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Abstract Keywords
This paper examines a tubular surface, a specific example of a canal surface, in 4- )
dimensional Euclidean space. In the plane stretched by the quasi-frame vectors B EUChflean Space,
and C, this surface is established by the motion of a circle with a constant radius that Quasi-frame,

Tubular Surface,

uses each point on the curve a(t) as its center. Using the general equation provided
Shape Operator

in Euclidean 4-space, the first and second partial derivatives are determined. The
Gram-Schmidt technique was used to derive the surface's first unit normal vector field
U, and second unit normal vector field U, using the acquired partial derivatives. Time Scale of Article
Using quasi-vectors, the tubular surface's first and second fundamental form
coefficients were found. Furthermore, the shape operator matrices for the tubular

surface's the unit normal vector fields U; and U, were acquired. We have found Received :10 April 2025
algebraic invariants of the shape operator, Gaussian curvature, and mean curvature. Accepted : 13 June 2025
For a thorough understanding of the obtained theoretical calculations, an example of Online date : 25 August 2025

a directional tubular surface, the equation of the tubular surface has been parametrized
using quasi-frame vectors and quasi-frame curvatures for a given space curve in 4-
dimensional Euclidean space.

1. INTRODUCTION

Monge was the first to introduce the canal surfaces [1]. The envelope of a moving sphere with a constant
radius function, represented by r(t), gives birth to tubular surfaces, which are a specific instance of
canal surfaces [2,3]. Relationships between the curvatures and characterizations of these surfaces in
various environments have piqued the curiosity of several scholars. Frenet, Bishop, and Darboux frames
have also been utilized to parameterize tubular surfaces, which may likewise be employed as pipes
[4,5,6]. Apart from these frames, Coquillart presented a different method called the quasi-frame, which
is derived from the quasi-normal vector [7]. The quasi-frame adapted over a spatial curve was presented
by Dede et al., who also demonstrated how it related to the Frenet frame [8]. In a variety of spaces, this
quasi-frame has been used for parametric representations of directional tubular surfaces, also known as
directional tubular surfaces [9,10,11]. In Euclidean 4-space, Gezer and Ekici introduced the quasi-frame,
its formulae, and the connection with the Frenet frame [12]. Gluck has proposed a straightforward
technique for calculating curvatures of curve in Euclidean n-space and Euclidean 4-space that uses a
single formula for all curvatures and is based on the Gram-Schmidt orthonormalization process [13].
Frenet elements and derivative equations for unit speed space curves have been studied by academics
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with an emphasis on Euclidean 4-space [14-21]. In both 3-dimensional Euclidean space E2 and 4-
dimensional Euclidean space E*, the canal surface may be parametrized using Frenet frames and
alternative frames [5,22-27]. Coskun Ekici and Akga [28] have studied the governed surfaces with the
quasi-vectors in Euclidean 4-space as well. Mello has looked at the conditions and characteristics of
surfaces [29]. Additionally, under parallel transport frame vectors, Kisi has investigated canal surfaces
in E* [22]. Based on the coefficients of the first and second fundamental forms, Bulca's work provides
characterizations of surfaces in E* [23]. Furthermore, using the Frenet frame and quasi-frame in E*,
Yagbasan et al. have identified a few algebraic invariants of the parametrization of the tubular surfaces
[30,31,32]. First, this paper discusses fundamental concepts and theorems about tubular surfaces and
quasi-frames. The parametrization of directed tubular surfaces in Euclidean 4-space is then provided.
The directional tubular surface's normals, Gaussian curvature, mean curvature, and shape operator
matrices are then provided, in that order. Additionally, the directional tubular surfaces are displayed in
the projection spaces, and the directional tubular surface example in E* of this research is provided.

2. PRELIMINARIES

Let (x1,X2,%3,%4), Y = (31,2, ¥3,V4) and Z = (24, Z,, Z3,24) be three vectors in E*, then the dot
product is defined < X,Y >= x;y; + XV, + X33 + x4¥,. The norm of vector X € E* is given by

[|X|] = v< X, X >. The vector product of X, Y, Z is given by the determinant as follows
e, e, ez e,
X1 X2 X3 X

XANYANZ = 1
Vi Y2 V3 Vs (1
Z1 Zy Z3 74
where e; ANe, ANe; =e,,e; NesNe, =e;,e3Ne, ANe, =e, and e; ANe, Ae; = —e, [14,15].

Let a(t) = a: I € R— E* be any space curve in Euclidean 4-space. The curve is said to be
parameterized by arc length s if < a’,a’ >= 1. Let {T, Ny By, C q} be a quasi-frame where T, N, B,
and C, are called the tangent, normal, the first binormal, and the second binormals vector fields,
respectively. The quasi-frame is given by

a’ T Nk, ANk,
T=—r Ng=——
[la|| T AkyAkyll )
a’ ANygAa'"

B,=C, ATAN C, = )
q q q q ||a,'||

where k. = (1,0,0,0) and k,, = (0,1,0,0) are the projection vectors [17, 20]. quasi-frame formulas of
a unit speed curve a(t) is written as

T 0 ks k, 01T
A
Nf] — _k1 0 k3 0 Nq (3)
B, —k; —ks 0 k4f|Bqg
(W 0 0 —k, 011C,
where the functions
" <T',N; > " <T,B;> " <Ny B; > d k <BgCq > @
= 1 ’ = 14 ) = ! lan = 4
! le'f] " )] "3 || * ||

are called the first, the second and the third curvatures, respectively [33, 13]. Let M be a regular surface
given with the parameterization ¥: U € R? » R* y(t,v) in R*. The tangent space of M at an
arbitrary point is spanned by the vectors Y, and ¥,,. The coefficients of the first fundamental form of M
are defined as
E = (lpt' lpt)JF = (lth l/)v),G = (1/)1;,1/)1;), and W = EG — Fzr (5)

where <, > is a Euclidean dot product [18,29]. Let ¥¢¢, Y4y, Wiy be the second order partial derivatives
and U4, U,, ..., U,,_, be the normal vector fields of M such that the second fundamental form coefficients
of M are

L = (e, Ug), My = (Y, Ug) and N, = (¢, U ) for 1<k <n-—-2 (6)
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Also, its shape operator matrix with U}, is given
Ly 1 u F L
. = (Mg == L) o
Ue ™ 1 F 1 F?
W(Mk - ELk) W(ENR — 2FM; + FLR)
[29, 34]. Therefore, Gaussian curvature and mean curvature vector of the surface can also be written as
K = det(Sy,) + det(Sy,) + -+ det(Sy,_,) (®)
and

1
H= E{iz(sul)u1 +iz(Sy,)Uz + -+ iz(Sy,_, )Un—2} 9

respectively [21].
Let {T,N, B, B,} be a Frenet frame of a unit speed curve a(t). A canal surface of radius r(t)
and centered at a spine curve a(t) is parametrized as
Y(t,v) = a(t) + r(t)(cosvB(t) + sinvB,(t)) (10)
where r(t) is a real differentiable function. A parameterization of the tubular surface at a
distance r is given as
Y(t,v) = a(t) + r(cosvB,(t) + sinvB,(t)) (11)

with the Frenet frame {T,N, B, B,} in E*.
3- TUBULAR SURFACES WITH Q-FRAME IN 4-DIMENSIONAL EUCLID SPACE

Consider the unit speed curve a(t) and the parameterization of the tubular surface at a constant r, which
may be expressed as

Y(t,v) = a(t) + r(cosvBy(t) + sinvC,y(t)) (12)
with the quasi-frame {T, N, B, C q} in E4.

Figure 1. Tubular surface with quasi-frame
Theorem 1: Let M < E* be a tubular surface at distance r from the principal curve o(t) with respect to
the quasi-frame {T, Ny By, C q} with the parameterization Y (t, v). In 4-dimensional space, the first unit

normal vector field of the 2-dimensional tubular surface is
rkzcosvT + (1 — rkycosv)Ng + sinvB + cosvCy,

= (13)
J (A = rkycosv)? + 1 + r2k2cos?v
obtained [32].
Proof: The unit normal vector field U, of the surface has to hold the following concitions
<P, U, >=0,
<, U; >=0, and <U,,U, >=0, (14)
<U,U;>=1,

111



Yagbasan and Ekici / Estuscience — Theory 13 (2) — 2025

where Y, and v, are the partial derivatives of ¥(t, v), with respect to t and v. Since < U;,U; >=1,
U, is the unit normal vector field of the tubular surface. In 4-dimensional space, the tubular surface has
the unit normal vector fields U; and U,. If the partial derivatives of the equation (12) are taken and the
equations (14) are used, the first unit normal vector field is easily found.

Theorem 2: Let M c E* be a tubular surface at as distance r from the spine curve a(t) according to
the quasi-frame {T, N, B,, C,} with parametrization ¥ (¢, v), given by ¥: U c E* » E*, (t,v) €U
and let tangent space to M at a point p € Y(t, v) be spanned by {{), ¥, }. The shape operator Sy, of
tubular surface with the unit normal vector field U; in E* is obtained as
A ((1 = rkycosv)? + r2k2cos?v + r2k2)™  €,((1 — rkycosv)? + r2k2cos?v) /2
J(@ = rkycosv)? + 1 + r2k2cos?v BiyJ (1 — rkycosv)? + 1 + r2k2cos?v
SU = ) (15)
C,((1 — rkycosv)? + r?k2cos?v)~1/? -D,

BiyJ (1 — rkycosv)? + 1 + r2kZcos?v r&J (1 = rkycosv)? + 1 + r2k2cos?v

Ay = rcos?v(rkiky —rkhks + 1kk3 — k3 — k2 + 1k2ky) + rkskysinv + cosv(k, + 2rk ik, — Tk}) — 1k + ky,
B, = ((1—rkycosv)? +r2k2cos?v + r?k2),

C, = r12cos?vsinv(kiks + k3) + r3kycos?v(kyks — kik3 — k k3 — kykb) — ky — 2rk,kscosvsinv — rkqky
+rkycosv(2rkik, + ky + 1ky) + kssinv,

D1 = T2kskysinv(2 4+ 12k2) + rtcostv(k3 + k3)? + cosv(2rtkikyki — 3k, k3 — 4k, + rhkikZ) + 1
+2r3cosvsinu(rkdk,cosv + rk3ksk,cosv — 2kyksky) — 3k k3 — dr3cos3v(k k3 + k3) + 2rtk3k;costv
tcos?w(2r2 (k3 + 3Kk3) — r3KG (ko K + koky — Kyks + K3ky) + 1K (kF + K3)),

E1= 1—A4rkycosv — 4r3cos3v(k3 + kok3) + r2cos?v(r?k3k2 — 2rk,kZ +r2k2k2 + 6k3 + 2k2)
+rtcostv(k3 + k3)? + r2kZ,
respectively.
Proof: Tubular surface, at a distance r from the spine curve a(t) with the quasi-frame {T, Ny By, C q}
are parametrized by
Y(t,v) = a(t) + r(cosvB, + sinvCy).
The partial derivatives of Y (t, v), with respect to t and v, are determined by
Yr = (1 = rkycosv)T — rkzcosvN, — rkysinvB, + rkycosvCy, (16)
and
Y, = r(—sianq + COSUCq). 17)
Then, the second order partial derivatives of ¥ (t, v), with respect to t and v, are given as

Y = (=rkycosv + rkykysinv + rkikscosv)T + (ky — rkykycosv — rkzcosv + rkskysinv)N, (18)
+(k, — rk3cosv — rkicosv — rkicosv — rkysinv) B, + (rkycosv — rkisinv)C,,

Yy = ThysinvT + rk3sinvN,; — rkycosvB, — rk,sinvCy, (19)
and
Yy, = —rcosvB,; — rsinvC. (20)
The equations (16) and (17) can be substituted into the equation (5) to yield the coefficients of the first
fundamental form of tubular surfaces
E = (1 —rkycosv)? + r2k3cos?v + r2k2,
F =12k, 21
G=r?
and

112



Yagbasan and Ekici / Estuscience — Theory 13 (2) — 2025

W =r2((1 — rkycosv)? + r?k3cos?v) (22)
are obtained. The equations (13), (16), and (17) can be substituted into the equation (6) to yield the
coefficients of the second fundamental form of the tubular surface with the unit vector field U; in
E* obtained as,
r2cos?v(k. ks — kbks + k k% + kik,) — ki —rcos?v(k? + k2) + k,

L. =
' V(@ —rkycosv)? + 1 + 1r2k2cos?v
cosv(k, — 2rk k,sinv — rk3) + rkskysinv
JA =rkycosv)? + 1 +r2kicos?vy
(23)
M. = r(kssinv — k)
' J( —rkycosv)2 + 1+ r2kZcos?v’
—r
N1 =

J@ =rkycosv)? + 1 + r2kZcos?v
With the help of the equations (21), (22) and (23), the components of the shape operator matrix are as
follows

Ly A (1 —rkycosv)? +r2kicos®v + r2ki) ™!

E JA =rkycosv)? + 1 + r2kZcos?vy (4
where
Ay = rcostv(rkik, — rkyks + 1k k3 — k3 — k2 4+ rkZk,) + rk3k,sinv
+cosv(k, + 2rk ky —1k3) — k2 + kq,
and
1 F C1((1 — rkycosv)? + r?k3cos?v)~1/2
(M, - 21) = : (25)
w E BiJ (1 — rkycosv)2 + 1 + r2kZcos?v
where
B, = (1 —rkycosv)? +1r?k3cos?v + r2k2,
C, = r12cos?vsinv(kiks + k3) + r3k,cos?v(kyks — ki k3 — k k3 — ko kb)) — ky
+rkycosv(2rk,k, + ky + 1k3) + kgsinv — 2rk,kscosvsinv — rkqky,
and
LN, —2rM, 4 ) D 26
w2 (N, e r&1J(1 — rhycosv)? + 1 + r2kZcos?v (26)
where

Dy = 12k3k,sinv(2 + 12kE) + rcostv(kZ + k2)? + cosv(2rik kyki — r3kkZ — Ark, + rkikE) + 1
+27r3cosvsinv(rk3kycosv + rkZkskacosv — 2k, ksky) — 4r3cosdv(k,k2 + k3) + 2rtkZkicostv
+cos?v(2r? (k3 + 3k3) — roki(kyk3 + kokh — kiks + k2ky) + k3 (k3 + k3)) — 3k k2,

E = 1—4rkycosv —4r3cos3v(k3 + k,k2) + r?cos?v(r?kiks — 2rk,k3 + r2k3k3 + 6k3 + 2k2)
+rtcostv(kZ + k2)? + r2kZ,
Substituting the equations (24), (25) and (26) into the equation (7) implies that the shape operator with
respect to U4 following as
A (1 = rkycosv)? + r2k2cos?v + 1r2k2)™t €, ((1 — rkycosv)? + r?k2cos?v)~1/?

V(@ —rkycosv)? + 1 + r2k2cos?v By (1 — rkycosv)? + 1+ r2kZcos?v

SU:

1
C,((1 — rkycosv)? + r?k2cos?v)~1/? _p,

By (1 — rkycosv)? + 1 + r2k2cos?v 1€/ (1 — rkycosv)? + 1 + r2k2cos?v
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Theorem 3: Let M < E* be a tubular surface at distance r from the principal curve o(t) with respect to
the quasi-frame {T, N, B, C q} with the parameterization Y (t, v). In 4-dimensional space, the second
unit normal vector field of the 2-dimensional tubular surface
rkzcosvT + (rkycosv — 1)Ng + cosv((1 — rkycosv)? + r?k3cos?v)B,
((1 = rkycosv)? + 1 + r2kZcos?v)3/2,/ (1 — rk,cosv)? + r2k2cos?v
sinv((1 = rkycosv)? + r?k3cos?*v)C,

((1 = rkycosv)? + 1+ r2kZcos?v)3/2,/ (1 — rk,cosv)? + r2k2cos?v

U2=

27

is obtained [32].
Proof: The unit normal vector fields U, of the surface has to be provided with the following conditions
<P, U, >=0
<yY,, U, >=0 and <U,,U,>=0 (28)
<U,U,>=1
where Y, and v, are the partial derivatives of Y (t, v), with respect to t and v. Since < U,,U, >=1,
U, is the unit normal vector field of the tubular surface. If the partial derivatives of the equation (12)
are taken and the following equations (28) are used, the second unit normal vector field is easily found.
Theorem 4: Let M < E* be a tubular surface at a distance r from the spine curve a(t) according to
the quasi-frame {T, N, B,, C,} with parametrization (¢, v), given by ¥: U c E* » E*, (t,v) €U
and let tangent space to M at a point p € Y (t, v) be spanned by {{), 1, }. The shape operator Sy, of
tubular surface with the unit normal vector field U, in E* is obtained as
A, ((1 = rkycosv)? + r2kicos?v) 2 —C,((1 — rkycosv)? + r2kicos?v)~1/?

B,/ (1 — rkycosv)? + 1+ 1r2k2cos?v By (1 — rkycosv)? + 1 + r2k2cos?v

S, = | L @)
[—62((1 — rkycosv)? + r2k3cos?v) Y2 Dy\/(1 — rkycosv)? + 1 + r2k2cos?v J

B,/(1 — rkycosv)? + 1+ r2kZcos?v  Bor((1 —rkycosv)? + r2kicos?v)3/?

Ay = ky +1kZ + cos?v(3rk3 + k3 + 1r2(k k% +1k3k2 + Tk3k2 — kiks + k k% — 2k k3 + kok}))
+rkskysinv — 3r2k,cos3v (k3 + k) + r3cos*v (k3 + k2)? — cosv[k, + Tk} + 21k k,),

B, = 2+71%cos?v(7kZ +r2k3k2 + r2k2k2 + 3k2) — 4r3k,cos3v(k3 + k2) + r*kZcostv(2kZ + k2)
+r*kicos*v + 2r?kZ — 6rk,ycosv — 2r3k,k2cosv,

Cy = T12c0s?v(rkik3ky + vk kZky + Tkyk ik, — 3k3k, — k3ky — k3kysinv — rkksk, — k3sinv) — k,
+1kycosv(2kssinv + 3k,) — kgsinv + r2kycosv(rky k3 — 2k k, — kb + rk3k,cos?v) + rkiky,

D, = 1+r*cos*v(18k3k3 + 15k3 + 3k3 + 2r2k2k3k3 + r2k3kZ + r2k3k2) + r3k k3

+cosv(—2rtk kyk2 — 61k, — 3k, ki — v4kik2 + 4r3kyksk,sinv) — r2ksk,sinv(2 4 r2k2)
+12c0s?v(3k3 + 15k% + r2k2(3k3 + k2 — rkbks + vk k2 + rkiks) — 2r2kysinv(kiks + k3))
—13¢c0s3v(20k3 + 12k, k% + 3r2k,k3k2 + 3r2k3k3) — 6r°cosSv(2k3k3 + kokd + k3)
+7r%cos®v(3k3k? + 3kZk + kS + kS),

respectively.

Proof: The equations (27), (16), and (17) are substituted into the equation (6) to yield the coefficients of

the second fundamental form of the tubular surface with the unit vector field U, in E* obtained as,

114



Yagbasan and Ekici / Estuscience — Theory 13 (2) — 2025
cos?v(3rkZ + rk3 — r2kyks + 2k k3 + 2k k3 + r?kyky + r3k3ki + r3k3k3)
V(1 = rkycosv)? + r2kZcos?vy/ (1 — rkycosv)? + 1 + r2kZcos?v
r3cos*v(ks + k3 + 2k2k2) — 3r2cosdv(k, k2 + k3) + rkZ + k,
V(1 = rkycosv)? + r2k2cos?vy/ (1 — rkycosv)? + 1 + r2kZcos?v
cosv(rkskysinv — k, — 2rk k, — rkj — 2r2k,k3)

V(@ = rkycosv)? + r2kZcos?vy/ (1 — rkycosv)? + 1 + rzkgcoszv‘ (30)

L2=

r(kssinv + k, — 2rk,kycosv + r2kZk,cos?v + r?kik,cos%v)

- V(@ = rkycosv)? + r2k2cos?vy/ (1 — rkycosv)? + 1 + rzkgcoszv‘

2

(1 = rkycosv)? + r2k2cos?v

J(@ = rkycosv)2 + 1+ r2kZcos?v
With the help of the equations (21), (22) and (30), the components of the shape operator matrix are as
follows

2:

L,  Ay((1—rkycosv)® + r2k2cos?v)~1/2 .
E B, J(1 —rkycosv)® + 1+ T2k§coszv'

where
A, = cos?v(3rki +rki + r2(k k3 + rkiki + rk2kZ — kiks + k k% — 2k, k2 + kok3)) + k2
—3r%k,ycos3v(k3 + k2) + r3cos*v(k? + k2)? — cosv(k, + ki + 21k k,) + rkik,sinv + kg,

B, = 2+ 12cos?v(7k? + r?k3k: + r?k3k: + 3k3) — 4r3k,cos3v[kZ + k2] + r*k3cos*v[2k3 + k2]
+rtkicos*v + 2r2k? — 6rk,cosv — 213k, k3 cosv,

and
1 F —C,((1 — rkycosv)? + r?k3cos?v)~1/?
_(MZ - _Lz) == ) (32)
w E By /(1 — rkycosv)? + 1 + r2kZcos?v
where
C, = r2cos?v(rkikik, + rkikik, + rkokik, — 3k3k, — k3k, — kZkssinv — rkyksk, — k3sinv)
—k3sinv + r2k,cosv(rk,k2 — 2k k, — ki + rk3k,cos?v) + rkik,
+rk,cosv(2k;sinv + 3k,) — ky,
and
1 F? D, ((1 — rkycosv)? + r2k2cos?v)~3/2
w E B,1 (1 — rkycosv)? + 1 + r2k2cos?v
where

D, = 1+r*cos*v(18k3k3 + 15k5 + 3k3 + 2r2kZkZkZ + r’k5ki + r’k3k?) + r3k k2
+cosv(—2rtk k,k2 — 6rk, — 3k, k2 — r*kik: + 4r3k,kik,sinv) — riksk,sinv(2 + r2k32)
+r2cos?v(3k3 + 15k3 + r?k3(3k% + k3 — rkyks + rk k3 + rkiks) — 2r2k,sinv(k3k; + k3))
—13c0s3v(20k3 + 12k k2 + 3r2k,k2k2 + 3r2k3k2) — 61°cos®v(2k3k2 + ko k3 + k3)
+16cos®v(3k3k3 + 3k3ks + kS + k)

Substituting  equations (31), (32) and (33) into the equation (7) implies that the shape operator matrix
with respect to U, following as
[ Ay (1 — rkycosv)? + r2k2cos?v)™ Y2 —C,((1 — rkycosv)? + r?k3cos?v) =12

By /(1 — rkycosv)? + 1+ 12k2cos2v  Byo/(1 — rkycosv)? + 1+ r2kZcos?v

SU:

2

—C,((1 — rkycosv)? + r2k2cos?v) ™2 D,\/(1 — rkycosv)? + 1 + r2kZcos?v

| By /(1 —rkycosv)? + 1+ 1r2kcos?v Bar((1— rkacosv)? + r2kicos?v)3/? |
Theorem 5: Let M < E* be a tubular surface at a distance r from the spine curve a(t) according to
the quasi-frame {T, Ny, B, C q} with the parametrization (¢, v), given by ¥: U c E? » E*, (t,v) €
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U, and let tangent space to M at a point p € Y(t, v) be spanned by {{;,,}. The Gaussian and mean
curvatures are obtained as
r2cos?v(kyks — kik3 — kik3 — kyk3) — rcos?v(k3 + 2k3) + k,
" 7(2 — 6rk,cosv + r2c0s?v(7k2 + 3k2) — 4r3cos3u (k3 + kyk3) + ricostv(kZ + k2)?)
cosv(ky, — 2rk,;k, — rk}) + 7k2 — rk3k,sinv
r(2 — 6rkycosv + r2cos?v(7k3 + 3k2) — 4r3cos3v(k3 + k.k3) + rtcostv(ks + k2)?)
r3cos*v(ky + k3 + 2k%k2) — cosv(k, + vk} + 2r2k, k2 + 2k, k;)
* r((1 — rkycosv)? + 1 + r2k2cos?v)
cos?v(3rks + ki + rik,k} — r2kbks + 2k (k3 + k2) + r3ki(kZ + k%))
* r((1 — rkycosv)? + 1 + r2k2cos?v)
ky + rkZ + rkskysinv — 3r2k,cos3v (ki + k3)
r((1 — rkycosv)? + 1 + r2k2cos?v)

(34)

’

and rky + rcosv(3k, — 2rk k, — k) + r3cos?v(k k2 — kyks + k k2 + kykb)
2((1 = rkycosv)? + r2kZcos?v)y/ (1 — rkycosv)? + 1 + r2kZcos?v
2r2cos?v(k? + k2) + 1 + r2ksk,sinv
2((1 — rkycosv)? + r2kZcos?v)/ (1 — rkycosv)? + 1 + r2kZcos?v
r3cos?v(k k% + k k% + k,ks — 7Tk,k%cosv — 7k3cosv — kyks) + rky — 5rk,cosv
2r/(1 = rkycosv)? + 1 + r2k2cos?v((1 — rk,cosv)? + r2k2cos?v)3/2
1 + r2(cosv(3kicosv + 9k3cosv — ki — 2k k,) — k3kysinv) + 2rtcos*v (k3 + k2%)?
2r\/(1 — rkycosv)? + 1 + r2k2cos?v((1 — rk,cosv)? + r2kZcos?v)3/2 .

(35)

Proof: If the equations (15) and (29) are substituted into the equations given by (8) and (9), the Gaussian
and mean curvatures are found to be as in (34) and (35), respectively.

Corollary: It is easily seen that the Gaussian and mean curvature calculations obtained using the shape
operator are the same as those obtained with the fundamental form coefficients in [32].

Example Let a(t) be a centre curve with quasi-frame of tubular surface in E* such as

1 1
a(t) = (—=cos3t,—=sin3t,—cost,— smt) (36)
oSt st st
From ||a(t)|| = 1, it is easy to see that qu351 Vectors are given as
1
T = (——=sin3t,—cos3t, — —sint,—cost
(- 75 int g os3t, = psnt, s cost)

N, = (0,0, cost, sint) (37)

1 , _ , 1 1
B, = (——=(4cos*v — 1)sint,—— (4cos“v — 3)cost,—sint, — —=cost)

V2 V2 V2o V2
C, = ((4cos*v — 3)cost, (4cos?v — 1)sint, 0,0)
and from equation (8), quasi-curvatures are given as
1 3
ki =—-—, k,=0, ky=—-— and ky=——
1 \/z 2 3 \/E 4 \/z

Substituting equations (36) and (37) into equation (10), the tubular surface is parametrized as

1 -1
Y(t,v) = (— cos3t +r <— (4cos?v — 1)cosvsint + (4cos?v — 3)sinvcost>,

3v2 V2
1 1
——sin3t+r (— 4cos?v — 3)cosvcost + (4cos®v — 1 sinvsint),
V2 \/f( ) ( )
t+ 1 int 1 int ! t)
— cost + —rcosvsint,—sint — —rcosvcost |.
V2 V2 V2 V2

Hence for r = /2, it is straight forward by found that

116



Yagbasan and Ekici / Estuscience — Theory 13 (2) — 2025

1
Y(t,v) = (— cos3t — (4cos?v — 1)cosvsint + V2(4cos?v — 3)sinvcost,

3v2

1 o
—sin3t + (4cos?v — 3)cosvcost +V2(4cos?v — 1)sinvsint,

3v2

1
—cost + cosvsint,—sint — Cosvcost) .
V2 V2

Then for r = V2, the unit normal vector fields in the equation (38) of tubular surface are given as

v L (—VZcosv, 1, cosv, sinv)
= ————(—V2cosv, 1, cosv, sinv),
! V2 + 2cos?v (38)
1 —/2cosv 1 )
U, = , ,—cosv+/ 1 + 2cos?v, —sinv/ 1 + 2cos?v |.
V2 + 2cos?2v \V1 + 2cos?v V1 + 2cos?v
The shape operators of tubular surface are given as
Ay B,
_ (19 + 2cos?v) ™" 2 2V1 + 2cos?v 39
Vs ™ 2+ 2cos2v B, 36A; — 2(19 + 2cos?v) — 24(sinv — 3) | (39)
2V1 + 2cos?v 4 + 8cos?v
and
A, —6 —/2 (3 + sinv)
¢ (19 + 2cos*v) ™' 21 + 2cosZv 2 (40)
vz V2 +2cos?v  |—6 — V2 (3 + sinv) B, '
2 2(1 + 2cos?v)3/2
where

Ay = 6(sinv —3) —V2 — (2v2 + 2)cos?v,

B, = 3V2(1 - sinv) — 6 + (2V2sinv + 12)cos?v,

A, = 6(sinv + 3) — V2 — (2v2 — 38)cos?v + 4cos*v,

B, = 1+ 18vV2 —120sinv + 4cos*v(21 + 2cos?v) + (42 — 362 — 24sinv)cos?v,
respectively. The Gaussian and mean curvatures of the tubular surface are given as

K = det(Sy,) + det(Sy,), and H =iz(Sy,) + iz(Sy,), (40)

respectively, where
6sinv +v2 — 2 + (2vV2 + 4)cos?v

det(SUl) - 8(1 + 3cos?v + 2cos*v) ’
2(5y.) = —(6sinv + V2 + 1 + (2V2 + 4)cos?v)
. 2(1 + 2cos2v)V2 + 2cos?v
det(Sy,) = —6sinv — V2 — 2 + (4 — 12sinv — 4v2)cos?v + (8 — 4v2)cos*v + 8cos®v
2 8(1 + 5cos?v + 8cos*v + 4cos®v) ’
] —6sinv — V2 + 1 + (6 — 2v/2)cos?v + 8cos*v
iz(Sy,) = .

2(1 + 3c0s2v)3/24/2 + 2cos?v
In this case, the curvatures are obtained as
6sinv + V2 — 2 + (2vV2 + 4)cos?v (4 — 12sinv — 4vV2)cos?v + (8 — 4vV2)cos*v
8(1 + 3cos?v + 2cos*v) 8(1 + 5cos?v + 8cos*v + 4cos®v)
8c0s®v — 6sinv — V2 — 2
* 8(1 + 5cos?v + 8cos*v + 4cosv)’

—(6sinv + V2 + 1 + (2V2 + 4)cos?v) N 8cos*v + (6 — 2v/2)cos?v — 6sinv — V2 + 1
2(1 + 2cos?v)V2 + 2cos?v 2(1 4 3c0s2?v)3/24/2 4+ 2cos?v '

Finally, the tubular surface shown in Figure 2.a. a nd Figure 2.b. are parametrized as
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1
Y(t,v) = (ﬁ cos3t — (4cos?v — 1)cosvsint + V2(4cos?v — 3)sinvcost,

1
sin3t + (4cos?v — 3)cosvcost + V2(4cos?v — 1)sinvsint, — cost + cosvsint),
3v2 V2

1
Y(t,v) = (S_ﬁ cos3t — (4cos?v — 1)cosvsint + V2(4cos?v — 3)sinvcost,

1
33 sin3t + (4cos?v — 3)cosvcost + V2(4cos?v — 1)sinvsint, — sint — cosvcost)

V2

for r = /2 in projection spaces xyz and xyt, respectively.

(@ (b)
Figure 2. (a) Tubular surface in space xyz; (b) Tubular surface in space xyt.

Similarly, the tubular surface shown in Figure 3.a. and Figure 3.b. are parametrized as

1
Y(t,v) = (ﬁ cos3t — (4cos?v — 1)cosvsint + V2(4cos?v — 3)sinvcost,

1
—cost + cosvsint,—sint — cosvcost),
V2

V2
1
Y(t,v) = (ﬁ sin3t + (4cos?v — 3)cosvcost + V2(4cos?v — 1)sinvsint,

1
—cost + cosvsint,—sint — cosvcost)
V2

V2

for r = +/2 in projection spaces xzt and yzt, respectively.

= eyl

(@ (b)
Figure 3. (a) Tubular surface in space xzt; (b) Tubular surface in space yzt .

The figures were made using the Maple program.
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4- CONCLUSIONS

In this study, the tubular surface is parameterized using a quasi-frame. By introducing directional tubular
surfaces in Euclidean 4-space, their unit normal vectors, fundamental form coefficients, shape operator
matrices, Gaussian curvatures, and mean curvatures are calculated. Then, a center curve is taken in
Euclidean 4-space and calculations are provided with an example. Finally, directional tubular surfaces
are visualized in projection spaces.
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