Erciyes Universitesi Erciyes University
Fen Bilimleri Enstitiisii Dergisi Journal of Institue Of Science and Technology
Cilt 41, Say1 2, 2025 Volume 41, Issue 2, 2025

Numerical Solutions for Differential Equations Using Matlab

Bengii Cina 1~

1*Cumbhuriyet University, Zara Veysel Dursun School of Applied Science, SIVAS

KeyWords Abstract: The role of differential equations in modelling a range of phenomena across
Ode45, disciplines, including physics, engineering, biology and economics, is of great
Runge-Kutta, significance. Despite many differential equations can be solved analytically, others

Dormand-Prince (4,5),

Matlab present a challenge in this regard. MATLAB can be employed to facilitate the resolution
atlab.

of these intricate equations. The aim of this study is to obtain numerical solutions of
differential equations that have no analytical solutions or whose solutions are complex
using MATLAB and to analyse the graphs of these solutions. In this way, we aim to gain
a deeper understanding of the dynamic behaviour of the equations and their solution
ranges. For this purpose, the ode45 function and the Runge-Kutta method will be mostly
used. In addition, the study includes several definitions and theorems that support the
theoretical background and provide a framework for the numerical approaches applied.

Diferansiyel Denklemler i¢cin Matlab Kullanarak Niimerik Coéziimler

Anahtar Kelimeler Oz: Diferansiyel denklemlerin fizik, miihendislik, biyoloji ve ekonomi gibi
Ode45, disiplinlerdeki bir dizi olgunun modellenmesindeki rolii biiyiik 6nem tasimaktadir.
Runge-Kutta Yontemi, Bircok diferansiyel denklem analitik olarak ¢oziilebilmesine ragmen, digerleri bu
l]?ﬂc;rtﬂand-Prlnce (45), konuda bir zorluk teskil etmektedir. MATLAB, bu karmasik denklemlerin ¢6ziimiinii
' kolaylastirmak i¢in kullanilabilir. Bu ¢alismanin amaci, analitik ¢6ziimii olmayan
veya ¢oziimi karmasik olan diferansiyel denklemlerin MATLAB kullanilarak sayisal
¢oziimlerini elde etmek ve bu ¢oziimlerin grafiklerini analiz etmektir. Bu sayede
denklemlerin dinamik davranislan ve ¢6ziim araliklar1 hakkinda daha derin bir
anlayis kazanmayi hedefliyoruz. Bu amagla ¢cogunlukla ode45 fonksiyonu ve Runge-

Kutta yontemi kullanilacaktir.

1.Introduction

The objective of numerical analysis is to overcome complex numerical challenges by employing only the fundamental
operations of arithmetic. This entails the formulation and assessment of techniques for the calculation of numerical
outcomes from specified data. The computational methods are called algorithms. An algorithm is a set of instructions
that defines a sequence of operations to be performed by a computer. At each stage of the operation, the instructions
tell the computer exactly what to do. Applied numerical methods therefore often focus on practical applications and
real-world problem solving. They are designed to provide fast and accurate solutions to complex mathematical
problems that can't be solved analytically. This includes a range of techniques such as some difference, some element
and spectral lines, which are used in many different fields including engineering, physics, finance and data science.
Moreover, the success of these methods is often measured by their computational speed, stability and accuracy in
reproducing the original mathematical models [1]. This means that not only do practitioners use these algorithms,
but they also constantly modify them to make them work better in different situations. The field of numerical
methods for solving differential equations is one that has been the subject of sustained academic interest for many
years.

616

https://orcid.org/0000-0003-1294-0983

The use of differential equations is a fundamental aspect of mathematical modelling, with applications across a
diverse range of scientific, engineering, economic, mathematical, physical, aeronautical, astronomical, dynamical,
biological, chemical, medical, environmental, social, banking and other disciplines. Despite the existence of numerous
analytical techniques for solving differential equations, there remains a significant number that cannot be solved
analytically. This implies that the solution cannot be expressed as the sum of a finite number of elementary functions,
including but not limited to polynomials, exponentials, trigonometric and hyperbolic functions. In the case of simple
differential equations, it is possible to find closed-form solutions[2]. However, many differential equations that arise
in applications are so complex that it is not always feasible to have solution formulas. Alternatively, if a solution
formula is available, it may involve integrals that can only be calculated using a numerical quadrature formula. In
either case, numerical methods provide a powerful alternative tool for solving the differential equations under the
prescribed initial condition or conditions. B. Dennis [3] studied on the basic and commonly used numerical and
analytical methods of solving ordinary differential equations. $. Yiizbasi et. al.[4] gave a numerical method for solving
systems of higher order linear functional differential equations using MATLAB. M. Saqib et al.[5] concentrated on
dynamical behavior of nonlinear coupled reaction-diffusion model in Matlab. D. Gopal et. al. [6] conducted a
numerical investigation of a higher-order chemical reaction using MATLAB. The governing equations for the fluid
flow are coupled and involve nonlinear partial derivatives. The impact of electric and magnetic fields on a nanofluid
with viscous dissipation in the presence of a higher-order chemical reaction, with a focus on the conservation of
momentum and energy, represents a novel aspect of the problem. A. Thabet et. al. [7] studied on numerical solutions
and made significant contributions to the class of time-space fractional partial differential equation using matlab. B.
W. Ong and R.]. Spiteri [8] concantrated on deferred correction (DC) methods for ordinary differential equations.
They use the terminology “DC method” to generally refer to the process of refining the numerical solution to an ODE
by iteration. DC methods have been extensively applied to IVPs [9-14] and BVPs [15-17] for ODEs, initial-boundary
value problems for PDEs [15,18,19] differential-algebraic equations [19,20], and eigenvalue problems [19,21]. More
recently, Reuter B, et al. [22] aimed to design a research-oriented, yet computationally efficient software tool for
solving partial differential equations (PDEs). In the study, various discontinuous Galerkin (DG) methods were used
for spatial discretisation, while different explicit, implicit or semi-implicit Runge-Kutta pattern were employed for
the time step. The resolution of differential equations via numerical methods has long constituted a subject of
rigorous academic study, wherein a plethora of techniques have been developed to address the distinctive challenges
posed by disparate problem types [23-25]. In addition, readers are advised to consult references [30,31] for further
examples.

This paper presents several different examples of numerical solutions for differential equations that lack either an
analytical solution or a behavior that can be described by a complex model, and includes theorems that support the
analysis and validity of these solutions. Matlab is employed as the principal tool for numerical computations. The
graphs produced are analysed to gain insight into the behaviour of the differential equations and their potential
solutions. The ode45 function, based on the Runge-Kutta method, is utilized to facilitate rapid and efficient numerical
integration.

2. Materials and Methods

Definition 2.1 Runge-Kutta Method [26]

Consider first-order initial-value problem:

y' =f(x,y), a<x<b Y
y(a) =y,

To derive the Runge-Kutta method, we divide the interval [a, b] into N subintervals as [x,, X;,;1]

(n=0,1,..,N—1) integrating y' = f(x,y) over [x,,x,,,] and utilizing the mean value theorem for integrals, we
obtain

YGnsn) =) = [f(,y(x)dx = hf €, y(6)) ()
Where h =x,., —x,, §€[x,,x,44], 1€,

Y(xn41) =y(@) + hf(E, y(E)).

617

If we approximate f(&,y(¢)) by the linear combination values f(fl,y(fl)),f(fz,y(fz)),...,f(fm,y(fm)) of
f(x, y(x)) on the interval [x,,x,.,], then arrive at the general form of Runge-Kutta method:

Ynt1 = Y + h 2L, 6if (6 y(§) (3)

By choosing different values of the parameters m, ¢; and ¢; we can get different forms of the Runge-Kutta
computation formula. Just choose suitable values for the parameters and you can get a higher-order Runge-Kutta
computation formula.

The fundamental premise of the Runge-Kutta method is to minimise the discrepancy between the estimated value of
y(t) and the actual result by making a series of intermediate estimates rather than relying on a single initial estimate.
The Runge-Kutta method of order 4, the basis for ode45, employs these intermediate estimates, thereby enhancing
the accuracy of the solution.

The ode45 function is a commonly used component of the MATLAB software and is employed primarily for the
resolution of differential equations. It is based on the 4th and 5th order Runge-Kutta methods. This technique may
be defined as a kind of numerical integration method used to solve differential equations and is suitable for initial
value problems.

Definition 2.2 Dormand-Prince (4,5) Method and ode45 [27]

MATLAB's ode45 function employs the Dormand-Prince 4th and 5th order Runge-Kutta pair. In this method:
The 4th-order solution y, and the more accurate 5th-order solution ys are computed. Error control is performed
using:

E = |lys —y.ll 4)

where E is the estimated local error. If E exceeds a predefined tolerance threshold, the step size is reduced; otherwise,
itis increased. This adaptive step-size strategy makes ode45 highly efficient for solving a wide range of differential
equations. Dormand-Prince Method Coefficients The coefficients used by ode45 are summarized in the following
table:

Ci aij bl@ b§5)
0 - 0 0
1/5 1/5 1/5 1/5
3/10 3/40,9/40 3/10 3/10
4/5 44/45,-56/15,32/9 4/5 4/5
8/9 19372/6561, - 8/9 8/9
25360/2187,
64448/6561, -
212/729
1 9017/3168,-355/33, 1 1
46732/5247,49/176,
-5103/18656
1 35/384,0,500/1113, | 35/384,0,500/1113,
125/192,-2187/6784, | 125/192,-2187/6784,
11/84 11/84,0

Table 2.1. Dormand-Prince (4,5) Method Coefficients

Where bl.(4)and bi(s) are the weight coefficients for the 4th and 5th-order solutions, respectively. ode45 compares
these two solutions to determine the adaptive step size adjustment.

Theorem 2.3 (Convergence of the 4th-Order Runge-Kutta Method)
Consider the initial value problem (IVP)

y'(@®) = f(t,y(®), y(to) = Yo (5)

618

where the function f: [t,,T] X R® > R"™ is Lipschitz continuous in y and is at least four times continuously
differentiable (i.e.,fe C*). Under these assumptions, the (5) IVP admits a unique, sufficiently differentiable solution

y(t).

Proof. The classical 4th-order Runge-Kutta method (RK4) for a step size h is defined by

kl = f(tn' yn)

k, = f(t +h +hk

Z_f(n Z'yn 2 1)
h h

k3=f(tn+z'yn +Ek2)

h h
ky = f(ty +E'yn +Ek3
h
Yn+1 = Vn +g(k1 + 2ky + 2k3 + ky). (6)
Then, for sufficiently small h the global error of the RK4 method satisfies
max [ly(t,) = yall < Ch*, (7)
0snsN

where C > 0 is a constant that depends continuously on the norms of f and its derivatives over the interval
[to, T]. In other words, the method is globally 4th-order convergent.

Now, let us present the proof in a step-by-step detailed mannern.

Step1. For the exact solution y(t), perform a Taylor series expansion about ¢, :
Y(tn2) = Y(t) + hy'(6) + 53" (6) + 2y D (O + HyD (O + 1y D (O, (®)
where ¢, €[t,,t,,] and the derivatives y® exist due to the regularity of f. The RK4 update operator, denoted by
Oty Y h) = Y + % Uy + 2key + 2k5 + k), (9)

is constructed so that, when y, = y(t,), the quantities k; (which depend on f) can be expanded in Taylor series
about t,,. By matching the coefficients in the Taylor expansion, it can be shown that

B(tn, y(tn), 1) = Y(t:) +hy' () + 29" () + L yP @ + £y @ @) + 0(h) (10)

where, 0 (h®) denotes the remainder term in the expansion, which satisfies 0(h®) < C h°® for some constantC > 0
independent of h as h = 0. Define the local truncation error z,, as:

— Y (tnt+1)=Ptny(tn)h)

T, . (11)
Substituting the Taylor expansion for y(t,.) and the expansion of ®(t,,y(t,), h) we obtain:
T, = O(h"). (12)

This implies that the error made in one step (prior to division by h) is O(h®).

Step 2. Let the global error at the n-th step be:

619

en = y(tn) ~ Vn- (13)
Our objective is to show that there exists a constant C such that

< r h4
i, leall < CA -

for all n such thatt,, < T. Starting from the exact evolution of the solution:
Y(tps1) = P(ty, y(tn), h) + hty, (15)
and noting that the numerical solution is given by y(t, 1) = ®(t,,, y(t,), h) we write the error at the next step as:
ens1 = Y(tni1) = Y1 = P(tn, ¥(tn), h) = P(tn, Y, B) + 1y, (16)
Since f is Lipschitz continuous in y, the operator @ inherits a local Lipschitz property:
Pt y(En), h) — Pt v, W < (1 + L)y () — yull = (1 + LR) lley I, (17)
where L is the Lipschitz constant of f.
Step 3. Esablishing the Recursive Inequalityt we combine the previous results and we obtain:
llensill < (1 + LR)lle, |l + CR3, (18)

where C is a constant stemming from the bound on 7,,. Applying the discrete version of Gronwall’s inequality to the
recursive inequality yields:

5
llen Il < exp(L(t, — to)) llegll + %[exp(L(tn —t)) —1]. (19)
Since the initial error e, = 0, it follows that:
lle,ll < C h*, (20)

where the constant C depends on L, the final time T and the constant C. The error made in one RK4 step is O (h®),
which implies a normalized local error of O(h*). Through the use of the Lipschitz condition and the discrete
Gronwall inequality, the accumulation of local errors results in a global error that is bounded by € h*. Thus, even
for differential equations without a closed-form solution, the classical 4th-order Runge-Kutta method converges
with order 4 as the step size h tends to zero.

Theorem 2.4 Let us consider the second-order neutral functional differential equation with distributed delay:

;—:2 [y(t) — [T K(t,s)y(s - ‘[)dS] +p(t) % +q@®)y(©) = f (1), (21)

with initial conditions:

y@® = ¢@®, y®O=9p®) for te [-7,0], (22)

Where K (t, s), p(t),q(t) and f(t) are continuous on [0,T] and ¢,y € C([—7, 0]). Then the solution y,, (t) obtained
by the fourth-order Runge-Kutta method combined with spline interpolation for the delay term and numerical
quadrature for the integral satisfies:

i.y,(t) » y(t) uniformly on [0,T]ash — 0,

ii. [ly(®) = yp (Ol =0(h"),

620

iii. The numerical scheme is stable with respect to small perturbations in the data.
Proof.

Step 1. We define
2(t) = < [y(®) - [} K(t,$)y(s — D). (23)

Then we can transform equation (23) into a system:

{y'(t) = 2(0) + J; 5 (6, 9)y(s = Dds —K(6, Oyt =), 24

z'(t) = f(8) — p(©)z(t) — q(©)y (D).
By classical theory [28], system (24) has a unique classical solution y(t) e C2([0, T]).
Now we define h as the fixed step size, t, = nh and y, (t,,) = y(t,). We use:
i) Fourth-order Runge-Kutta for the equivalent first-order system.
ii) Spline interpolation to estimate delayed values y(t, —).
iii) Trapezoidal rule to approximate the integral fot" K(t,, s)y(s —1)ds.
Step 2. To illustrate the consistency of the method we get:
i. Runge-Kutta: Local truncation error is O(h®), global error is O(h*) , under regularity of the solution.

ii. Spline interpolation error: Since y(t) € C?, the error in approximating y(s — 7) by spline interpolation is
bounded by:

¥ -1 -3 -0l < G (25)
iii. Trapezoidal quadrature error: Since K (t, s) and y(s — t) are continuous:
|5 K(t,5) y(s = s — %, wiK(t,5) §(s; — 1)| < C,h2 (26)
Thus, the overall local consistency error is of the order:
O0(h?) + 0(h?) + 0(h®) = 0(h?),

but the dominant contribution to the global solution error still comes from the Runge-Kutta method, so the global
error remains O (h*).

Step 3. Let us define the global error:
Eyp = ly(tn) — ya(ta)l.
We use a discrete Gronwall inequality to analyze how the error grows with n.
Let:
En+1 < (1 + Ch)E, + ChS.
Then, iterating:

E, < Ch*(exp(CT) — 1),

621

which implies:
ly@® = ya®lles = 0(h*). (27)
Hence, the method is numerically stable and convergent.

Step 4. In order to demonstrate the stability of the equation in relation to perturbations, it is first necessary to
perturb the equation:

fO->f@O)+e®) lello <&-
Then, the solution J satisfies:
ly(®) -3®I < Ce,

due to the boundedness of the coefficients and the linearity of the equation. Similarly, the numerical method will
reflect this, with:

ly(®) = 7Ol < C'ep. (28)

Consequently, the analysis confirms that the numerical scheme exhibits robustness and stability under small
perturbations in the data or initial functions. Thus, the proof is rigorously completed.

3.Applied Examples
Example 3.1 Consider equation

y"+ ay® + bsin(ky) =0 (29)
y(0)=1 y'(0)=0

initial value condition where a and b are positive fixed parameters. a, b and k parameters are critical factors
determining the dynamics of the given nonlinear differential equation. The values of these parameters have a
critical impact on the stability, oscillation frequency and overall dynamic behaviour of the system. (29) equation is
analytically unsolvable because it contains nonlinear terms The nonlinear equations create complex dynamics and
nonlinear equations often require solutions that are difficult to estimate; moreover, solution methods often require
small variable assumptions and these assumptions may not be valid. Therefore, it is recommended to use numerical
methods to solve such equations.

Let solve this equation using matlab to see the solutions of this equation in different parameters:

)
)

a=0.1,

0.5,

a

[
in
NN O o
o000
~ARXXAR
I

WN A=

o00O0
/

o000

Figure 3.1 Solution of (29) Equation (According to Parameters)

622

The fluctuations seen in the graphs show the stability of the equilibrium points and the oscillations of the system;
the change of y value over time reveals the dynamic evolution of the system and its tendency towards equilibrium.

Set No a b k Expected Behavior

1 0.1 0.5 1.0 Smooth oscillations,
regular

2 0.5 0.5 1.0 Moderately = damped
oscillations

3 0.5 2.0 2.0 Strongly damped or
chaotic transitions

4 1.0 2.0 3.0 Chaotic or irregular
oscillations

Table 3.1 Parameter Sets and Expected Behavior
Example 3.2 Consider second-order nonlinear neutral differential equation of form

y'+ay +by+csin(y) + dy(x—1)=0 (30)

y" : It usually represents acceleration or change in speed, ay': The term damping may be used; this term can
indicate friction or resistance in the system, by : It can act as a return force or spring force for the system (e.g.
simple harmonic motion term), csin(y) : Adds a non-linear, periodic force or effect to the system. The sine term
causes the system to deviate from linearity and can be seen, for example, in the motion of a pendulum in mechanics.
dy(x — 1) : (x — 1) is the value of y, T time units earlier. This term means the system depends on both its current
state and its state 7 units ago. 7: delay duration, d: strength of the delayed effect. Because of this delay, future y
values depend on past values, making the equation harder to solve.

Since (30) is non-linear, finding a general closed-form solution is difficult or impossible. To study the oscillatory
behaviour of the given neutral differential equation, we can run simulations in MATLAB using different parameters
and examine it in different solving ranges. The code below will solve the equation with different values of the
parameters in order to observe the oscillatory or non-oscillatory behaviour of the system and to plot the results.

Neutral Equation Solution for Range: [0, 10]

a=0.1, b=0.5, c=1.0
a=0.5, b=0.5, c=2.0
a=0.2, b=1.0, c=1.5

0 2 2 6 8 10
x
Neutral Equation Solution for Range: [0, 20]

a=0.1, b=0.5, c=1.0
a=0.5, b=0.5, c=2.0
a=0.2, b= . €=1.5

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
x

Neutral Equation Solution for Range: [0, 30]

— a=0.1, b=0.5, c=1.0
- a=0.5, b=0.5, c=2.0
= a=0.2, b=1.0, c=1.5

L AT

) 5 10 15 20 25 30

Figure 3.2 Behavior of (30) Equation for Different Parameter Sets and Ranges

The plotted solutions correspond to (30) equation solved numerically for various parameter sets (a, b,c) and over
increasing domains.

623

The solutions exhibit sustained oscillatory behavior, which is characteristic of systems with combined nonlinear
and delay effects. The inclusion of the nonlinear term sin(y) contributes to the complexity and variability of the

waveform, while the delayed feedback term y(x — t) introduces a memory-dependent modulation that affects both
the amplitude and phase of oscillations.

As the damping parameter a increases, a more rapid decay in amplitude is observed, indicating stronger energy
dissipation in the system. Similarly, higher values of ¢ amplify the nonlinearity, resulting in more pronounced
deviations from harmonic behavior.

Overall, the solutions remain bounded, and the qualitative dynamics reflect the intricate interplay between
damping, nonlinearity, and delay. These features are typical of neutral functional differential equations and
highlight the rich dynamics that can arise even in relatively simple formulations.

Example 3.3 The following system presents a structure similar to a kind of population dynamics or ecological
balance model

dx_ (1 X)

ac = Y x) Py

dx_s 2 31
=S -y (€29)

Where x, population of the first species (e.g. prey); v, population of the second species (e.g. predator); «, 3,6,y
parameters are positive constants and K, Carrying capacity. (31) system of differential equations represents a
population dynamic model, specifically a prey-predator model, wherein the dependent variables are the population
sizes of the prey and the predator, respectively [29]. These types of models are employed to examine the
interactions between prey and predator species in ecosystems. The analytical solution of the system (31) is very
difficult due to the nonlinear terms, the complexity of the pairwise interactions between the populations and the

large number of parameters. For this reason, a 3D matlab solution is given below. The ODE solution is indicated by
ared line.

3D Solution of Equation System 3D Solution of Equation System

N
(5}

0 = X1.2 0
= g Y 6.4 X9.5
2 s 0 7 0.288 Y36
s 2 © . 7 -2.945 2
2 ‘ &
o o
2 &
&) -4 = 7 -4
w =
z 4
(5} 5}
] -6 = -6
s 2 ol
10
8 10 8
s 5
5 -10 10
Prey Population (x) o o Prey Population (x)
Preditor Poputation (y) Preditor Poputation (y)
Figure 3.3a 3D Solution of (31) Equation System Figure 3.3b 3D Solution of (31)Equation System

. d . L . . d .
Blue regions: d—f < 0, meaning the prey population is decreasing. Red regions: : d—f < 0, meaning the prey

population is increasing. Middle regions (green/yellow): The prey population is approaching equilibrium. The
prey (x)and predator (y) populations exhibit periodic oscillations. If the prey population increases significantly,

624

the predator population also rises. However, as predators consume more prey, the prey population eventually
declines again. The solution of the system reveals bounded, oscillatory dynamics characteristic of predator-prey
interactions. Population trajectories spiral around a nontrivial equilibrium, suggesting the presence of a limit cycle
or center. These recurrent fluctuations arise from nonlinear feedback between species: increased prey supports
predator growth, which in turn suppresses the prey, creating a natural cyclic rhythm. The inclusion of logistic
growth (via the carrying capacity K) ensures bounded prey growth, while quadratic predator mortality prevents
unbounded predator expansion. The overall system behavior reflects stability through dynamic equilibrium.

Example 3.4 Consider the third-order nonlinear differential equationof form

Cxy a x4 B 4 yx + 8sin(x) + 0 cos(x) + psi =0 32
prela e, Bdt yx sin(x) + o cos(x) + usin (wx) = (32)

d? .) . . - . o
a ?f : This term depends on the system’s velocity (first derivative) and acceleration (second derivative). The
@
dt?
movement of the system decreases over time.

acceleration represents the changing motion over time and models the damping effect in the system, i.e., the

d dx,
B d—:: This term represents a force that is proportional to the velocity of the system. As the velocity d—’: increases, the

resistance encountered by the system increases, slowing it down. This also contributes to the damping behavior of
the system.

yx: This term represents the feedback effect of the system. A positive value of y\gammay creates a restoring force
proportional to the displacement x. The larger the displacement, the larger the force acting to return the system to
equilibrium.

& sin(x): This term is a nonlinear force that depends on the position of the system. As xxx increases, this term
becomes more complex and introduces nonlinear behavior into the system. These types of terms are often seen in
oscillator systems and cause the system to exhibit more complex oscillations.

o cos(x): This term also represents a nonlinear force, but this time, it depends on the cosine of the position. The
presence of these nonlinear terms leads to more complex behavior, such as oscillations, in the system’s solution.

usin (wx) : This term represents an external forcing term that varies with time. The parameter y controls the
amplitude of the external force, and w controls its frequency. This external forcing influences the system’s motion,
adding external oscillations on top of the system's natural dynamics.

The nonlinear terms in the solution contribute to the system's instability and complexity. Additionally, the time-
varying forcing terms (sine function) account for external influences and environmental factors, altering the
system's behavior. Such systems are often referred to as dynamic systems, oscillators, or systems under forcing
effects. Instead of an analytical solution, these types of equations are generally studied using numerical solutions
(such as ODE solvers). The lack of an analytical solution for this equation arises from both the nonlinear dynamics
and the complex external forcing effects. The system is too complex, and numerical solutions are required to obtain
the correct solution. Such systems are commonly found in many real-world physical models, particularly in
complex dynamics observed in engineering and natural sciences.

625

Solution of the Complex Dynamical System

Position x(t) Over Time
T T

= .
o X 42.993
) Y 3.16564 | _|
3 N
[-%
-5 | | | | | | | | |
0 5 10 15 20 25 30 35 40 45 50
Time (t)
Velocity dx/dt(t) Over Time
£ 2F T T T —
=
k4 X 17.3674
3 Y -0.00125554
> 0 . -
=
[
o
g _2 L L il L L L L L L
0 5 10 15 20 25 30 35 40 45 50
- Time (t)
&:” 1 Acceleration dledtz(t) Over Time
=] T T T T T
N§ X 36.4364
° Y 0.115741
5ok 3 .
B
()
E A1 I I I I I I I I I
2 0 5 10 15 20 25 30 35 40 45 50

Time (t)

Figure 3.4 Solutions of (32) for acceleration, velocity and position.

Solving this equation is crucial for understanding how the system behaves over time. Such an equation typically
exhibits complex oscillations and periodic behaviors. The nonlinear terms and external forcing make the system'’s
behavior difficult to solve analytically. Therefore, numerical methods (such as ODE solvers) are typically used to
study these types of equations.

. . . od . d? . .
Velocity and Acceleration: The graph also shows how velocity d—f and acceleration dt—zx change over time. This

allows us to understand not only the position of the system but also the dynamics of its motion. For example, when
acceleration is positive, the system speeds up, and when acceleration is negative, it slows down.

External Forcing: The forcing term usin (wx) adds external energy to the system. This external forcing interacts
with the system’s natural oscillations and leads to more complex behaviors in the solution.

Conclusion

In this paper, we have used MATLAB to search for solutions to some differential equations that simply cannot be
expressed in a solvable form or whose solutions are quite complex and visualised the solutions of these equations.
The results obtained emphasise the importance of numerical methods for understanding and analysing the dynamics
of complex systems. The originality of our work is that it both focuses on equations that have not been previously
studied in certain areas and makes complex dynamics more understandable by visualising these equations.
Furthermore, detailing the methodologies used in solving such systems provides a basis for future research. Thus, it
allows for more in-depth studies on topics such as complex population dynamics or the behaviour of physical
systems.

Acknowledgment

The author extends gratitude to the referees for their thorough review, which significantly enhanced the manuscript
and to the readers for their interest and engagement with the work.

Matlab code for Example 3.1 | Matlab code for Example 3.2 | Matlab code for Example 3.3 | Matlab code for Example 3.4

626

paramSets = [

0.1, 0.5, 1.0; % Set1:a=0.1,
b=0.5k=1.0

0.5, 0.5, 1.0; % Set 2: a= 0.5,
b=0.5k=1.0

0.5,2.0,2.0; % Set3:a=0.5,
b=2.0,k=2.0

1.0,2.0,3.0 %Set4:a=1.0,
b=2.0,k=3.0
].

5
% initial conditions

y0=1; % y(0) initial value
dy0 =0; % dy/dx(0) initial
value

% solution interval

xspan = [0 10];

% ODE settings

options = odeset('RelTol’,1e-
6,'AbsTol',1e-8);

figure;

hold on;

for i = 1:size(paramSets, 1)

a=paramSets(i, 1); % a
parameter

b = paramSets(i, 2); % b
parameter

k = paramSets(i, 3); % k
parameter

odefun = @(x, Y) [Y(2);-a*
Y(1)*3-b*sin(k*Y(1))];

try
[T, Y] = ode45(odefun,
xspan, [y0; dy0], options);

if size(Y,2) <2
error('The dimensions of
the solution matrix are lower
than expected.');
end

plot(T, Y(:, 1), 'LineWidth',
2, 'DisplayName’,
sprintf(‘a=%.1f, b=%.1f,
k=%.1f", a, b, k));

catch ME
fprintf(‘error: %s\n’,
ME.message);
end
end

xlabel('x");
ylabel('y");
legend('show");
grid on;

hold off;

function solve_neutral_eq()
paramSets = [

0.1,0.5,1.0; % Set1:a=0.1,
b=0.5c=1.0

0.5,0.5,2.0; % Set2:a=0.5,
b=0.5c=2.0

0.2,1.0,1.5; % Set3:a=0.2,
b=10,c=15

I
tau = 0.5;
d = 0.3; % Delay coefficient
% Initial conditions
y0=0.5;
dy0 =0.1;
xspan_set = [
0, 10;
0, 20;
0,30
I

options = odeset('RelTol’,1e-
6,'AbsTol',1e-8);

figure;
forj = 1:size(xspan_set, 1)
subplot(3, 1,j);
hold on;
fori = 1:size(paramSets, 1)
a = paramSets(i, 1);
b = paramSets(i, 2);
¢ = paramSets(i, 3);
% Initial history storage

T_hist = []; % Empty list
for time points

Y_hist = []; % Empty list
for solution values

% Solve the equation

[T, Y] = ode45(@(x, Y)
odefun_with_history(x, Y, a, b, c,

d, tau, T_hist, Y_hist, y0),
xspan_set(j, :), [y0; dyO0],
options);
T_hist=T;
Y_hist=Y(;,1);

plot(T, Y(;, 1), 'LineWidth', 2);

end
xlabel('x");
ylabel('y");
title(['Neutral Equation
Solution for Range: [

num2str(xspan_set(j, 1)), ', ',
num2str(xspan_set(j, 2)),'1']);

legend({'a=0.1,
c=1.0", 'a=0.5, b=0.5,

b=0.5,
c=2.0",

alpha = 1; % Growth rate of

prey

beta = 0.1; % The effect of the
predator on the prey

gamma = 1; % Predator's

natural mortality

delta=0.1; % Predator's growth
rate from prey

K=10; % Carrying capacity
tspan = [0 50];
y0=[5;2]; % initial conditions
% ODE solution

[tt y] = ode45(@(t, y)
predatorPreySystem(t, y, alpha,
beta, gamma, delta, K), tspan,
y0);

[x, y] = meshgrid(0:0.1:10,

0:0.1:10);

z=alpha*x.*(1 - x/K) - beta*x.*y;
% Population dynamics surface

figure;
surf(x, y, z, 'EdgeColor’, 'none');

colorbar;

xlabel('Prey Population (x)");

ylabel('Preditor Poputation
(s

zlabel('Differential Change
(dx/dt));

title("3D Solution of Equation
System ');

view(3);

axis tight;

hold on;

plot3(y(:,1), y(:,2),
alpha*y(;,1).*(1 - y(,1)/K) -
beta*y(:,1).*y(:,2), T,
'LineWidth', 2);

hold off;

function dydt =
predatorPreySystem(t, y, alpha,
beta, gamma, delta, K)

x=y(1);

y_val =y(2);

dxdt = alpha*x*(1 - x/K) -
beta*x*y_val;

% Parameters

alpha = 0.5; % Coefficient for
the second derivative term

beta =0.2; % Coefficient for the
first derivative term

gamma = 0.1; % Positive linear
term

delta = 0.3; % Coefficient for the
sine term

epsilon = 0.1; % Coefficient for
the cosine term

eta=0.05; % Coefficient for the
external forcing term

omega =1; % Frequency of the
external force

% Initial conditions

y0 = [0.5; 0; 0]; % x(0) = 0.5,
dx/dt(0) = 0, d*2x/dt*2(0) =0

% Time span
tspan = [0 50];

teeval = linspace(tspan(1),
tspan(2), 1000);

% ODE solver

odefun=@(t,Y) [Y(2); %
dx/dt

Y(3); %
dr2x/dt"2

-alpha*Y(3) -
beta*Y(2) - gamma*Y(1) -
delta*sin(Y(1)) -
epsilon*cos(Y(1)) +
eta*sin(omega*t)]; %
d"3x/dt"3

[t, Y] = ode45(odefun, t_eval,
y0);

% Create figures

figure('Position’, [100, 100, 900,
700], 'Color’, 'w');

subplot(3, 1, 1);

plot(t, Y(:,1), 'LineWidth', 2.5,
'Color’, [0.2 0.6 1], 'LineStyle', '-
s

xlabel('Time (t)', 'FontSize', 14,
'FontWeight', 'bold’, 'Color’, [0.1
0.1 0.1]);

ylabel('Position x(t)', 'FontSize',
14, 'FontWeight', 'bold’, 'Color’,
[0.10.1 0.1]);

title('Position x(t) Over Time',
'FontSize', 16, 'FontWeight',
'bold’, 'Color’, [0.1 0.1 0.1]);

grid on;

set(gca, 'FontSize', 12,
'FontWeight', 'bold’, 'GridAlpha’,
0.3);

627

'a=0.2, b=1.0, c=1.5"}, 'Location’,
'Best');

grid on;
hold off;
end
end

%% Delayed
Equation Function

Differential

function dYdx =
odefun_with_history(x, Y, a, b, c,
d, tau, T_hist, Y_hist, y0)

if x <= tau

y_tau = y0; % In the initial
region, y(tau) = y(0)

else
if isempty(T_hist)
y_tau=y0;
else

y_tau = interpl(T_hist,
Y_hist, x - tau, 'linear’, 'extrap');

end
end

% Define the
equation

differential

dYdx = [Y(2); -a * Y(2) - b *
Y(1) - ¢ *sin(Y(1)) - d *y_tau];

end

dydtl = delta*x*y_val
gamma*y_val”2;

dydt = [dxdt; dydtl];

end

set(gca, 'XColor', [0.1 0.1 0.1],
'YColor', [0.1 0.1 0.1]);

subplot(3, 1, 2);

plot(t, Y(:,2), 'LineWidth', 2.5,
'Color’, [1 0.4 0.4], 'LineStyle', '--
9;

xlabel('Time (t)', 'FontSize', 14,
'FontWeight', 'bold’, 'Color’, [0.1
0.1 0.1]);

ylabel('Velocity dx/dt(t)",
'FontSize', 14, 'FontWeight',
'bold’, 'Color’, [0.1 0.1 0.1]);

title('Velocity dx/dt(t) Over
Time', 'FontSize', 16,
'FontWeight', 'bold’, 'Color’, [0.1
0.1 0.1]);

grid on;

set(gca, 'FontSize', 12,
'FontWeight', 'bold’, 'GridAlpha’,
0.3);

set(gca, 'XColor', [0.1 0.1 0.1],
"YColor', [0.1 0.1 0.1]);

subplot(3, 1, 3);

plot(t, Y(:,3), 'LineWidth', 2.5,
'Color’, [0.2 1 0.4], 'LineStyle', '-
)

xlabel('Time (t)', 'FontSize', 14,
'FontWeight', 'bold’, 'Color’, [0.1
0.1 0.1]);

ylabel('Acceleration
d”2x/dt*2(t)', 'FontSize', 14,
'FontWeight', 'bold’, 'Color’, [0.1
0.1 0.1]);

title('Acceleration d”2x/dt"2(t)
Over Time', 'FontSize', 16,
'FontWeight', 'bold’, 'Color’, [0.1
0.1 0.1]);

grid on;

set(gca, 'FontSize', 12,
'FontWeight', 'bold’, 'GridAlpha’,
0.3);

set(gca, 'XColor', [0.1 0.1 0.1],
'YColor',[0.1 0.1 0.1]);

sgtitle('Solution of the Complex
Dynamical System', 'FontSize',
18, 'FontWeight', 'bold’, 'Color’,
[0.10.1 0.1]);

set(gcf, 'Color’, 'w");

Table 3.1 Matlab Codes for Examples
References

[1] Yang, W.Y., Cao, W, Kim,], Park, K. W,, Park, H. H,, Joung, |., ... & Im, T. 2020. Applied numerical methods
using MATLAB, John Wiley & Sons.

[2] Corless, R. M., Nicolas, F. 2013. A graduate introduction to numerical methods, AMC (2013) 10: 12.

[3] Denis, B. 2020. An overview of numerical and analytical methods for solving ordinary differential
equations, arXiv preprint arXiv: 2012.07558.

628

[4] Yizbasi, S., Gok, E., Sezer, M. 2016. A numerical method for solving systems of higher order linear
functional differential equations, Open Physics, 14(1) (2016) 15-25.

[5] Saqib, M, et al. 2024. Dynamical Behavior of Nonlinear Coupled Reaction-Diffusion Model: A Numerical
Study Utilizing ADI and Staggered Grid Finite Volume Method in Matlab, IEEE Access.

[6] Gopal, D, etal. 2021. Numerical analysis of higher order chemical reaction on electrically MHD nanofluid
under influence of viscous dissipation, Alexandria Engineering Journal, 60.1 (2021) 1861-1871.

[7] Shah, K, Fahd, J., Thabet, A. 2020. Stable numerical results to a class of time-space fractional partial
differential equations via spectral method, Journal of Advanced Research, 25 (2020) 39-48.

[8] Ong, B. W, Spiteri, R. J. 2020. Deferred correction methods for ordinary differential equations, Journal of
Scientific Computing, 83(3) (2020) 60.

[9] Christlieb, A., Ong, B, Qiu,].M. 2009. Comments on high-order integrators embedded within integral
deferred correction methods, Commun. Appl. Math. Comput. Sci., 4 (2009) 27-56.

[10] Christlieb, A., Ong, B, Qiu, .M., Integral deferred correction methods constructed with high order Runge-
Kutta integrators, Math. Comput., 79(270) (2010) 761-783.

[11] Christlieb, A.J., Macdonald, C.B., Ong, B.W. 2010. Parallel high-order integrators, SIAM]. Sci. Comput,
32(2) (2010) 818-835.

[12] Dutt, A, Greengard, L., Rokhlin, V. 2000. Spectral deferred correction methods for ordinary differential
equations, BIT Numerical Mathematics, 40(2) (2000) 241-266.

[13] Fox, L., Goodwin, E.T. 1949. Some new methods for the numerical integration of ordinary differential
equations, Proc. Camb. Philos. Soc., 45 (1949) 373-388.

[14] Hansen, A.C., Strain, J. 2011. On the order of deferred correction, Appl. Numer. Math., 61(8) (2011) 961-
973.

[15] Fox, L. 1947. Some improvements in the use of relaxation methods for the solution of ordinary and partial
differential equations. Proc. R. Soc. Lond. Ser. A, 190 (1947) 31-59.

[16] Pereyra, V. 1966. On improving an approximate solution of a functionalequation by deferred
corrections, Numerische Mathematik, 8 (1966) 376-391.

[17] Pereyra, V. 1968. Iterated deferred corrections for nonlinear boundary value problems, Numerische
Mathematik, 11 (1968) 111- 125.

[18] Kress, W., Gustafsson, B. 2002. Deferred correction methods for initial boundary value problems,
Proceedings of the 5th International Conference on Spectral and High Order Methods (ICOSAHOM-01)
(Uppsala), vol. 17 (2002) 241-251.

[19] Rangan, A.V. 2003. Adaptive solvers for partial differential and differential-algebraic equations, Ph.D.
thesis, University of California, Berkeley.

[20] Huang,]., Jia,], Minion, M. 2006. Accelerating the convergence of spectral deferred correction methods,].
Comput. Phys., 214(2) (2006) 633-656.

[21] Chu, KW, Spence, A.1981. Deferred correction for the integral equation eigenvalue problem, The ANZIAM
Journal, 22(4) (1981) 474-487.

[22] Reuter, B,, et al. 2021. FESTUNG 1.0: Overview, usage, and example applications of the MATLAB/GNU
Octave toolbox for discontinuous Galerkin methods, Computers & Mathematics with Applications, 81
(2021) 3-41.

[23] Shampine, L. F. 2018. Numerical solution of ordinary differential equations, Routledge.

[24] Cooper,]. M. 2012. Introduction to partial differential equations with MATLAB. Springer Science &
Business Media.

[25] Coleman, M. P., Bukshtynov, V. 2024 An introduction to partial differential equations with MATLAB, CRC
Press.

[26] Zheng, L., Zhang, X.2017. Modeling and analysis of modern fluid problems. Academic Press.

[27] Dormand, J. R., & Prince, P.]. 1980. A family of embedded Runge-Kutta formulae, Journal of Computational
and Applied Mathematics, 6(1), 19-26.

[28] Hale, J. K. 2006. Functional differential equations. In: Analytic Theory of Differential Equations: The
Proceedings of the Conference at Western Michigan University, Kalamazoo, from 30 April to 2 May 1970.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. p. 9-22.

[29] Murray, J. D. 2007. Mathematical biology: I. An introduction (Vol. 17), Springer Science & Business Media,
(2007).

629

[30] Zaya, N. E., Hassan, L. H., & Bilgil, H. 2018. Mathematical Modeling for Prediction of Heating and Air-
Conditioning Energies of Multistory Buildings in Duhok City, Acad. J. Nawroz Univ, 7, 153-167.
[31] https://doi.org/10.38016/jista.1447980

630

https://doi.org/10.38016/jista.1447980

