

activation (35, 36). The reduction of TLR4 

expression observed with vortioxetine alone, as well 

as the further reduction seen with its co-

administration alongside rotenone, might be 

explained by vortioxetine’s intrinsic serotonergic 

immunomodulatory effects. In fact, chronic 

antidepressant treatment (including SSRIs) has been 

shown to attenuate TLR4 levels (37). This 

potentiation may also reflect a compensatory 

mechanism to prevent an exaggerated inflammatory 

response under toxic conditions in which cells can 

develop tolerance by reducing TLR4 receptor levels 

or responsiveness (38). In addition to its known 

central effects, recent clinical evidence suggests that 

vortioxetine may also exert therapeutic actions by 

modulating the gut microbiota composition (39). 

These findings raise the possibility that 

vortioxetine’s immunomodulatory effects against 

gut-related inflammatory responses. 

Proinflammatory cytokines are known to be 

increased in PD patients in serum (40), cerebrospinal 

fluid (41), brain (42) and even colon tissue (43). 

However, in vitro systems may fail to mimic these 

inflammatory responses because they lack the 

intricate cellular interactions present in vivo. 

Previous studies have demonstrated that rotenone-

induced neurotoxicity is significantly amplified in 

the presence of glial cells, particularly microglia, 

through mechanisms involving oxidative stress and 

activation of nicotinamide adenine dinucleotide 

phosphate (NADPH) oxidase (44). Given the 

functional parallels between EGCs and CNS glia, it 

is plausible that rotenone may also activate 

inflammatory signaling and oxidative responses in 

EGCs, thereby exacerbating cellular damage. This 

could explain why we observed a significant 

decrease in the levels of TNF-α and IL-1β in our 

model. Administration of a low concentration of 

vortioxetine increased the IL-1β levels in rotenone 

group, suggesting that it helps to regain cells to 

produce a response against inflammation. These 

findings highlight the relevance of glial cell type in 

shaping cellular vulnerability to mitochondrial 

toxins and emphasize the importance of considering 

glial contributions when modeling gut-related 

aspects of PD. 

This study has some limitations. The findings are 

based on a single in vitro model using rat-derived 

EGCs, which, although highly relevant to the enteric 

nervous system, do not fully replicate the complex 

multicellular and microenvironmental interactions 

observed in vivo. Moreover, the glial response to 

rotenone and vortioxetine was assessed at the 

mRNA and cytokine levels; however, additional 

analyses would provide a more comprehensive 

understanding of the underlying mechanisms. 

In conclusion, our findings provide novel insights 

into the effects of rotenone and vortioxetine on 

inflammatory responses in EGCs, highlighting the 

involvement of the TLR4/NF-κB pathway. 

Rotenone-induced suppression of inflammatory 

signaling suggests that mitochondrial toxins impair 

glial capacity to respond to environmental stressors. 

Importantly, co-treatment with vortioxetine, 

particularly at low concentrations, partially restored 

TLR4 expression and increased IL-1β levels, 

suggesting a potential modulatory role on glial-

driven inflammation. These results support the 

hypothesis that targeting enteric glia and gut 

inflammation may offer promising avenues for early 

intervention in PD. 
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