

ESKİSEHİR TEKNİK ÜNİVERSİTESİ BİLİM VE TEKNOLOJİ DERGİSİ **B- TEORIK BILIMLER**

Eskişehir Technical University Journal of Science and Technology B- Theoretical Sciences

Estuscience – Theory, 2025, 13 (2) pp. 109-121, DOI: 10.20290/estubtdb.1673455

RESEARCH ARTICLE

SHAPE OPERATORS OF A DIRECTIONAL TUBULAR SURFACE IN 4-SPACE

Başak YAĞBASAN 1, Cumali EKİCİ 2,*

¹ Department of Mathematics and Computer Science, Graduate School of Natural and Applied Sciences, Eskişehir Osmangazi University, Eskişehir, Türkiye

bskvagbasan@gmail.com - 0000-0003-4067-3034

² Department of Mathematics and Computer Science, Faculty of Science, Eskişehir Osmangazi University, Eskişehir, Türkiye cekici@ogu.edu.tr - 00000-0002-3247-5727

Abstract Keywords

This paper examines a tubular surface, a specific example of a canal surface, in 4dimensional Euclidean space. In the plane stretched by the quasi-frame vectors \boldsymbol{B}_q and C_q , this surface is established by the motion of a circle with a constant radius that uses each point on the curve a(t) as its center. Using the general equation provided in Euclidean 4-space, the first and second partial derivatives are determined. The Gram-Schmidt technique was used to derive the surface's first unit normal vector field U_1 , and second unit normal vector field U_2 , using the acquired partial derivatives. Using quasi-vectors, the tubular surface's first and second fundamental form coefficients were found. Furthermore, the shape operator matrices for the tubular surface's the unit normal vector fields U_1 and U_2 were acquired. We have found algebraic invariants of the shape operator, Gaussian curvature, and mean curvature. For a thorough understanding of the obtained theoretical calculations, an example of a directional tubular surface, the equation of the tubular surface has been parametrized using quasi-frame vectors and quasi-frame curvatures for a given space curve in 4dimensional Euclidean space.

Euclidean Space, Quasi-frame, Tubular Surface, Shape Operator

Time Scale of Article

Received:10 April 2025 Accepted: 13 June 2025 Online date: 25 August 2025

1. INTRODUCTION

Monge was the first to introduce the canal surfaces [1]. The envelope of a moving sphere with a constant radius function, represented by r(t), gives birth to tubular surfaces, which are a specific instance of canal surfaces [2,3]. Relationships between the curvatures and characterizations of these surfaces in various environments have piqued the curiosity of several scholars. Frenet, Bishop, and Darboux frames have also been utilized to parameterize tubular surfaces, which may likewise be employed as pipes [4,5,6]. Apart from these frames, Coquillart presented a different method called the quasi-frame, which is derived from the quasi-normal vector [7]. The quasi-frame adapted over a spatial curve was presented by Dede et al., who also demonstrated how it related to the Frenet frame [8]. In a variety of spaces, this quasi-frame has been used for parametric representations of directional tubular surfaces, also known as directional tubular surfaces [9,10,11]. In Euclidean 4-space, Gezer and Ekici introduced the quasi-frame, its formulae, and the connection with the Frenet frame [12]. Gluck has proposed a straightforward technique for calculating curvatures of curve in Euclidean n-space and Euclidean 4-space that uses a single formula for all curvatures and is based on the Gram-Schmidt orthonormalization process [13]. Frenet elements and derivative equations for unit speed space curves have been studied by academics

^{*}Corresponding Author: cekici@ogu.edu.tr

with an emphasis on Euclidean 4-space [14–21]. In both 3-dimensional Euclidean space \mathbb{E}^3 and 4-dimensional Euclidean space \mathbb{E}^4 , the canal surface may be parametrized using Frenet frames and alternative frames [5,22-27]. Coşkun Ekici and Akça [28] have studied the governed surfaces with the quasi-vectors in Euclidean 4-space as well. Mello has looked at the conditions and characteristics of surfaces [29]. Additionally, under parallel transport frame vectors, Kişi has investigated canal surfaces in \mathbb{E}^4 [22]. Based on the coefficients of the first and second fundamental forms, Bulca's work provides characterizations of surfaces in \mathbb{E}^4 [23]. Furthermore, using the Frenet frame and quasi-frame in \mathbb{E}^4 , Yağbasan et al. have identified a few algebraic invariants of the parametrization of the tubular surfaces [30,31,32]. First, this paper discusses fundamental concepts and theorems about tubular surfaces and quasi-frames. The parametrization of directed tubular surfaces in Euclidean 4-space is then provided. The directional tubular surface's normals, Gaussian curvature, mean curvature, and shape operator matrices are then provided, in that order. Additionally, the directional tubular surfaces are displayed in the projection spaces, and the directional tubular surface example in \mathbb{E}^4 of this research is provided.

2. PRELIMINARIES

Let (x_1, x_2, x_3, x_4) , $Y = (y_1, y_2, y_3, y_4)$ and $Z = (z_1, z_2, z_3, z_4)$ be three vectors in \mathbb{E}^4 , then the dot product is defined $\langle X, Y \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3 + x_4 y_4$. The norm of vector $X \in \mathbb{E}^4$ is given by $||X|| = \sqrt{\langle X, X \rangle}$. The vector product of X, Y, Z is given by the determinant as follows

$$\mathbf{X} \wedge \mathbf{Y} \wedge \mathbf{Z} = \begin{vmatrix} \mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} & \mathbf{e}_{4} \\ x_{1} & x_{2} & x_{3} & x_{4} \\ y_{1} & y_{2} & y_{3} & y_{4} \\ z_{1} & z_{2} & z_{3} & z_{4} \end{vmatrix}$$
(1)

where $e_1 \wedge e_2 \wedge e_3 = e_4$, $e_2 \wedge e_3 \wedge e_4 = e_1$, $e_3 \wedge e_4 \wedge e_1 = e_2$ and $e_3 \wedge e_2 \wedge e_1 = -e_4$ [14,15]. Let $a(t) = a : I \subset \mathbb{R} \to \mathbb{E}^4$ be any space curve in Euclidean 4-space. The curve is said to be parameterized by arc length s if $<\alpha',\alpha'>=1$. Let $\{T,N_q,B_q,C_q\}$ be a quasi-frame where T,N,B_q and C_q are called the tangent, normal, the first binormal, and the second binormals vector fields, respectively. The quasi-frame is given by

$$T = \frac{\alpha'}{||\alpha'||} \qquad \mathbf{N}_q = \frac{T \wedge \mathbf{k}_x \wedge \mathbf{k}_y}{||T \wedge \mathbf{k}_x \wedge \mathbf{k}_y||}$$

$$\mathbf{B}_q = \mathbf{C}_q \wedge \mathbf{T} \wedge \mathbf{N}_q \quad \mathbf{C}_q = \frac{\alpha' \wedge \mathbf{N}_q \wedge \alpha'''}{||\alpha'||},$$
(2)

where $\mathbf{k}_x = (1,0,0,0)$ and $\mathbf{k}_y = (0,1,0,0)$ are the projection vectors [17, 20]. quasi-frame formulas of a unit speed curve $\alpha(t)$ is written as

$$\begin{bmatrix} \mathbf{T}' \\ \mathbf{N}'_q \\ \mathbf{B}'_q \\ \mathbf{C}'_q \end{bmatrix} = \begin{bmatrix} 0 & k_1 & k_2 & 0 \\ -k_1 & 0 & k_3 & 0 \\ -k_2 & -k_3 & 0 & k_4 \\ 0 & 0 & -k_4 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{T} \\ \mathbf{N}_q \\ \mathbf{B}_q \\ \mathbf{C}_q \end{bmatrix}$$
(3)

where the functions

$$k_1 = \frac{\langle T', N_q \rangle}{||\alpha'||}, k_2 = \frac{\langle T', B_q \rangle}{||\alpha'||}, k_3 = \frac{\langle N'_q, B_q \rangle}{||\alpha'||}, \text{ and } k_4 = \frac{\langle B'_q, C_q \rangle}{||\alpha'||}$$
(4)

are called the first, the second and the third curvatures, respectively [33, 13]. Let M be a regular surface given with the parameterization $\psi: U \subset \mathbb{R}^2 \to \mathbb{R}^4$, $\psi(t,v)$ in \mathbb{R}^4 . The tangent space of M at an arbitrary point is spanned by the vectors ψ_t and ψ_v . The coefficients of the first fundamental form of M are defined as

$$E = \langle \psi_t, \psi_t \rangle, F = \langle \psi_t, \psi_v \rangle, G = \langle \psi_v, \psi_v \rangle, \text{ and } W = EG - F^2,$$
 (5)

where <, > is a Euclidean dot product [18,29]. Let ψ_{tt} , ψ_{tv} , ψ_{vv} be the second order partial derivatives and U_1 , U_2 , ..., U_{n-2} be the normal vector fields of M such that the second fundamental form coefficients of M are

$$L_k = \langle \psi_t, \mathbf{U}_k \rangle, \ M_k = \langle \psi_t, \mathbf{U}_k \rangle \text{ and } N_k = \langle \psi_v, \mathbf{U}_k \rangle \text{ for } 1 \le k \le n-2$$
 (6)

Also, its shape operator matrix with \boldsymbol{U}_k is given

$$S_{U_k} = \begin{bmatrix} \frac{L_k}{E} & \frac{1}{W} (M_k - \frac{F}{E} L_k) \\ \frac{1}{W} (M_k - \frac{F}{E} L_k) & \frac{1}{W^2} (EN_k - 2FM_k + \frac{F^2}{E} L_k) \end{bmatrix}$$
(7)

[29, 34]. Therefore, Gaussian curvature and mean curvature vector of the surface can also be written as

$$K = det(S_{U_1}) + det(S_{U_2}) + \dots + det(S_{U_{n-2}})$$
(8)

and

$$H = \frac{1}{2} \{ iz (S_{U_1}) U_1 + iz (S_{U_2}) U_2 + \dots + iz (S_{U_{n-2}}) U_{n-2} \}$$
 (9)

respectively [21].

Let $\{T, N, B_1, B_2\}$ be a Frenet frame of a unit speed curve $\alpha(t)$. A canal surface of radius r(t)and centered at a spine curve $\alpha(t)$ is parametrized as

$$\psi(t, v) = \alpha(t) + r(t)(\cos v \mathbf{B}_1(t) + \sin v \mathbf{B}_2(t)) \tag{10}$$

where r(t) is a real differentiable function. A parameterization of the tubular surface at a distance r is given as

$$\psi(t, v) = \alpha(t) + r(\cos v \mathbf{B}_1(t) + \sin v \mathbf{B}_2(t)) \tag{11}$$

with the Frenet frame $\{T, N, B_1, B_2\}$ in \mathbb{E}^4 .

3- TUBULAR SURFACES WITH Q-FRAME IN 4-DIMENSIONAL EUCLID SPACE

Consider the unit speed curve $\alpha(t)$ and the parameterization of the tubular surface at a constant r, which may be expressed as

$$\psi(t, v) = \alpha(t) + r(\cos v \boldsymbol{B}_q(t) + \sin v \boldsymbol{C}_q(t))$$
(12)

with the quasi-frame $\{T, N_q, B_q, C_q\}$ in \mathbb{E}^4 .

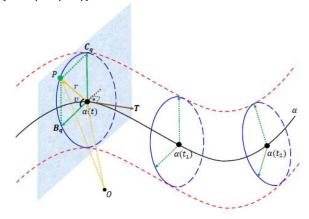


Figure 1. Tubular surface with quasi-frame

Theorem 1: Let $M \subset \mathbb{E}^4$ be a tubular surface at distance r from the principal curve $\alpha(t)$ with respect to the quasi-frame $\{T, N_q, B_q, C_q\}$ with the parameterization $\psi(t, v)$. In 4-dimensional space, the first unit

the quasi-frame
$$\{T, N_q, B_q, C_q\}$$
 with the parameterization $\psi(t, v)$. In 4-dimensional space, the first uniformal vector field of the 2-dimensional tubular surface is
$$U_1 = \frac{rk_3 cosvT + (1 - rk_2 cosv)N_q + sinvB_q + cosvC_q}{\sqrt{(1 - rk_2 cosv)^2 + 1 + r^2k_3^2 cos^2v}}$$
(13)

obtained [32].

Proof: The unit normal vector field U_1 of the surface has to hold the following concitions

$$<\psi_{t}, U_{1}>=0,$$

 $<\psi_{v}, U_{1}>=0,$ and $=0,$
 $=1,$ (14)

where ψ_t and ψ_v are the partial derivatives of $\psi(t, v)$, with respect to t and v. Since $\langle U_1, U_1 \rangle = 1$, U_1 is the unit normal vector field of the tubular surface. In 4-dimensional space, the tubular surface has the unit normal vector fields U_1 and U_2 . If the partial derivatives of the equation (12) are taken and the equations (14) are used, the first unit normal vector field is easily found.

Theorem 2: Let $M \subset \mathbb{E}^4$ be a tubular surface at as distance r from the spine curve $\alpha(t)$ according to the quasi-frame $\{T, N_q, B_q, C_q\}$ with parametrization $\psi(t, v)$, given by $\psi: U \subset \mathbb{E}^2 \to \mathbb{E}^4$, $(t, v) \in U$ and let tangent space to M at a point $p \in \psi(t, v)$ be spanned by $\{\psi_t, \psi_v\}$. The shape operator S_{U_1} of tubular surface with the unit normal vector field U_1 in \mathbb{E}^4 is obtained as

tubular surface with the unit normal vector field
$$\boldsymbol{U}_{1}$$
 in \mathbb{E}^{4} is obtained as
$$S_{\boldsymbol{U}_{1}} = \begin{bmatrix} \frac{\mathcal{A}_{1}((1-rk_{2}cosv)^{2}+r^{2}k_{3}^{2}cos^{2}v+r^{2}k_{4}^{2})^{-1}}{\sqrt{(1-rk_{2}cosv)^{2}+1+r^{2}k_{3}^{2}cos^{2}v}} & \frac{\mathcal{C}_{1}((1-rk_{2}cosv)^{2}+r^{2}k_{3}^{2}cos^{2}v)^{-1/2}}{\mathcal{B}_{1}\sqrt{(1-rk_{2}cosv)^{2}+1+r^{2}k_{3}^{2}cos^{2}v}} \\ \frac{\mathcal{C}_{1}((1-rk_{2}cosv)^{2}+r^{2}k_{3}^{2}cos^{2}v)^{-1/2}}{\mathcal{B}_{1}\sqrt{(1-rk_{2}cosv)^{2}+1+r^{2}k_{3}^{2}cos^{2}v}} & -\mathcal{D}_{1} \\ \frac{\mathcal{C}_{1}((1-rk_{2}cosv)^{2}+r^{2}k_{3}^{2}cos^{2}v)^{-1/2}}{\mathcal{B}_{1}\sqrt{(1-rk_{2}cosv)^{2}+1+r^{2}k_{3}^{2}cos^{2}v}} \end{bmatrix}$$
(15)

where

$$\mathcal{A}_1 = r cos^2 v (r k_3' k_2 - r k_2' k_3 + r k_1 k_3^2 - k_2^2 - k_3^2 + r k_2^2 k_1) + r k_3 k_4 sinv + cosv(k_2 + 2 r k_1 k_2 - r k_3') - r k_4^2 + k_1,$$

$$\mathcal{B}_1 = ((1 - rk_2 cos v)^2 + r^2 k_3^2 cos^2 v + r^2 k_4^2),$$

$$\mathcal{C}_1 = r^2 cos^2 v sinv(k_2^2 k_3 + k_3^2) + r^3 k_4 cos^2 v(k_2' k_3 - k_1 k_3^2 - k_1 k_2^2 - k_2 k_3') - k_4 - 2 r k_2 k_3 cos v sinv - r k_1 k_4 + r k_4 cos v(2 r k_1 k_2 + k_2 + r k_3') + k_3 sinv,$$

$$\begin{split} \mathcal{D}_1 = & \quad r^2 k_3 k_4 sinv(2 + r^2 k_4^2) + r^4 cos^4 v(k_2^2 + k_3^2)^2 + cosv(2r^4 k_1 k_2 k_4^2 - r^3 k_2 k_4^2 - 4r k_2 + r^4 k_3' k_4^2) + 1 \\ & \quad + 2r^3 cosv sinv(r k_3^3 k_4 cosv + r k_2^2 k_3 k_4 cosv - 2k_2 k_3 k_4) - r^3 k_1 k_4^2 - 4r^3 cos^3 v(k_2 k_3^2 + k_2^3) + 2r^4 k_2^2 k_3^2 cos^4 v \\ & \quad + cos^2 v \Big(2r^2 (k_3^2 + 3k_2^2) - r^5 k_4^2 (k_1 k_2^2 + k_2 k_3' - k_2' k_3 + k_3^2 k_1) + r^4 k_4^2 (k_2^2 + k_3^2) \Big), \end{split}$$

$$\mathcal{E}_1 = \quad 1 - 4rk_2cosv - 4r^3cos^3v(k_2^3 + k_2k_3^2) + r^2cos^2v(r^2k_2^2k_4^2 - 2rk_2k_4^2 + r^2k_3^2k_4^2 + 6k_2^2 + 2k_3^2) \\ + r^4cos^4v(k_2^2 + k_3^2)^2 + r^2k_4^2,$$

respectively.

Proof: Tubular surface, at a distance r from the spine curve $\alpha(t)$ with the quasi-frame $\{T, N_q, B_q, C_q\}$ are parametrized by

$$\psi(t, v) = \alpha(t) + r(\cos v \boldsymbol{B}_a + \sin v \boldsymbol{C}_a).$$

The partial derivatives of $\psi(t, v)$, with respect to t and v, are determined by

$$\psi_t = (1 - rk_2 cosv)\mathbf{T} - rk_3 cosv\mathbf{N}_q - rk_4 sinv\mathbf{B}_q + rk_4 cosv\mathbf{C}_q, \tag{16}$$

and

$$\psi_v = r(-\sin v \mathbf{B}_q + \cos v \mathbf{C}_q). \tag{17}$$

Then, the second order partial derivatives of $\psi(t, v)$, with respect to t and v, are given as

$$\psi_{tt} = (-rk_2'cosv + rk_2k_4sinv + rk_1k_3cosv) \mathbf{T} + (k_1 - rk_1k_2cosv - rk_3'cosv + rk_3k_4sinv) \mathbf{N}_q$$
 (18)
$$+ (k_2 - rk_2^2cosv - rk_3^2cosv - rk_4^2cosv - rk_4'sinv) \mathbf{B}_q + (rk_4'cosv - rk_4^2sinv) \mathbf{C}_q,$$

$$\psi_{tv} = rk_2 sinv \mathbf{T} + rk_3 sinv \mathbf{N}_q - rk_4 cosv \mathbf{B}_q - rk_4 sinv \mathbf{C}_q, \tag{19}$$

and

$$\psi_{vv} = -rcosv\mathbf{B}_q - rsinv\mathbf{C}_q. \tag{20}$$

The equations (16) and (17) can be substituted into the equation (5) to yield the coefficients of the first fundamental form of tubular surfaces

$$E = (1 - rk_2 cos v)^2 + r^2 k_3^2 cos^2 v + r^2 k_4^2,$$

$$F = r^2 k_4,$$

$$G = r^2.$$
(21)

and

$$W = r^{2}((1 - rk_{2}cosv)^{2} + r^{2}k_{3}^{2}cos^{2}v)$$
(22)

are obtained. The equations (13), (16), and (17) can be substituted into the equation (6) to yield the coefficients of the second fundamental form of the tubular surface with the unit vector field U_1 in \mathbb{E}^4 obtained as,

$$L_{1} = \frac{r^{2}cos^{2}v(k_{1}k_{2}^{2} - k_{2}'k_{3} + k_{1}k_{3}^{2} + k_{3}'k_{2}) - rk_{4}^{2} - rcos^{2}v(k_{3}^{2} + k_{2}^{2}) + k_{1}}{\sqrt{(1 - rk_{2}cosv)^{2} + 1 + r^{2}k_{3}^{2}cos^{2}v}} + \frac{cosv(k_{2} - 2rk_{1}k_{2}sinv - rk_{3}') + rk_{3}k_{4}sinv}{\sqrt{(1 - rk_{2}cosv)^{2} + 1 + r^{2}k_{3}^{2}cos^{2}v}},$$

$$M_{1} = \frac{r(k_{3}sinv - k_{4})}{\sqrt{(1 - rk_{2}cosv)^{2} + 1 + r^{2}k_{3}^{2}cos^{2}v}},$$
(23)

 $N_1 = \frac{-r}{\sqrt{(1 - rk_2 cos v)^2 + 1 + r^2 k_3^2 cos^2 v}}.$

With the help of the equations (21), (22) and (23), the components of the shape operator matrix are as follows

$$\frac{L_1}{E} = \frac{\mathcal{A}_1((1 - rk_2 cosv)^2 + r^2 k_3^2 cos^2 v + r^2 k_4^2)^{-1}}{\sqrt{(1 - rk_2 cosv)^2 + 1 + r^2 k_3^2 cos^2 v}},$$
(24)

where

$$\begin{split} \mathcal{A}_1 = & \quad r cos^2 v (r k_3' k_2 - r k_2' k_3 + r k_1 k_3^2 - k_2^2 - k_3^2 + r k_2^2 k_1) + r k_3 k_4 sinv \\ & \quad + cos v (k_2 + 2 r k_1 k_2 - r k_3') - r k_4^2 + k_1, \end{split}$$

and

$$\frac{1}{W}\left(M_1 - \frac{F}{E}L_1\right) = \frac{C_1((1 - rk_2 cosv)^2 + r^2 k_3^2 cos^2 v)^{-1/2}}{\mathcal{B}_1 \sqrt{(1 - rk_2 cosv)^2 + 1 + r^2 k_3^2 cos^2 v}},$$
(25)

where

$$\mathcal{B}_1 = (1 - rk_2 cosv)^2 + r^2 k_3^2 cos^2 v + r^2 k_4^2,$$

$$\mathcal{C}_1 = r^2 cos^2 v sinv(k_2^2 k_3 + k_3^2) + r^3 k_4 cos^2 v(k_2' k_3 - k_1 k_3^2 - k_1 k_2^2 - k_2 k_3') - k_4 \\ + r k_4 cos v(2r k_1 k_2 + k_2 + r k_3') + k_3 sinv - 2r k_2 k_3 cos v sinv - r k_1 k_4,$$

and

$$\frac{1}{W^2}(EN_1 - 2FM_1 + \frac{F^2}{E}L_1) = \frac{-\mathcal{D}_1}{r\mathcal{E}_1\sqrt{(1 - rk_2cosv)^2 + 1 + r^2k_3^2cos^2v}},$$
 (26)

where

$$\mathcal{D}_{1} = r^{2}k_{3}k_{4}sinv(2 + r^{2}k_{4}^{2}) + r^{4}cos^{4}v(k_{2}^{2} + k_{3}^{2})^{2} + cosv(2r^{4}k_{1}k_{2}k_{4}^{2} - r^{3}k_{2}k_{4}^{2} - 4rk_{2} + r^{4}k_{3}^{\prime}k_{4}^{2}) + 1 \\ + 2r^{3}cosvsinv(rk_{3}^{3}k_{4}cosv + rk_{2}^{2}k_{3}k_{4}cosv - 2k_{2}k_{3}k_{4}) - 4r^{3}cos^{3}v(k_{2}k_{3}^{2} + k_{2}^{3}) + 2r^{4}k_{2}^{2}k_{3}^{2}cos^{4}v \\ + cos^{2}v(2r^{2}(k_{3}^{2} + 3k_{2}^{2}) - r^{5}k_{4}^{2}(k_{1}k_{2}^{2} + k_{2}k_{3}^{\prime} - k_{2}^{\prime}k_{3} + k_{3}^{2}k_{1}) + r^{4}k_{4}^{2}(k_{2}^{2} + k_{3}^{2})) - r^{3}k_{1}k_{4}^{2},$$

$$\mathcal{E}_{1} = 1 - 4rk_{2}cosv - 4r^{3}cos^{3}v(k_{2}^{3} + k_{2}k_{3}^{2}) + r^{2}cos^{2}v(r^{2}k_{2}^{2}k_{4}^{2} - 2rk_{2}k_{4}^{2} + r^{2}k_{3}^{2}k_{4}^{2} + 6k_{2}^{2} + 2k_{3}^{2}) + r^{4}cos^{4}v(k_{2}^{2} + k_{3}^{2})^{2} + r^{2}k_{4}^{2},$$

Substituting the equations (24), (25) and (26) into the equation (7) implies that the shape operator with respect to U_1 following as

$$S_{U_1} = \begin{bmatrix} \frac{\mathcal{A}_1((1-rk_2cosv)^2 + r^2k_3^2cos^2v + r^2k_4^2)^{-1}}{\sqrt{(1-rk_2cosv)^2 + 1 + r^2k_3^2cos^2v}} & \frac{\mathcal{C}_1((1-rk_2cosv)^2 + r^2k_3^2cos^2v)^{-1/2}}{\mathcal{B}_1\sqrt{(1-rk_2cosv)^2 + 1 + r^2k_3^2cos^2v}} \\ & \frac{\mathcal{C}_1((1-rk_2cosv)^2 + r^2k_3^2cos^2v)^{-1/2}}{\mathcal{B}_1\sqrt{(1-rk_2cosv)^2 + 1 + r^2k_3^2cos^2v}} & \frac{-\mathcal{D}_1}{r\mathcal{E}_1\sqrt{(1-rk_2cosv)^2 + 1 + r^2k_3^2cos^2v}} \end{bmatrix}.$$

Theorem 3: Let $M \subset \mathbb{E}^4$ be a tubular surface at distance r from the principal curve $\alpha(t)$ with respect to the quasi-frame $\{T, N_q, B_q, C_q\}$ with the parameterization $\psi(t, v)$. In 4-dimensional space, the second unit normal vector field of the 2-dimensional tubular surface

$$U_{2} = \frac{rk_{3}cosvT + (rk_{2}cosv - 1)N_{q} + cosv((1 - rk_{2}cosv)^{2} + r^{2}k_{3}^{2}cos^{2}v)B_{q}}{((1 - rk_{2}cosv)^{2} + 1 + r^{2}k_{3}^{2}cos^{2}v)^{3/2}\sqrt{(1 - rk_{2}cosv)^{2} + r^{2}k_{3}^{2}cos^{2}v}} - \frac{sinv((1 - rk_{2}cosv)^{2} + r^{2}k_{3}^{2}cos^{2}v)C_{q}}{((1 - rk_{2}cosv)^{2} + 1 + r^{2}k_{3}^{2}cos^{2}v)^{3/2}\sqrt{(1 - rk_{2}cosv)^{2} + r^{2}k_{3}^{2}cos^{2}v}}$$
(27)

is obtained [32].

Proof: The unit normal vector fields U_2 of the surface has to be provided with the following conditions

$$<\psi_t, U_2>=0$$

 $<\psi_v, U_2>=0$ and $=0$
 $=1$ (28)

where ψ_t and ψ_v are the partial derivatives of $\psi(t,v)$, with respect to t and v. Since $\langle U_2, U_2 \rangle = 1$, U_2 is the unit normal vector field of the tubular surface. If the partial derivatives of the equation (12) are taken and the following equations (28) are used, the second unit normal vector field is easily found. Theorem 4: Let $M \subset \mathbb{E}^4$ be a tubular surface at a distance r from the spine curve $\alpha(t)$ according to the quasi-frame $\{T, N_q, B_q, C_q\}$ with parametrization $\psi(t, v)$, given by $\psi: U \subset \mathbb{E}^2 \to \mathbb{E}^4$, $(t, v) \in U$ and let tangent space to M at a point $p \in \psi(t, v)$ be spanned by $\{\psi_t, \psi_v\}$. The shape operator S_{U_2} of tubular surface with the unit normal vector field U_2 in \mathbb{E}^4 is obtained as

and let tangent space to
$$M$$
 at a point $p \in \psi(t, v)$ be spanned by $\{\psi_t, \psi_v\}$. The shape operator S_{U_2} of tubular surface with the unit normal vector field U_2 in \mathbb{E}^4 is obtained as
$$S_{U_2} = \begin{bmatrix} \frac{\mathcal{A}_2((1 - rk_2 cosv)^2 + r^2k_3^2 cos^2v)^{-1/2}}{\mathcal{B}_2\sqrt{(1 - rk_2 cosv)^2 + 1 + r^2k_3^2 cos^2v}} & \frac{-\mathcal{C}_2((1 - rk_2 cosv)^2 + r^2k_3^2 cos^2v)^{-1/2}}{\mathcal{B}_2\sqrt{(1 - rk_2 cosv)^2 + 1 + r^2k_3^2 cos^2v}} \\ \frac{-\mathcal{C}_2((1 - rk_2 cosv)^2 + r^2k_3^2 cos^2v)^{-1/2}}{\mathcal{B}_2\sqrt{(1 - rk_2 cosv)^2 + 1 + r^2k_3^2 cos^2v}} & \frac{\mathcal{D}_2\sqrt{(1 - rk_2 cosv)^2 + 1 + r^2k_3^2 cos^2v}}{\mathcal{B}_2r((1 - rk_2 cosv)^2 + r^2k_3^2 cos^2v)^{3/2}} \end{bmatrix},$$
(29)

where

$$\mathcal{A}_{2} = k_{1} + rk_{4}^{2} + \cos^{2}v(3rk_{2}^{2} + rk_{3}^{2} + r^{2}(k_{1}k_{3}^{2} + rk_{2}^{2}k_{4}^{2} + rk_{3}^{2}k_{4}^{2} - k_{2}'k_{3} + k_{1}k_{2}^{2} - 2k_{2}k_{4}^{2} + k_{2}k_{3}')) + rk_{3}k_{4}\sin v - 3r^{2}k_{2}\cos^{3}v(k_{3}^{2} + k_{2}^{2}) + r^{3}\cos^{4}v(k_{2}^{2} + k_{3}^{2})^{2} - \cos v[k_{2} + rk_{3}^{2} + 2rk_{1}k_{2}],$$

$$\mathcal{B}_{2} = 2 + r^{2}\cos^{2}v(7k_{2}^{2} + r^{2}k_{2}^{2}k_{4}^{2} + r^{2}k_{3}^{2}k_{4}^{2} + 3k_{3}^{2}) - 4r^{3}k_{2}\cos^{3}v(k_{2}^{2} + k_{3}^{2}) + r^{4}k_{2}^{2}\cos^{4}v(2k_{3}^{2} + k_{2}^{2}) + r^{4}k_{3}^{4}\cos^{4}v + 2r^{2}k_{4}^{2} - 6rk_{2}\cos v - 2r^{3}k_{2}k_{4}^{2}\cos v,$$

$$\mathcal{C}_{2} = r^{2}cos^{2}v(rk_{1}k_{3}^{2}k_{4} + rk_{1}k_{2}^{2}k_{4} + rk_{2}k_{3}'k_{4} - 3k_{2}^{2}k_{4} - k_{3}^{2}k_{4} - k_{2}^{2}k_{3}sinv - rk_{2}'k_{3}k_{4} - k_{3}^{3}sinv) - k_{4} + rk_{2}cosv(2k_{3}sinv + 3k_{4}) - k_{3}sinv + r^{2}k_{4}cosv(rk_{2}k_{3}^{2} - 2k_{1}k_{2} - k_{3}' + rk_{3}^{2}k_{4}cos^{2}v) + rk_{1}k_{4},$$

$$D_2 = 1 + r^4 cos^4 v (18k_2^2 k_3^2 + 15k_2^4 + 3k_3^4 + 2r^2 k_2^2 k_3^2 k_4^2 + r^2 k_3^4 k_4^2 + r^2 k_2^4 k_4^2) + r^3 k_1 k_4^2 \\ + cosv (-2r^4 k_1 k_2 k_4^2 - 6r k_2 - r^3 k_2 k_4^2 - r^4 k_3' k_4^2 + 4r^3 k_2 k_3 k_4 sinv) - r^2 k_3 k_4 sinv (2 + r^2 k_4^2) \\ + r^2 cos^2 v (3k_3^2 + 15k_2^2 + r^2 k_4^2 (3k_2^2 + k_3^2 - r k_2' k_3 + r k_1 k_3^2 + r k_3' k_3) - 2r^2 k_4 sinv (k_2^2 k_3 + k_3^3)) \\ - r^3 cos^3 v (20k_2^3 + 12k_2 k_3^2 + 3r^2 k_2 k_3^2 k_4^2 + 3r^2 k_2^3 k_4^2) - 6r^5 cos^5 v \left(2k_2^3 k_3^2 + k_2 k_3^4 + k_2^5\right) \\ + r^6 cos^6 v (3k_2^4 k_3^2 + 3k_2^2 k_3^4 + k_3^6 + k_2^6),$$

respectively.

Proof: The equations (27), (16), and (17) are substituted into the equation (6) to yield the coefficients of the second fundamental form of the tubular surface with the unit vector field U_2 in \mathbb{E}^4 obtained as,

$$L_{2} = \frac{\cos^{2}v(3rk_{2}^{2} + rk_{3}^{2} - r^{2}k_{2}'k_{3} + r^{2}k_{1}k_{3}^{2} + r^{2}k_{1}k_{2}^{2} + r^{2}k_{2}k_{3}' + r^{3}k_{2}^{2}k_{4}^{2} + r^{3}k_{3}^{2}k_{4}^{2})}{\sqrt{(1 - rk_{2}cosv)^{2} + r^{2}k_{3}^{2}cos^{2}v}\sqrt{(1 - rk_{2}cosv)^{2} + 1 + r^{2}k_{3}^{2}cos^{2}v}} + \frac{r^{3}cos^{4}v(k_{3}^{4} + k_{2}^{4} + 2k_{2}^{2}k_{3}^{2}) - 3r^{2}cos^{3}v(k_{2}k_{3}^{2} + k_{2}^{3}) + rk_{4}^{2} + k_{1}}{\sqrt{(1 - rk_{2}cosv)^{2} + r^{2}k_{3}^{2}cos^{2}v}\sqrt{(1 - rk_{2}cosv)^{2} + 1 + r^{2}k_{3}^{2}cos^{2}v}}} + \frac{cosv(rk_{3}k_{4}sinv - k_{2} - 2rk_{1}k_{2} - rk_{3}' - 2r^{2}k_{2}k_{4}^{2})}{\sqrt{(1 - rk_{2}cosv)^{2} + r^{2}k_{3}^{2}cos^{2}v}\sqrt{(1 - rk_{2}cosv)^{2} + 1 + r^{2}k_{3}^{2}cos^{2}v}}},$$

$$M_{2} = \frac{r(k_{3}sinv + k_{4} - 2rk_{2}k_{4}cosv + r^{2}k_{2}^{2}k_{4}cos^{2}v + r^{2}k_{3}^{2}k_{4}cos^{2}v)}{\sqrt{(1 - rk_{2}cosv)^{2} + r^{2}k_{3}^{2}cos^{2}v}\sqrt{(1 - rk_{2}cosv)^{2} + 1 + r^{2}k_{3}^{2}cos^{2}v}}},$$

$$(30)$$

$$N_2 = \frac{r\sqrt{(1-rk_2cosv)^2 + r^2k_3^2cos^2v}}{\sqrt{(1-rk_2cosv)^2 + 1 + r^2k_3^2cos^2v}}$$

With the help of the equations (21), (22) and (30), the components of the shape operator matrix are as follows

$$\frac{L_2}{E} = \frac{\mathcal{A}_2((1 - rk_2 cosv)^2 + r^2 k_3^2 cos^2 v)^{-1/2}}{\mathcal{B}_2 \sqrt{(1 - rk_2 cosv)^2 + 1 + r^2 k_3^2 cos^2 v}},$$
(31)

where

$$\mathcal{A}_{2} = \cos^{2}v(3rk_{2}^{2} + rk_{3}^{2} + r^{2}(k_{1}k_{3}^{2} + rk_{2}^{2}k_{4}^{2} + rk_{3}^{2}k_{4}^{2} - k_{2}'k_{3} + k_{1}k_{2}^{2} - 2k_{2}k_{4}^{2} + k_{2}k_{3}')) + rk_{4}^{2} -3r^{2}k_{2}\cos^{3}v(k_{3}^{2} + k_{2}^{2}) + r^{3}\cos^{4}v(k_{2}^{2} + k_{3}^{2})^{2} - \cos v(k_{2} + rk_{3}' + 2rk_{1}k_{2}) + rk_{3}k_{4}\sin v + k_{1}k_{2}$$

$$\mathcal{B}_2 = 2 + r^2 cos^2 v (7k_2^2 + r^2 k_2^2 k_4^2 + r^2 k_3^2 k_4^2 + 3k_3^2) - 4r^3 k_2 cos^3 v [k_2^2 + k_3^2] + r^4 k_2^2 cos^4 v [2k_3^2 + k_2^2] + r^4 k_3^4 cos^4 v + 2r^2 k_4^2 - 6r k_2 cos v - 2r^3 k_2 k_4^2 cos v,$$

and

$$\frac{1}{W}\left(M_2 - \frac{F}{E}L_2\right) = \frac{-C_2((1 - rk_2 cos v)^2 + r^2 k_3^2 cos^2 v)^{-1/2}}{B_2\sqrt{(1 - rk_2 cos v)^2 + 1 + r^2 k_3^2 cos^2 v}},$$
(32)

where

$$\mathcal{C}_2 = r^2 cos^2 v (rk_1 k_3^2 k_4 + rk_1 k_2^2 k_4 + rk_2 k_3' k_4 - 3k_2^2 k_4 - k_3^2 k_4 - k_2^2 k_3 sinv - rk_2' k_3 k_4 - k_3^3 sinv) \\ -k_3 sinv + r^2 k_4 cosv (rk_2 k_3^2 - 2k_1 k_2 - k_3' + rk_2^3 k_4 cos^2 v) + rk_1 k_4 \\ + rk_2 cosv (2k_3 sinv + 3k_4) - k_4,$$

and

$$\frac{1}{W^2}(EN_2 - 2FM_2 + \frac{F^2}{E}L_2) = \frac{\mathcal{D}_2((1 - rk_2cosv)^2 + r^2k_3^2cos^2v)^{-3/2}}{\mathcal{B}_2r\sqrt{(1 - rk_2cosv)^2 + 1 + r^2k_2^2cos^2v}},$$
(33)

where

$$\mathcal{D}_2 = 1 + r^4 cos^4 v (18k_2^2k_3^2 + 15k_2^4 + 3k_3^4 + 2r^2k_2^2k_3^2k_4^2 + r^2k_3^4k_4^2 + r^2k_2^4k_4^2) + r^3k_1k_4^2 \\ + cosv (-2r^4k_1k_2k_4^2 - 6rk_2 - r^3k_2k_4^2 - r^4k_3'k_4^2 + 4r^3k_2k_3k_4sinv) - r^2k_3k_4sinv(2 + r^2k_4^2) \\ + r^2cos^2v(3k_3^2 + 15k_2^2 + r^2k_4^2(3k_2^2 + k_3^2 - rk_2'k_3 + rk_1k_3^2 + rk_3'k_3) - 2r^2k_4sinv(k_2^2k_3 + k_3^3)) \\ - r^3cos^3v(20k_2^3 + 12k_2k_3^2 + 3r^2k_2k_3^2k_4^2 + 3r^2k_2^3k_4^2) - 6r^5cos^5v(2k_2^3k_3^2 + k_2k_3^4 + k_2^5) \\ + r^6cos^6v(3k_2^4k_3^2 + 3k_2^2k_3^4 + k_3^6 + k_2^6)$$

Substituting equations (31), (32) and (33) into the equation (7) implies that the shape operator matrix with respect to U_2 following as

$$S_{U_2} = \begin{bmatrix} \frac{\mathcal{A}_2((1-rk_2cosv)^2 + r^2k_3^2cos^2v)^{-1/2}}{\mathcal{B}_2\sqrt{(1-rk_2cosv)^2 + 1 + r^2k_3^2cos^2v}} & \frac{-\mathcal{C}_2((1-rk_2cosv)^2 + r^2k_3^2cos^2v)^{-1/2}}{\mathcal{B}_2\sqrt{(1-rk_2cosv)^2 + 1 + r^2k_3^2cos^2v}} \\ \frac{-\mathcal{C}_2((1-rk_2cosv)^2 + r^2k_3^2cos^2v)^{-1/2}}{\mathcal{B}_2\sqrt{(1-rk_2cosv)^2 + 1 + r^2k_3^2cos^2v}} & \frac{\mathcal{D}_2\sqrt{(1-rk_2cosv)^2 + 1 + r^2k_3^2cos^2v}}{\mathcal{B}_2r((1-rk_2cosv)^2 + r^2k_3^2cos^2v)^{3/2}} \end{bmatrix}$$

Theorem 5: Let $M \subset \mathbb{E}^4$ be a tubular surface at a distance r from the spine curve $\alpha(t)$ according to the quasi-frame $\{T, N_q, B_q, C_q\}$ with the parametrization $\psi(t, v)$, given by $\psi: U \subset \mathbb{E}^2 \to \mathbb{E}^4$, $(t, v) \in$

U, and let tangent space to M at a point $p \in \psi(t, v)$ be spanned by $\{\psi_t, \psi_v\}$. The Gaussian and mean curvatures are obtained as

$$K = -\frac{r^{2}cos^{2}v(k'_{2}k_{3} - k_{1}k_{3}^{2} - k_{1}k_{2}^{2} - k_{2}k'_{3}) - rcos^{2}v(k_{2}^{2} + 2k_{3}^{2}) + k_{1}}{r(2 - 6rk_{2}cosv + r^{2}cos^{2}v(7k_{2}^{2} + 3k_{3}^{2}) - 4r^{3}cos^{3}v(k_{2}^{3} + k_{2}k_{3}^{3}) + r^{4}cos^{4}v(k_{2}^{2} + k_{3}^{2})^{2})} \\ + \frac{cosv(k_{2} - 2rk_{1}k_{2} - rk'_{3}) + rk_{3}^{2} - rk_{3}k_{4}sinv}{r(2 - 6rk_{2}cosv + r^{2}cos^{2}v(7k_{2}^{2} + 3k_{3}^{2}) - 4r^{3}cos^{3}v(k_{2}^{3} + k_{2}k_{3}^{3}) + r^{4}cos^{4}v(k_{2}^{2} + k_{3}^{2})^{2})} \\ + \frac{r^{3}cos^{4}v(k_{2}^{4} + k_{3}^{4} + 2k_{2}^{2}k_{3}^{2}) - cosv(k_{2} + rk'_{3} + 2r^{2}k_{2}k_{4}^{2} + 2rk_{1}k_{2})}{r((1 - rk_{2}cosv)^{2} + 1 + r^{2}k_{3}^{2}cos^{2}v)} \\ + \frac{cos^{2}v(3rk_{2}^{2} + rk_{3}^{2} + r^{2}k_{2}k'_{3} - r^{2}k'_{2}k_{3} + r^{2}k_{1}(k_{3}^{2} + k_{2}^{2}) + r^{3}k_{4}^{2}(k_{2}^{2} + k_{3}^{2}))}{r((1 - rk_{2}cosv)^{2} + 1 + r^{2}k_{3}^{2}cos^{2}v)} \\ + \frac{k_{1} + rk_{4}^{2} + rk_{3}k_{4}sinv - 3r^{2}k_{2}cos^{3}v(k_{3}^{2} + k_{2}^{2})}{r((1 - rk_{2}cosv)^{2} + 1 + r^{2}k_{3}^{2}cos^{2}v)},$$

$$H = \frac{rk_1 + rcosv(3k_2 - 2rk_1k_2 - rk'_3) + r^3cos^2v(k_1k_2^2 - k'_2k_3 + k_1k_3^2 + k_2k'_3)}{2((1 - rk_2cosv)^2 + r^2k_3^2cos^2v)\sqrt{(1 - rk_2cosv)^2 + 1 + r^2k_3^2cos^2v}} \\ - \frac{2r^2cos^2v(k_2^2 + k_3^2) + 1 + r^2k_3k_4sinv}{2((1 - rk_2cosv)^2 + r^2k_3^2cos^2v)\sqrt{(1 - rk_2cosv)^2 + 1 + r^2k_3^2cos^2v}} \\ + \frac{r^3cos^2v(k_1k_3^2 + k_1k_2^2 + k_2k'_3 - 7k_2k_3^2cosv - 7k_2^3cosv - k'_2k_3) + rk_1 - 5rk_2cosv}{2r\sqrt{(1 - rk_2cosv)^2 + 1 + r^2k_3^2cos^2v}((1 - rk_2cosv)^2 + r^2k_3^2cos^2v)^{3/2}}} \\ + \frac{1 + r^2(cosv(3k_3^2cosv + 9k_2^2cosv - k'_3 - 2k_1k_2) - k_3k_4sinv) + 2r^4cos^4v(k_2^2 + k_3^2)^2}{2r\sqrt{(1 - rk_2cosv)^2 + 1 + r^2k_3^2cos^2v}((1 - rk_2cosv)^2 + r^2k_3^2cos^2v)^{3/2}}}.$$

Proof: If the equations (15) and (29) are substituted into the equations given by (8) and (9), the Gaussian and mean curvatures are found to be as in (34) and (35), respectively.

Corollary: It is easily seen that the Gaussian and mean curvature calculations obtained using the shape operator are the same as those obtained with the fundamental form coefficients in [32].

Example Let
$$\alpha(t)$$
 be a centre curve with quasi-frame of tubular surface in \mathbb{E}^4 such as
$$\alpha(t) = (\frac{1}{3\sqrt{2}}\cos 3t, \frac{1}{3\sqrt{2}}\sin 3t, \frac{1}{\sqrt{2}}\cos t, \frac{1}{\sqrt{2}}\sin t) \tag{36}$$

From $||\alpha(t)|| = 1$, it is easy to see that quasi-vectors are given as

$$T = \left(-\frac{1}{\sqrt{2}}sin3t, \frac{1}{\sqrt{2}}cos3t, -\frac{1}{\sqrt{2}}sint, \frac{1}{\sqrt{2}}cost\right)$$

$$N_{q} = (0,0,cost,sint)$$

$$B_{q} = \left(-\frac{1}{\sqrt{2}}(4cos^{2}v - 1)sint, \frac{1}{\sqrt{2}}(4cos^{2}v - 3)cost, \frac{1}{\sqrt{2}}sint, -\frac{1}{\sqrt{2}}cost\right)$$

$$C_{q} = \left((4cos^{2}v - 3)cost, (4cos^{2}v - 1)sint, 0,0\right)$$
(37)

and from equation (8), quasi-curvatures are given as
$$k_1 = -\frac{1}{\sqrt{2}}, \qquad k_2 = 0, \qquad k_3 = -\frac{1}{\sqrt{2}} \quad and \qquad k_4 = -\frac{3}{\sqrt{2}}$$

Substituting equations (36) and (37) into equation (10), the tubular surface is parametrized as

$$\psi(t,v) = \left(\frac{1}{3\sqrt{2}}cos3t + r\left(\frac{-1}{\sqrt{2}}(4cos^2v - 1)cosvsint + (4cos^2v - 3)sinvcost\right),$$

$$\frac{1}{3\sqrt{2}}sin3t + r\left(\frac{1}{\sqrt{2}}(4cos^2v - 3)cosvcost + (4cos^2v - 1)sinvsint\right),$$

$$\frac{1}{\sqrt{2}}cost + \frac{1}{\sqrt{2}}rcosvsint, \frac{1}{\sqrt{2}}sint - \frac{1}{\sqrt{2}}rcosvcost\right).$$

Hence for $r = \sqrt{2}$, it is straight forward by found that

Yağbasan and Ekici / Estuscience – Theory 13 (2) – 2025

$$\psi(t,v) = \left(\frac{1}{3\sqrt{2}}\cos 3t - (4\cos^2 v - 1)\cos v \sin t + \sqrt{2}(4\cos^2 v - 3)\sin v \cos t\right)$$

$$\frac{1}{3\sqrt{2}}\sin 3t + (4\cos^2 v - 3)\cos v \cos t + \sqrt{2}(4\cos^2 v - 1)\sin v \sin t,$$

$$\frac{1}{\sqrt{2}}\cos t + \cos v \sin t, \frac{1}{\sqrt{2}}\sin t - \cos v \cos t\right).$$

Then for $r = \sqrt{2}$, the unit normal vector fields in the equation (38) of tubular surface are given as

$$U_{1} = \frac{1}{\sqrt{2 + 2cos^{2}v}} \left(-\sqrt{2}cosv, 1, cosv, sinv\right),$$

$$U_{2} = \frac{1}{\sqrt{2 + 2cos^{2}v}} \left(\frac{-\sqrt{2}cosv}{\sqrt{1 + 2cos^{2}v}}, \frac{1}{\sqrt{1 + 2cos^{2}v}}, -cosv\sqrt{1 + 2cos^{2}v}, -sinv\sqrt{1 + 2cos^{2}v}\right).$$
The shape operators of tubular surface are given as
$$\begin{bmatrix} A_{1} & B_{1} & B_{1} \end{bmatrix}$$
(38)

$$S_{U_1} = \frac{(19 + 2\cos^2 v)^{-1}}{\sqrt{2 + 2\cos^2 v}} \begin{bmatrix} \frac{\mathcal{A}_1}{2} & \frac{\mathcal{B}_1}{2\sqrt{1 + 2\cos^2 v}} \\ \frac{\mathcal{B}_1}{2\sqrt{1 + 2\cos^2 v}} & \frac{36\mathcal{A}_1 - 2(19 + 2\cos^2 v) - 24(\sin v - 3)}{4 + 8\cos^2 v} \end{bmatrix}$$
(39)

and

$$S_{U_2} = \frac{(19 + 2\cos^2 v)^{-1}}{\sqrt{2 + 2\cos^2 v}} \begin{bmatrix} \frac{\mathcal{A}_2}{2\sqrt{1 + 2\cos^2 v}} & \frac{-6 - \sqrt{2}(3 + \sin v)}{2} \\ \frac{-6 - \sqrt{2}(3 + \sin v)}{2} & \frac{\mathcal{B}_2}{2(1 + 2\cos^2 v)^{3/2}} \end{bmatrix}, \tag{40}$$

where

$$\begin{array}{ll} \mathcal{A}_{1} = & 6(sinv-3) - \sqrt{2} - \left(2\sqrt{2} + 2\right)cos^{2}v, \\ \mathcal{B}_{1} = & 3\sqrt{2}(1-sinv) - 6 + \left(2\sqrt{2}sinv + 12\right)cos^{2}v, \\ \mathcal{A}_{2} = & 6(sinv+3) - \sqrt{2} - \left(2\sqrt{2} - 38\right)cos^{2}v + 4cos^{4}v, \\ \mathcal{B}_{2} = & 1 + 18\sqrt{2} - 120sinv + 4cos^{4}v(21 + 2cos^{2}v) + \left(42 - 36\sqrt{2} - 24sinv\right)cos^{2}v, \end{array}$$

respectively. The Gaussian and mean curvatures of the tubular surface are given as

$$K = \det(S_{U_1}) + \det(S_{U_2}), \quad and \quad H = iz(S_{U_1}) + iz(S_{U_2}),$$
 (40)

respectively, where

$$\begin{split} \det \left(S_{U_1}\right) &= \ \, \frac{6 sinv + \sqrt{2} - 2 + (2\sqrt{2} + 4) cos^2 v}{8(1 + 3 cos^2 v + 2 cos^4 v)}, \\ iz(S_{U_1}) &= \ \, \frac{-(6 sinv + \sqrt{2} + 1 + (2\sqrt{2} + 4) cos^2 v)}{2(1 + 2 cos^2 v)\sqrt{2 + 2 cos^2 v}}, \\ \det \left(S_{U_2}\right) &= \ \, \frac{-6 sinv - \sqrt{2} - 2 + \left(4 - 12 sinv - 4\sqrt{2}\right) cos^2 v + \left(8 - 4\sqrt{2}\right) cos^4 v + 8 cos^6 v}{8(1 + 5 cos^2 v + 8 cos^4 v + 4 cos^6 v)}, \\ iz(S_{U_2}) &= \ \, \frac{-6 sinv - \sqrt{2} + 1 + (6 - 2\sqrt{2}) cos^2 v + 8 cos^4 v}{2(1 + 3 cos^2 v)^{3/2} \sqrt{2 + 2 cos^2 v}}. \end{split}$$

In this case, the curvatures are obtained as

$$K = \frac{6sinv + \sqrt{2} - 2 + (2\sqrt{2} + 4)cos^{2}v}{8(1 + 3cos^{2}v + 2cos^{4}v)} + \frac{(4 - 12sinv - 4\sqrt{2})cos^{2}v + (8 - 4\sqrt{2})cos^{4}v}{8(1 + 5cos^{2}v + 8cos^{4}v + 4cos^{6}v)} + \frac{8cos^{6}v - 6sinv - \sqrt{2} - 2}{8(1 + 5cos^{2}v + 8cos^{4}v + 4cos^{6}v)},$$

$$H = \frac{-(6sinv + \sqrt{2} + 1 + (2\sqrt{2} + 4)cos^2v)}{2(1 + 2cos^2v)\sqrt{2 + 2cos^2v}} + \frac{8cos^4v + (6 - 2\sqrt{2})cos^2v - 6sinv - \sqrt{2} + 1}{2(1 + 3cos^2v)^{3/2}\sqrt{2 + 2cos^2v}}.$$

Finally, the tubular surface shown in Figure 2.a. and Figure 2.b. are parametrized as

$$\psi(t,v) = \left(\frac{1}{3\sqrt{2}}cos3t - (4cos^2v - 1)cosvsint + \sqrt{2}(4cos^2v - 3)sinvcost, \\ \frac{1}{3\sqrt{2}}sin3t + (4cos^2v - 3)cosvcost + \sqrt{2}(4cos^2v - 1)sinvsint, \\ \frac{1}{\sqrt{2}}cost + cosvsint\right),$$

$$\psi(t,v) = \left(\frac{1}{3\sqrt{2}}cos3t - (4cos^2v - 1)cosvsint + \sqrt{2}(4cos^2v - 3)sinvcost, \\ \frac{1}{3\sqrt{2}}sin3t + (4cos^2v - 3)cosvcost + \sqrt{2}(4cos^2v - 1)sinvsint, \\ \frac{1}{\sqrt{2}}sint - cosvcost\right)$$

for $r = \sqrt{2}$ in projection spaces xyz and xyt, respectively.

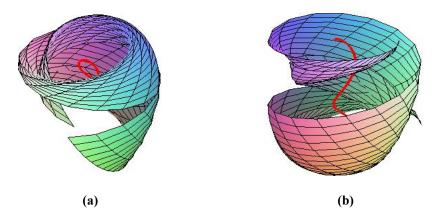


Figure 2. (a) Tubular surface in space xyz; (b) Tubular surface in space xyt.

Similarly, the tubular surface shown in Figure 3.a. and Figure 3.b. are parametrized as

$$\psi(t,v) = \left(\frac{1}{3\sqrt{2}}cos3t - (4cos^2v - 1)cosvsint + \sqrt{2}(4cos^2v - 3)sinvcost, \frac{1}{\sqrt{2}}cost + cosvsint, \frac{1}{\sqrt{2}}sint - cosvcost\right),$$

$$\psi(t,v) = \left(\frac{1}{3\sqrt{2}}sin3t + (4cos^2v - 3)cosvcost + \sqrt{2}(4cos^2v - 1)sinvsint, \frac{1}{\sqrt{2}}cost + cosvsint, \frac{1}{\sqrt{2}}sint - cosvcost\right)$$

for $r = \sqrt{2}$ in projection spaces xzt and yzt, respectively.

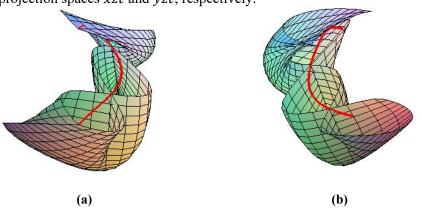


Figure 3. (a) Tubular surface in space xzt; (b) Tubular surface in space yzt.

The figures were made using the Maple program.

4- CONCLUSIONS

In this study, the tubular surface is parameterized using a quasi-frame. By introducing directional tubular surfaces in Euclidean 4-space, their unit normal vectors, fundamental form coefficients, shape operator matrices, Gaussian curvatures, and mean curvatures are calculated. Then, a center curve is taken in Euclidean 4-space and calculations are provided with an example. Finally, directional tubular surfaces are visualized in projection spaces.

ACKNOWLEDGEMENTS

This text is based on the thesis authored by Başak Yağbasan at Eskişehir Osmangazi University.

CONFLICT OF INTEREST

The author(s) stated that there are no conflicts of interest regarding the publication of this article.

CRediT AUTHOR STATEMENT

Başak Yağbasan: Formal analysis, Writing - original draft, Investigation, Conceptualization. **Cumali Ekici**: Supervision, Writing – Review & Editing, Formal analysis, Visualization

REFERENCES

- [1] Monge G. Application de l'analyse a la géométrie. Bachelier. 1850.
- [2] Xu Z, Feng R, Sun JG. Analytic and algebraic properties of canal surfaces. Journal of Computational and Applied Mathematics, 2006; 195(1-2): 220-228.
- [3] Maekawa T, Patrikalakis NM, Sakkalis T, Yu G. Analysis and applications of pipe surfaces. Computer Aided Geometric Design, 1998; 15(5), 437-458.
- [4] Bloomenthal J. Calculation of reference frames along a space curve. Graphics Gems, 1990; 1: 567-571.
- [5] Doğan F, Yaylı Y. Tubes with Darboux frame. International Journal of Contemporary Mathematical Sciences, 2012; 7(16): 751-758.
- [6] Bishop RL. There is more than one way to frame a curve. The American Mathematical Monthly, 1975; 82(3): 246-251.
- [7] Coquillart S. Computing offsets of B-spline curves, Computer-Aided Design, 1987; 19(6): 305-309.
- [8] Dede M, Ekici C, Görgülü A. Directional q-frame along a space curve. International Journal of Advanced Research in Computer Science and Software Engineering, 2015; 5(12): 775-780.

- [9] Dede M. Tubular surfaces in Galilean space. Mathematical Communications, 2013; 18(1): 209-217.
- [10] Dede M, Ekici C, Tozak H. Directional tubular surfaces. International Journal of Algebra, 2015; 9(12): 527-535.
- [11] Ekici C, Tozak H, Dede M. Timelike directional tubular surface. Journal of Mathematical Analysis, 2017; 8(5): 1-11.
- [12] Gezer B, Ekici C. On space curve with quasi frame in E4. 4th International Black Sea Modern Scientific Research Congress; 6-7 June 2023; Rize, Turkey, 1951-1962.
- [13] Gluck H. Higher curvatures of curves in Euclidean space. The American Mathematical Monthly, 1966; 73(7): 699-704.
- [14] Alessio O. Differential geometry of intersection curves in R4 of three implicit surfaces. Computer Aided Geometric Design, 2009; 26(4): 455-471.
- [15] Elsayied HK, Tawfiq AM, Elsharkawy A. Special Smarandach curves according to the quasi frame in 4-dimensional Euclidean space E4. Houston Journal of Mathematics, 2021; 74(2): 467-482.
- [16] Gökçelik F, Bozkurt Z, Gök İ, Ekmekçi N, Yaylı Y. Parallel transport frame in 4-dimensional Euclidean space. The Caspian Journal of Mathematical Sciences, 2014; 3(1): 91-103.
- [17] Öztürk G, Gürpınar S, Arslan K. A new characterization of curves in Euclidean 4-space E4. Buletinul Academiei de Stiinte a Republicii Moldova, Matematica, 2017; 1(83), 39-50.
- [18] Bayram KB, Bulca B, Arslan K, Öztürk G. Superconformal ruled surfaces in E4. Mathematical Communications, 2009; 14(2), 235-244.
- [19] Ekici A, Akça Z, Ekici C. The ruled surfaces generated by quasi-vectors in E4 space. 7. International Biltek Congress on Current Developments in Science, Technology and Social Sciences, 2023; 400-418.
- [20] Ol'ah-G'al R, P'al L. Some notes on drawing twofolds in 4-Dimensional Euclidean space. Acta Universitatis Sapientiae, Informatica, 2009; 1(2), 125-134.
- [21] Chen BY. Total mean curvature of immerseds Surface in Em. Transactions of the American Mathematical Society, 1976; 218: 333-341.
- [22] Kişi İ. Some characterizatıons of canal surfaces in the four dimensional Euclidean space. Kocaeli University, Kocaeli, Türkiye, 2018.
- [23] Bulca B, Arslan K, Bayram B, Öztürk G. Canal surfaces in 4-dimensional Euclidean space. An International Journal of Optimization and Control: Theories & Applications, 2017; 7(1): 83-89.
- [24] Kaymanlı GU, Ekici C, Dede M. Directional canal surfaces in E3. 5th International Symposium on Multidisciplinary Studies, 2018; 90-107.
- [25] Kim YH, Liu H, Qian J. Some characterizations of canal surfaces. Bulletin of the Korean Mathematical Society, 2016; 53(2): 461-477.

- [26] Uçum A, İlarslan K. New types of canal surfaces in Minkowski 3-space. Advances in Applied Clifford Algebras, 2016; 26: 449-468.
- [27] Doğan F, Yaylı Y. The relation between parameter curves and lines of curvature on canal surfaces. Kuwait Journal of Science, 2017; 44(1): 29-35.
- [28] Coşkun Ekici A, Akça Z. The ruled surfaces generated by quasi-vectors in E4 space. Hagia Sophia Journal of Geometry, 2023; 5(2): 6-17.
- [29] Mello LF. Mean directionally curved lines on surfaces immersed in R4. Publicacions Matemàtiques, 2003; 47(2): 415-440.
- [30] Yağbasan B, Ekici C. Tube surfaces in 4 dimensional Euclidean space. 4th International Black Sea Modern Scientific Research Congress; 6-7 June 2023; Rize, Türkiye, 1951-1962.
- [31] Yağbasan B, Tozak H, Ekici C. The curvatures of the tube surface in 4 dimensional Euclidean space. VII.International Biltek Congress On Current Developments In Science, Technology And Social Sciences; 26-27 May 2023; Ankara, Türkiye 419-436.
- [32] Yağbasan B, Ekici C, Tozak H. Directional tube surface in Euclidean 4-space. Hagia Sophia Journal of Geometry, 2023; 5(2): 18-30.
- [33] Gray A. Modern differential geometry of curves and surface. CRS Press, Inc. 1993.
- [34] Bulca B. A characterization of a surface in E4. Uludağ University, Bursa, Türkiye, 2012.