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Abstract

Gas turbine engines are critical components in aerospace, power generation, and industrial applications,
consisting of complex rotating and stationary parts subject to extreme mechanical, thermal, and aerodynamic
loads. A key component in modern gas turbines is the rotor blisk, which combines the blades and disk into a
single unit. Due to its complex geometry and harsh operating conditions, the rotor blisk experiences significant
mechanical stresses that must be accurately calculated to ensure reliability, safety, and optimal performance.
Traditional methods, such as finite element analysis (FEA), are widely used to calculate stress distributions
under various loading conditions. However, FEA is computationally expensive, especially when analyzing
multiple scenarios for different operating conditions. This computational cost can become a bottleneck in
iterative design studies and real-time decision making. To address this challenge, this study proposes a novel
approach that uses deep learning to predict stresses in rotor blisks under varying loads. A deep neural network
(DNN) was trained on FEA-generated stress data to learn the relationships between input parameters and
resulting stress distributions. The Al-based model was validated using unseen load scenarios for radial, axial,
and tangential stress distributions and maximum-minimum stress results, with a maximum deviation of 6% to
15% from FEA results. In addition, the Artificial Intelligence (Al) approach reduced the computational cost by
13,000 times faster than FEA by predicting results instead of solving complex equations. The Al approach
enables rapid stress predictions and facilitates real-time design iteration and optimization. These results
highlight the transformative potential of Al in engineering simulation, enabling faster, more efficient structural
assessments and advancing the optimization of gas turbine components in the aerospace and energy industries.

Key Words: Artificial Intelligence (Al), Finite Element Analysis (FEA), Gas Turbine Engine, Rotor Blisk,
Deep Learning

JEL Classification: C45, C63.

Gaz Tiirbinli Motorlarda Rotor Blisk icin Yapay Zeka Tabanh Gerilme

Tahmini

Oz

Gaz tiirbinli motorlar; havacilik, enerji iiretimi ve endistriyel uygulamalarda kritik bilesenler olup, asiri
mekanik, termal ve aerodinamik yiiklere maruz kalan karmasik doner ve sabit parcalardan olusmaktadir.
Modern gaz tiirbinlerinin temel bilesenlerinden biri, kanatlar1 ve diski tek bir biitiin halinde birlestiren rotor
blisktir. Karmasik geometrisi ve zorlu ¢aligma kosullar1 nedeniyle rotor blisk, giivenilirligin, emniyetin ve
optimal performansin saglanabilmesi i¢in dogru bir sekilde hesaplanmasi gereken 6nemli mekanik gerilmelere
maruz kalmaktadir. Sonlu elemanlar analizi (SEA) gibi geleneksel yontemler, farkli yiikleme kosullarinda
gerilme dagilimlarint hesaplamak i¢in yaygin sekilde kullanilmaktadir. Ancak, SEA o6zellikle farkli ¢aligma
kosullar1 i¢in ¢oklu senaryolarin analizinde hesaplama agisindan maliyetli olup, bu hesaplama yiikii
tekrarlamali tasarim ¢aligsmalarinda ve ger¢ek zamanl karar vermede bir darbogaz haline gelebilmektedir. Bu
zorlugun istesinden gelmek amaciyla, bu ¢alisma rotor blisklerde farkli yiikler altinda gerilmeleri tahmin
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etmek icin derin &grenme kullanan yeni bir yaklasim Onermektedir. Bir derin sinir ag1 (DSA), giris
parametreleri ile ortaya ¢ikan gerilme dagilimlart arasindaki iligkileri 6grenebilmek i¢in SEA tarafindan
tiretilmis gerilme verileri {izerinde egitilmistir. Yapay zeka tabanli model, radyal, eksenel ve tegetsel gerilme
dagilimlar1 ile maksimum-minimum gerilme sonuglari icin goériilmemis yiikk senaryolar1 kullanilarak
dogrulanmis ve SEA sonuglarina kiyasla %6 ila %15 arasinda maksimum sapma gostermistir. Ayrica, yapay
zeka yaklagimi karmagsik denklemleri ¢6zmek yerine sonuglari tahmin ederek SEA’ya kiyasla hesaplama
maliyetini 13.000 kat azaltmistir. Yapay zeka yaklasimi, hizli gerilme tahminleri yapilmasimi miimkiin
kilmakta ve gercek zamanli tasarim yinelemelerini ve optimizasyonu kolaylastirmaktadir. Bu sonuglar,
miihendislik simiilasyonunda yapay zekanin doniistiiriicii potansiyelini vurgulamakta, daha hizli ve daha
verimli yapisal degerlendirmeleri miimkiin kilmakta ve havacilik ile enerji endiistrilerinde gaz tiirbini
bilesenlerinin optimizasyonunu ilerletmektedir.

Anahtar Kelimeler: Yapay Zeka (YZ), Sonlu Elemanlar Analizi (SEA), Gaz Tirbinli Motor, Rotor Blisk,
Derin Ogrenme

JEL Smiflandirma: M10, M19.
INTRODUCTION

Gas turbine engines are integral components in a wide range of industries, including
aerospace, power generation, and industrial sectors. They are designed to operate under
extreme mechanical, thermal, and aerodynamic loads, where high efficiency, reliability, and
performance are of paramount importance (Mane et. al, 2023). These engines consist of
complex rotating and stationary components that work in tandem to convert energy into
mechanical power. Among these components, the rotor blisk which combines the disk and
blades into a single structure plays a critical role. Rotor blisks are typically used in
compressors, as they offer significant advantages such as weight reduction, enhanced
aerodynamic performance, and improved thermal management (Kumar, 2013). The
integration of the disk and blades into a single unit eliminates the need for traditional
fastening methods, resulting in a more streamlined and efficient design, as shown in Fig. 1.

Figure 1. Compressor rotor blisk

Source: Bandini et. al, 2024

Due to their complex geometry and harsh operating conditions, rotor blisks are subjected to
substantial mechanical stresses. These stresses are a result of various factors, including
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rotational speed, aerodynamic forces, and thermal expansion effects, all of which vary
depending on the engine’s operating conditions. The accurate calculation of these stresses is
essential for ensuring the component’s reliability, preventing fatigue failures, and optimizing
its lifespan (Elhefny & Megahed, 2018). Traditional methods such as finite element analysis
(FEA) are widely used to perform stress analysis under different loading conditions. FEA is
a powerful tool that provides high-fidelity results by breaking down complex geometries
into smaller, manageable elements and solving the governing equations. However, while
FEA is highly accurate, it is computationally expensive, particularly when multiple loading
scenarios must be analyzed. As a result, this computational burden limits the feasibility of
real-time analysis and optimization in many engineering applications, hindering timely
design decisions and innovation (Zhang et. al, 2016).

In recent years, artificial intelligence (Al) has emerged as a promising solution to accelerate
structural simulations and address the limitations of traditional methods like FEA. Al-driven
models, particularly those based on machine learning (ML), have shown the potential to
reduce the computational cost associated with structural analysis without compromising
accuracy. These models, often referred to as surrogate models, are trained on large datasets
generated through FEA or experimental testing. Once trained, they can predict stress
distributions under various loading conditions much faster than traditional FEA, thus
enabling real-time simulations (Shivaditya et. al, 2022). In particular, deep learning, a subset
of Al, has demonstrated significant promise due to its ability to capture complex, non-linear
relationships between input parameters and output results. Several studies have applied
machine learning-based methods in fields such as structural health monitoring, material
property prediction, and topology optimization, showcasing their ability to streamline design
and analysis processes (Plevris & Papazafeiropoulos, 2024). However, despite the growing
body of research on Al applications in engineering, the use of Al for stress prediction in
structural components under varying operational conditions is still an emerging field.

The application of Al in gas turbine engineering has already shown considerable potential
in improving performance and reducing maintenance costs. For instance, one study reviewed
Al applications in condition assessment and fault detection, noting the success of machine
learning models in enhancing the reliability of turbine systems (Zhao et. al, 2021). Similarly,
another study introduced a hybrid temporal convolutional network—autoencoder model for
real-time fault detection, improving diagnostic accuracy in gas turbine systems (Guo et. al,
2021). Other studies have proposed deep learning-based models for predicting low-cycle
fatigue life in turbine blades (Zhu et. al, 2022), optimizing turbine blisk temperature
distributions (Wang et. al, 2022), and enhancing fault detection under noisy conditions (Chen
et. al, 2022). One study applied dynamic neural networks to diagnose engine failures at an
early stage, while another leveraged Al-driven topology optimization to enhance the
performance of compressor rotor blisks, improving their strength and efficiency [13,14]. A
convolutional neural network (CNN) approach has been proposed for probabilistic low-cycle
fatigue life prediction of turbine blisks, demonstrating significant accuracy improvements
over conventional methods (Fei et. al, 2024). A comprehensive review of machine learning
strategies in turbine cooling design optimization has also been conducted, emphasizing the
role of surrogate models in reducing simulation time and design complexity (Li et. al, 2024).
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Furthermore, a reduced-order modeling technique based on deep learning has been
introduced to predict unsteady pressure fields on turbine blades, substantially decreasing
computational effort while maintaining high fidelity (Joachim et. al, 2025). Another study
investigated reinforced symbolic learning with logical constraints for predicting turbine
blade fatigue life, integrating interpretability with predictive performance (Li et. al, 2024).
In addition, recent reviews have focused on Al-driven frameworks for predictive
maintenance and diagnostics in turbomachinery, addressing fault detection, anomaly
prediction, and reliability enhancement (Bunyan et. al, 2025).

These studies underscore the growing recognition of AI’s potential to optimize turbine
systems and improve their performance across various stages of the life cycle, from design
and operation to maintenance and failure prediction. Despite these advancements, the
application of Al in predicting the stress distribution of complex components like rotor blisks
under varying operational conditions remains an open challenge. Traditional FEA methods
require detailed geometric models and significant computational resources, which makes it
difficult to apply these methods in iterative design processes and real-time decision-making.
Deep learning-based approaches, on the other hand, offer a potential solution by enabling
faster and more efficient simulations.

This study introduces a novel deep neural network (DNN) approach for predicting stress in
rotor blisks subjected to a variety of loading conditions, including rotational speed, gas
pressure, and thermal loads. By training the DNN model using comprehensive FEA-
generated stress data, the model effectively learns the complex, non-linear relationships
between these input parameters and the resulting stress distributions. This research addresses
the existing gap by demonstrating how Al can significantly accelerate stress prediction for
critical aerospace components, thereby overcoming the computational limitations of
traditional FEA for design optimization and real-time assessment. Once trained, the model
can provide rapid predictions, with a maximum deviation of just 15% from traditional FEA
results, while reducing computational costs by approximately 3300%. This dramatic
reduction in computational load makes real-time design optimization feasible and opens up
new possibilities for rapid prototyping and iterative design processes in gas turbine
engineering. Moreover, the DNN-based approach provides an efficient way to perform
sensitivity analysis, enabling engineers to explore the effects of different loading conditions
on the component's performance without the need for extensive FEA simulations.

The main objectives of this study are:

e Todevelop arobust deep learning model for accurate stress prediction in rotor blisks
under varying operational conditions.

e To demonstrate the significant computational efficiency gains of the Al-based
approach compared to traditional FEA.

e To provide a framework for integrating Al into the design and analysis workflows of
gas turbine components, facilitating faster design iterations and optimization.

e Toanalyze and compare the radial, tangential, and axial stress distributions predicted
by the DNN with high-fidelity FEA results, identifying the model's strengths and
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limitations in capturing complex stress patterns.

The subsequent sections of this paper are organized as follows: Section-2 details the material
and methods, including the finite element analysis of the blisk model and the architecture of
the deep learning model. Section-3 presents the results and a comprehensive discussion of
the stress predictions. Finally, Section-4 provides the conclusions drawn from this study and
outlines potential avenues for future research.

1. MATERIAL AND METHOD
1.1. Finite Element Analysis of the Blisk Model

The finite element method (FEM) is a numerical technique widely used for solving complex
engineering problems involving structural, thermal, and dynamic analyses. It discretizes a
continuum domain into smaller subdomains, known as finite elements, connected at nodes,
thereby transforming partial differential equations into a system of algebraic equations that
can be solved computationally. The general governing equation of motion in FEM for a
dynamic system is expressed can be expressed as given in Equ. 1 (ANSYS, 2024).

[M]{u} + [C1{i} + [K]{u} = {F} (1)

Where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, u is the
displacement vector, and F represents the external force vector. Depending on the problem
type, static or dynamic equilibrium conditions are enforced to obtain the solution. Since
external forces does not vary with time in this study, inertial and damping effects are
neglected and the general governing equation of motion becomes as given in Equ. 2.

[K1{u} = {F} (2)

In this study, FEA was employed to simulate the behavior of a blisk model under operational
conditions typically encountered in high-pressure compressor rotors. The geometry of the
blisk was generated using SpaceClaim, and the numerical simulations were carried out using
ANSYS Mechanical. To reduce computational costs while still capturing the key structural
behaviors, a one-blade sector representation of a 70-bladed blisk was chosen for the finite
element (FE) model. To replicate the behavior of the full blisk assembly without simulating
all 70 blades, cyclic symmetry boundary conditions were applied to the boundary faces of
the sector model as shown in Fig. 2. The model was meshed using 22,400 SOLID185 linear
hexahedron elements, which were selected for their suitability in accurately capturing the
complex geometries and stresses of the blisk while maintaining computational efficiency
and constrained in both the axial and tangential directions from the forward side face of the
disc bore and constrained only in tangential direction from aft side of the disc bore to
simulate the physical boundary conditions of the actual component as shown in Fig. 3.
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Figure 2. Compressor rotor blisk: 360° model (left), Cyclic secfor model (right)

The material used in the simulations was assumed to be isotropic and temperature-
dependent, reflecting the characteristics of high-performance titanium alloys commonly
used in compressor rotor blisks. This choice allows for the incorporation of the temperature-
induced variations in material properties, such as Young’s modulus, Poisson’s ratio, and
thermal expansion, which are critical when assessing the blisk’s performance under the
extreme conditions encountered in turbine operation.

The loading conditions applied to the model were designed to simulate the real operational
environment of high-pressure compressor rotors in gas turbine engines. These included
centrifugal forces, represented by varying the rotational speed between 0 to 12,000 RPM,
and aerodynamic loads, modeled by gas pressures ranging from 0 MPa to 0.5 MPa. To
capture the effects of temperature that occur during engine operation, thermal loads were
applied, with temperatures ranging from 0°C to 1,500°C, simulating both the thermal
expansion of the material and the resulting stress redistribution within the structure as shown
in Fig. 4. Geometric nonlinearity was taken into account in numerical simulations.
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Figure 3. Compressor rotor blisk: FE model (left), Boundary conditions (right)

Thermal Condition
Pressure Time: 1, s

[[] Rotational Velocity: Time: 1.8

Components: 0,,0,,10000 RPM
Location: 0,;0,;0, mm

[l Thermal Condition: 850, °C
[l Pressure: 0,3 MPa

Figure 4. Applied loads for rotor blisk model: Rotational velocity (left), Gas pressure
(middle), Temperature (right)
The solution phase involved performing static analyses to evaluate stress distributions at
different load cases. A total of 10 distinct load cases were examined to obtain a
comprehensive dataset, which could later be used for further validation and potential deep
learning applications as shown in Table 1. The key performance indicators extracted from
the results included radial, tangential, and axial stresses for the blisk sector under various
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loading conditions. These findings provide valuable insights into the structural integrity and
operational safety of the compressor rotor, contributing to the optimization of its design and
performance.

Table 1. Applied loading conditions for the blisk model

Rotational Velocity Gas Pressure Temperature
(RPM) (MPa) (°C)
0 0.25 0

0 0 1000
500 0.01 50
1000 0 0
2500 0.03 150
4000 0.2 250
5000 0.08 450
7000 0.12 600
10000 0.3 850
12000 0.5 1500

1.2. Deep Learning Model

Artificial neural networks (ANNSs) are computational models inspired by the human brain,
consisting of interconnected units called perceptron. A perceptron is the fundamental
building block of an ANN, mimicking biological neurons by receiving weighted inputs,
applying an activation function, and producing an output using Equ. 3 as shown in Fig. 5.
When multiple perceptron is organized into layers, they form an ANN, which can learn
patterns from data and make predictions. Deep learning refers to a subset of machine learning
where ANNSs contain multiple hidden layers, enabling them to model complex and highly
nonlinear relationships in data. These deep networks are particularly effective in tasks such
as image recognition, natural language processing, and engineering simulations (Al-
Mahasneh et. Al, 2018).
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Figure 5. A biological neuron (left), a perceptron (right)
Source: Melina et. al, 2023

In this study, a deep neural network (DNN) was developed to predict the stress distribution
in the rotor blisk, leveraging FEA-generated data under various operating conditions. The
methodology and model architecture are comprehensively detailed as follows:
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« Data Preprocessing:

The input features (RPM, aerodynamic pressure, temperature) and output stress components
(radial, tangential, axial) were normalized to the range [-1, 1] to enhance convergence and
training stability. The dataset was divided into nine subsets for training and one subset for
validation. Additionally, an unseen load case was reserved to rigorously assess the model's
generalization capability.

» Neural Network Architecture:

The model comprises an input layer accepting normalized parameters, followed by four fully
connected hidden layers, each containing 256 neurons. The activation function used in all
hidden layers is the Rectified Linear Unit (ReLU), which transforms negative input values
to zero while keeping positive values unchanged. This function is computationally efficient
and helps mitigate the vanishing gradient problem, making it a preferred choice for deep
networks. The output layer employs a linear activation function that preserves the continuous
output values. These activation functions are defined in Equations 4 and 5.

* Training and Optimization:

Training minimizes the Mean Squared Error (MSE) loss function (Equation 6), which
calculates the mean of the squared differences between predicted and actual values. MSE is
widely used in regression problems involving continuous variables, as it penalizes larger
errors more heavily. The optimization uses the RMSProp algorithm (Equation 7), which
dynamically adjusts the learning rate for each parameter, improving stability and
convergence on the validation dataset. The learning rate is set to 0.001, balancing gradual
convergence and avoiding excessive fluctuations. The model is trained for 500 epochs to
ensure sufficient learning of complex data patterns while monitoring validation loss. These
hyperparameters, summarized in Table 2, were carefully selected to optimize the model’s
performance and enhance its generalization ability.
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Figure 6. The deep neural network structure
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Table 2. Hyperparameters for the deep learning model

Wiy1 = We —

Hyperparameter Value
Number of Layers 4
Neurons per Layer 256
Activation Function RelLU, Linear
Loss Function MSE
Optimizer RMSProp
Learning Rate 0.001
Epochs 500

For the validation, a single validation load set was utilized to assess the convergence of the
model. The evaluation metric used to measure model accuracy is the Mean Squared Error
(MSE). A lower MSE indicates improved model accuracy and better alignment with the
actual data. Figure 8 presents the evaluation of loss and MSE on both the training and
validation sets. The trends depicted in the graphs provide key insights into the network's
learning behavior. At the beginning, with a limited number of epochs, MSE values are
relatively high, showing that the network struggles to accurately capture the complex
relationships between the input and target variables. As the number of epochs increases, a
steady decrease in MSE is observed, which is in line with the expected behavior as the
network continuously adjusts its weights and biases. This ongoing adaptation improves the
network’s ability to more accurately predict the free response of the test bench. To validate
the DNN model, the predictions made by the trained model using the validation dataset were
also checked as shown in Fig. 7.
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Figure 7. Training and validation loss through epochs (left), predicton of nodal radial
stresses for validation load set (right)
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The proposed framework follows a structured pipeline comprising several key steps as
shown in Table 3: data generation via FEA simulations, data preprocessing and
normalization, deep neural network training, and final stress prediction.

Table 3. Workflow Stages for Al-Based Stress Prediction

Step No Stage Description
1 Data Generation | Stress data were generated by finite element simulations
. Data were normalized and split for training and

2 Preprocessing o
validation

3 Model Architecture A deep neural network W|_th four hidden layers was
established

4 Training The network was trained over 500 epochs

5 Prediction The model predicts stresses quickly for given inputs

6 Evaluation Accuracy was validated on unseen data

2. RESULTS AND DISCUSSION

This study investigates the stress distribution in a compressor rotor blisk subjected to
centrifugal, gas pressure, and thermal loads using both finite element analysis (FEA) and
deep neural networks (DNNSs). Radial, tangential, and axial stress components were analyzed
under ten different load cases, and the results were supplied to the DNN for training. The
model was subsequently tested on an unseen load case, with its predictions compared to FEA
results.

Radial stress distribution exhibited a characteristic gradient along the blisk, with maximum
stress concentrations occurring near the root of the blade due to the transition in cross-
sectional geometry as shown in Fig. 8. FEA results indicated a maximum radial stress of
1770.3 MPa, whereas the DNN-predicted value for the same location was 1789.5 MPa,
demonstrating a relative error within an acceptable range. The minimum radial stress was
observed at the root of the blade, where tensile and compressive stresses balanced out due
to centrifugal loading effects, with FEA predicting -257.69 MPa and the DNN predicting -
228.96 MPa. The overall radial stress distribution predicted by the DNN closely followed
the FEA solution, with minor deviations attributed to the interpolation behavior of the neural
network in regions with high stress gradients.
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Figure 8. Compressor rotor blisk radial stress results: FEA (left), Al prediction (right)

Tangential (hoop) stresses, which primarily result from centrifugal forces acting on the
rotating structure, showed peak values in the vicinity of disk upper bore region due to the
accumulation of rotational inertia as shown in Fig. 9. FEA simulations revealed a maximum
tangential stress of 790.13 MPa, while the DNN prediction yielded 661.68 MPa, showing a
slight underestimation. The minimum tangential stress was located near the inner hub region,
where compressive forces counterbalanced the tensile effects, with FEA predicting -257.32
MPa and DNN predicting -294.99 MPa. Despite the minor discrepancies, the overall stress
distribution trends were accurately captured by the DNN, reinforcing its capability to
generalize stress patterns under unseen conditions.
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Figure 9. Compressor rotor blisk tangential stress results: FEA (left), Al prediction (right)

Axial stress, influenced by both thermal expansion and mechanical loads, exhibited its
highest values near the disk-blade interface, where constraints on radial expansion induce
tensile stress as shown in Fig. 10. FEA results showed a peak axial stress of 327.94 MPa,
whereas the DNN-predicted value was 288.83 MPa, indicating a slight underestimation. The
minimum axial stress was recorded at the lower disk section, with FEA predicting -418.86
MPa and the DNN predicting -422.89 MPa, demonstrating strong agreement in compressive
stress regions. The stress distribution across the component followed a consistent trend, with
the DNN capturing the overall pattern effectively, though minor deviations were observed
in localized stress concentrations.
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Figure 10. Compressor rotor blisk axial stress results: FEA (left), Al prediction (right)

A key advantage of the DNN approach was its significant reduction in computational time.
The trained neural network predicted stress distributions in 0.005 second, compared to 50
seconds required for a single FEA run. This computational speed-up makes the DNN method
highly suitable for real-time applications such as optimization, digital twins, and structural
health monitoring. Future work will focus on improving prediction accuracy through refined
training strategies, expanding the dataset with additional load cases, and incorporating
physics-informed machine learning techniques to enhance generalization. Additionally,
integrating uncertainty quantification methods will provide confidence intervals for the
DNN predictions, further increasing its reliability in engineering applications.

The findings from this study confirm the promising potential of deep learning as a powerful
tool for accelerating stress analysis in complex engineering components. While minor
discrepancies exist between DNN predictions and FEA results, particularly in highly
localized stress concentration regions, the overall accuracy and the substantial reduction in
computational time underscore the practical applicability of this approach.
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Additionally, the main findings and their comparison with existing literature are summarized
as follows and presented in Table 4:

e The deep neural network (DNN) model accurately predicted radial, tangential, and
axial stresses within a maximum deviation of 15% compared to finite element
analysis (FEA), confirming its capability to generalize under unseen loading
conditions.

e The DNN approach achieved a computational speed-up exceeding 13,000 times
compared to conventional FEA, highlighting its potential for real-time structural
analysis and optimization.

e The significant reduction in computational storage requirements (from
approximately 34 MB for FEA results to 0.36 MB for the DNN model) supports the
feasibility of deploying this model in resource-constrained environments.

e Minor discrepancies in stress concentration regions indicate opportunities for further
refinement, possibly through enhanced training datasets or physics-informed
machine learning techniques.

e Compared to previous studies focused on fatigue life prediction [10], temperature
distribution [11], and topology optimization [14], this study uniquely presents full-
field stress prediction with a considerably higher speed-up, thereby extending the
application of Al in gas turbine blisk analysis.

e The proposed framework lays the foundation for integration with digital twin
technologies and structural health monitoring systems, which require rapid and
reliable stress predictions.

Table 4. Summary of key findings and comparison with literature

Finding Description Comparison with Literature
Stress prediction Maximum deviation of 15% for radial, Comparable accuracy to [10],
accuracy tangential, and axial stresses [11], [14]
Computational speed Prediction time of 5 ms compared to 66 s for Significantly higher speed-up
FEA (~13,200% speed-up) than prior studies
Storage efficiency Model size 0.36 MB vs. 34.25 MB for FEA Enables lightweight
results deployment
Applicability to unseen | Successful generalization to previously unseen Demonstrates robustness
load cases load conditions beyond training data
Potential for real-time Suitable for design iteration, optimization, Extends Al utility in gas
application digital twins, and structural health monitoring turbine component analysis

3. CONCLUSION

This study demonstrates the potential of combining finite element analysis with deep
learning for efficient stress prediction in the complex geometry of rotor blisks used in gas
turbine engines. By leveraging FEA to model the blisk’s structural behavior under realistic
loading conditions, a high-fidelity dataset was created that includes various combinations of
centrifugal forces, aerodynamic loads, and thermal effects. The application of cyclic
symmetry allowed for computational efficiency, reducing the need to simulate the full blisk
geometry while maintaining accuracy. The obtained FEA results served as the foundation
for training a deep learning model capable of predicting stress distributions in rotor blisks
under different operational conditions. The deep learning model, trained on the FEA dataset,
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exhibited strong predictive capabilities, providing a rapid alternative to traditional FEA
simulations. In comparison, to survey stress results for each node with the traditional FEA
approach requires 66 seconds for only one loading condition, whereas DNN predicts stress
results for each node within only 5 milliseconds. Moreover, traditional FEA requires 34250
kilobytes disk storage whereas DNN only requires 363 kilobytes. By reducing the time
required to perform complex simulations, this approach holds great promise for improving
design optimization and life prediction of gas turbine components, which are critical in
aerospace and energy industries. The deep learning model’s ability to predict stress with high
accuracy offers a powerful tool for structural engineers, reducing reliance on
computationally expensive and time-consuming FEA simulations. Through this research, we
have also shown the potential of Al-enhanced numerical simulations, where the integration
of deep learning can significantly reduce analysis time without sacrificing accuracy.

Future studies can focus on enhancing the deep learning model by exploring more advanced
neural network architectures, such as convolutional or recurrent networks, to better capture
spatial and temporal dependencies. Expanding the dataset to include a wider range of
operational conditions and failure modes will also improve model accuracy. Further
validation through experimental testing and the use of transfer learning for different
geometries and conditions could make the model more adaptable.

This study successfully addresses the computational bottleneck associated with traditional
FEA methods by proposing an accurate and efficient Al-based stress prediction framework
for rotor blisks. The demonstrated speed-up and reduced storage requirements underscore
the practical utility of this approach for real-time engineering applications and iterative
design processes. The insights gained pave the way for more efficient and robust design of
critical gas turbine components, contributing to advancements in aerospace and energy
sectors.
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