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Abstract 

Gas turbine engines are critical components in aerospace, power generation, and industrial applications, 

consisting of complex rotating and stationary parts subject to extreme mechanical, thermal, and aerodynamic 

loads. A key component in modern gas turbines is the rotor blisk, which combines the blades and disk into a 

single unit. Due to its complex geometry and harsh operating conditions, the rotor blisk experiences significant 

mechanical stresses that must be accurately calculated to ensure reliability, safety, and optimal performance. 

Traditional methods, such as finite element analysis (FEA), are widely used to calculate stress distributions 

under various loading conditions. However, FEA is computationally expensive, especially when analyzing 

multiple scenarios for different operating conditions. This computational cost can become a bottleneck in 

iterative design studies and real-time decision making. To address this challenge, this study proposes a novel 

approach that uses deep learning to predict stresses in rotor blisks under varying loads. A deep neural network 

(DNN) was trained on FEA-generated stress data to learn the relationships between input parameters and 

resulting stress distributions. The AI-based model was validated using unseen load scenarios for radial, axial, 

and tangential stress distributions and maximum-minimum stress results, with a maximum deviation of 6% to 

15% from FEA results. In addition, the Artificial Intelligence (AI) approach reduced the computational cost by 

13,000 times faster than FEA by predicting results instead of solving complex equations. The AI approach 

enables rapid stress predictions and facilitates real-time design iteration and optimization. These results 

highlight the transformative potential of AI in engineering simulation, enabling faster, more efficient structural 

assessments and advancing the optimization of gas turbine components in the aerospace and energy industries. 

Key Words: Artificial Intelligence (AI), Finite Element Analysis (FEA), Gas Turbine Engine, Rotor Blisk, 

Deep Learning 

JEL Classification: C45, C63. 

Gaz Türbinli Motorlarda Rotor Blisk için Yapay Zeka Tabanlı Gerilme 

Tahmini 

Öz 

Gaz türbinli motorlar; havacılık, enerji üretimi ve endüstriyel uygulamalarda kritik bileşenler olup, aşırı 

mekanik, termal ve aerodinamik yüklere maruz kalan karmaşık döner ve sabit parçalardan oluşmaktadır. 

Modern gaz türbinlerinin temel bileşenlerinden biri, kanatları ve diski tek bir bütün halinde birleştiren rotor 

blisktir. Karmaşık geometrisi ve zorlu çalışma koşulları nedeniyle rotor blisk, güvenilirliğin, emniyetin ve 

optimal performansın sağlanabilmesi için doğru bir şekilde hesaplanması gereken önemli mekanik gerilmelere 

maruz kalmaktadır. Sonlu elemanlar analizi (SEA) gibi geleneksel yöntemler, farklı yükleme koşullarında 

gerilme dağılımlarını hesaplamak için yaygın şekilde kullanılmaktadır. Ancak, SEA özellikle farklı çalışma 

koşulları için çoklu senaryoların analizinde hesaplama açısından maliyetli olup, bu hesaplama yükü 

tekrarlamalı tasarım çalışmalarında ve gerçek zamanlı karar vermede bir darboğaz hâline gelebilmektedir. Bu 

zorluğun üstesinden gelmek amacıyla, bu çalışma rotor blisklerde farklı yükler altında gerilmeleri tahmin 
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etmek için derin öğrenme kullanan yeni bir yaklaşım önermektedir. Bir derin sinir ağı (DSA), giriş 

parametreleri ile ortaya çıkan gerilme dağılımları arasındaki ilişkileri öğrenebilmek için SEA tarafından 

üretilmiş gerilme verileri üzerinde eğitilmiştir. Yapay zeka tabanlı model, radyal, eksenel ve teğetsel gerilme 

dağılımları ile maksimum-minimum gerilme sonuçları için görülmemiş yük senaryoları kullanılarak 

doğrulanmış ve SEA sonuçlarına kıyasla %6 ila %15 arasında maksimum sapma göstermiştir. Ayrıca, yapay 

zeka yaklaşımı karmaşık denklemleri çözmek yerine sonuçları tahmin ederek SEA’ya kıyasla hesaplama 

maliyetini 13.000 kat azaltmıştır. Yapay zeka yaklaşımı, hızlı gerilme tahminleri yapılmasını mümkün 

kılmakta ve gerçek zamanlı tasarım yinelemelerini ve optimizasyonu kolaylaştırmaktadır. Bu sonuçlar, 

mühendislik simülasyonunda yapay zekânın dönüştürücü potansiyelini vurgulamakta, daha hızlı ve daha 

verimli yapısal değerlendirmeleri mümkün kılmakta ve havacılık ile enerji endüstrilerinde gaz türbini 

bileşenlerinin optimizasyonunu ilerletmektedir. 

Anahtar Kelimeler: Yapay Zeka (YZ), Sonlu Elemanlar Analizi (SEA), Gaz Türbinli Motor, Rotor Blisk, 

Derin Öğrenme 

JEL Sınıflandırma: M10, M19. 

INTRODUCTION 

Gas turbine engines are integral components in a wide range of industries, including 

aerospace, power generation, and industrial sectors. They are designed to operate under 

extreme mechanical, thermal, and aerodynamic loads, where high efficiency, reliability, and 

performance are of paramount importance (Mane et. al, 2023). These engines consist of 

complex rotating and stationary components that work in tandem to convert energy into 

mechanical power. Among these components, the rotor blisk which combines the disk and 

blades into a single structure plays a critical role. Rotor blisks are typically used in 

compressors, as they offer significant advantages such as weight reduction, enhanced 

aerodynamic performance, and improved thermal management (Kumar, 2013). The 

integration of the disk and blades into a single unit eliminates the need for traditional 

fastening methods, resulting in a more streamlined and efficient design, as shown in Fig. 1.  

 
 

Figure 1. Compressor rotor blisk 

Source: Bandini et. al, 2024 

Due to their complex geometry and harsh operating conditions, rotor blisks are subjected to 

substantial mechanical stresses. These stresses are a result of various factors, including 
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rotational speed, aerodynamic forces, and thermal expansion effects, all of which vary 

depending on the engine’s operating conditions. The accurate calculation of these stresses is 

essential for ensuring the component’s reliability, preventing fatigue failures, and optimizing 

its lifespan (Elhefny & Megahed, 2018). Traditional methods such as finite element analysis 

(FEA) are widely used to perform stress analysis under different loading conditions. FEA is 

a powerful tool that provides high-fidelity results by breaking down complex geometries 

into smaller, manageable elements and solving the governing equations. However, while 

FEA is highly accurate, it is computationally expensive, particularly when multiple loading 

scenarios must be analyzed. As a result, this computational burden limits the feasibility of 

real-time analysis and optimization in many engineering applications, hindering timely 

design decisions and innovation (Zhang et. al, 2016).  

In recent years, artificial intelligence (AI) has emerged as a promising solution to accelerate 

structural simulations and address the limitations of traditional methods like FEA. AI-driven 

models, particularly those based on machine learning (ML), have shown the potential to 

reduce the computational cost associated with structural analysis without compromising 

accuracy. These models, often referred to as surrogate models, are trained on large datasets 

generated through FEA or experimental testing. Once trained, they can predict stress 

distributions under various loading conditions much faster than traditional FEA, thus 

enabling real-time simulations (Shivaditya et. al, 2022). In particular, deep learning, a subset 

of AI, has demonstrated significant promise due to its ability to capture complex, non-linear 

relationships between input parameters and output results. Several studies have applied 

machine learning-based methods in fields such as structural health monitoring, material 

property prediction, and topology optimization, showcasing their ability to streamline design 

and analysis processes (Plevris & Papazafeiropoulos, 2024). However, despite the growing 

body of research on AI applications in engineering, the use of AI for stress prediction in 

structural components under varying operational conditions is still an emerging field.  

The application of AI in gas turbine engineering has already shown considerable potential 

in improving performance and reducing maintenance costs. For instance, one study reviewed 

AI applications in condition assessment and fault detection, noting the success of machine 

learning models in enhancing the reliability of turbine systems (Zhao et. al, 2021). Similarly, 

another study introduced a hybrid temporal convolutional network–autoencoder model for 

real-time fault detection, improving diagnostic accuracy in gas turbine systems (Guo et. al, 

2021). Other studies have proposed deep learning-based models for predicting low-cycle 

fatigue life in turbine blades (Zhu et. al, 2022), optimizing turbine blisk temperature 

distributions (Wang et. al, 2022), and enhancing fault detection under noisy conditions (Chen 

et. al, 2022). One study applied dynamic neural networks to diagnose engine failures at an 

early stage, while another leveraged AI-driven topology optimization to enhance the 

performance of compressor rotor blisks, improving their strength and efficiency [13,14]. A 

convolutional neural network (CNN) approach has been proposed for probabilistic low-cycle 

fatigue life prediction of turbine blisks, demonstrating significant accuracy improvements 

over conventional methods (Fei et. al, 2024). A comprehensive review of machine learning 

strategies in turbine cooling design optimization has also been conducted, emphasizing the 

role of surrogate models in reducing simulation time and design complexity (Li et. al, 2024). 
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Furthermore, a reduced-order modeling technique based on deep learning has been 

introduced to predict unsteady pressure fields on turbine blades, substantially decreasing 

computational effort while maintaining high fidelity (Joachim et. al, 2025). Another study 

investigated reinforced symbolic learning with logical constraints for predicting turbine 

blade fatigue life, integrating interpretability with predictive performance (Li et. al, 2024). 

In addition, recent reviews have focused on AI-driven frameworks for predictive 

maintenance and diagnostics in turbomachinery, addressing fault detection, anomaly 

prediction, and reliability enhancement (Bunyan et. al, 2025).  

These studies underscore the growing recognition of AI’s potential to optimize turbine 

systems and improve their performance across various stages of the life cycle, from design 

and operation to maintenance and failure prediction. Despite these advancements, the 

application of AI in predicting the stress distribution of complex components like rotor blisks 

under varying operational conditions remains an open challenge. Traditional FEA methods 

require detailed geometric models and significant computational resources, which makes it 

difficult to apply these methods in iterative design processes and real-time decision-making. 

Deep learning-based approaches, on the other hand, offer a potential solution by enabling 

faster and more efficient simulations.  

This study introduces a novel deep neural network (DNN) approach for predicting stress in 

rotor blisks subjected to a variety of loading conditions, including rotational speed, gas 

pressure, and thermal loads. By training the DNN model using comprehensive FEA-

generated stress data, the model effectively learns the complex, non-linear relationships 

between these input parameters and the resulting stress distributions. This research addresses 

the existing gap by demonstrating how AI can significantly accelerate stress prediction for 

critical aerospace components, thereby overcoming the computational limitations of 

traditional FEA for design optimization and real-time assessment. Once trained, the model 

can provide rapid predictions, with a maximum deviation of just 15% from traditional FEA 

results, while reducing computational costs by approximately 3300%. This dramatic 

reduction in computational load makes real-time design optimization feasible and opens up 

new possibilities for rapid prototyping and iterative design processes in gas turbine 

engineering. Moreover, the DNN-based approach provides an efficient way to perform 

sensitivity analysis, enabling engineers to explore the effects of different loading conditions 

on the component's performance without the need for extensive FEA simulations.  

The main objectives of this study are: 

 To develop a robust deep learning model for accurate stress prediction in rotor blisks 

under varying operational conditions. 

 To demonstrate the significant computational efficiency gains of the AI-based 

approach compared to traditional FEA. 

 To provide a framework for integrating AI into the design and analysis workflows of 

gas turbine components, facilitating faster design iterations and optimization. 

 To analyze and compare the radial, tangential, and axial stress distributions predicted 

by the DNN with high-fidelity FEA results, identifying the model's strengths and 
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limitations in capturing complex stress patterns.  

The subsequent sections of this paper are organized as follows: Section-2 details the material 

and methods, including the finite element analysis of the blisk model and the architecture of 

the deep learning model. Section-3 presents the results and a comprehensive discussion of 

the stress predictions. Finally, Section-4 provides the conclusions drawn from this study and 

outlines potential avenues for future research. 

1. MATERIAL AND METHOD 

1.1. Finite Element Analysis of the Blisk Model 

The finite element method (FEM) is a numerical technique widely used for solving complex 

engineering problems involving structural, thermal, and dynamic analyses. It discretizes a 

continuum domain into smaller subdomains, known as finite elements, connected at nodes, 

thereby transforming partial differential equations into a system of algebraic equations that 

can be solved computationally. The general governing equation of motion in FEM for a 

dynamic system is expressed can be expressed as given in Equ. 1 (ANSYS, 2024).  

 

                                           [𝑀]{𝑢̈} + [𝐶]{𝑢̇} + [𝐾]{𝑢} = {𝐹}                                            (1) 

Where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, u is the 

displacement vector, and F represents the external force vector. Depending on the problem 

type, static or dynamic equilibrium conditions are enforced to obtain the solution. Since 

external forces does not vary with time in this study, inertial and damping effects are 

neglected and the general governing equation of motion becomes as given in Equ. 2.  

                                                                            

                                                              [𝐾]{𝑢} = {𝐹}                                                         (2) 
 

In this study, FEA was employed to simulate the behavior of a blisk model under operational 

conditions typically encountered in high-pressure compressor rotors. The geometry of the 

blisk was generated using SpaceClaim, and the numerical simulations were carried out using 

ANSYS Mechanical. To reduce computational costs while still capturing the key structural 

behaviors, a one-blade sector representation of a 70-bladed blisk was chosen for the finite 

element (FE) model. To replicate the behavior of the full blisk assembly without simulating 

all 70 blades, cyclic symmetry boundary conditions were applied to the boundary faces of 

the sector model as shown in Fig. 2. The model was meshed using 22,400 SOLID185 linear 

hexahedron elements, which were selected for their suitability in accurately capturing the 

complex geometries and stresses of the blisk while maintaining computational efficiency 

and constrained in both the axial and tangential directions from the forward side face of the 

disc bore and constrained only in tangential direction from aft side of the disc bore to 

simulate the physical boundary conditions of the actual component as shown in Fig. 3.  
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Figure 2.  Compressor rotor blisk: 360° model (left), Cyclic sector model (right) 

 

The material used in the simulations was assumed to be isotropic and temperature-

dependent, reflecting the characteristics of high-performance titanium alloys commonly 

used in compressor rotor blisks. This choice allows for the incorporation of the temperature-

induced variations in material properties, such as Young’s modulus, Poisson’s ratio, and 

thermal expansion, which are critical when assessing the blisk’s performance under the 

extreme conditions encountered in turbine operation.  

The loading conditions applied to the model were designed to simulate the real operational 

environment of high-pressure compressor rotors in gas turbine engines. These included 

centrifugal forces, represented by varying the rotational speed between 0 to 12,000 RPM, 

and aerodynamic loads, modeled by gas pressures ranging from 0 MPa to 0.5 MPa. To 

capture the effects of temperature that occur during engine operation, thermal loads were 

applied, with temperatures ranging from 0°C to 1,500°C, simulating both the thermal 

expansion of the material and the resulting stress redistribution within the structure as shown 

in Fig. 4. Geometric nonlinearity was taken into account in numerical simulations.  
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Figure 3.  Compressor rotor blisk: FE model (left), Boundary conditions (right) 

 

 
Figure 4. Applied loads for rotor blisk model: Rotational velocity (left), Gas pressure 

(middle), Temperature (right) 

The solution phase involved performing static analyses to evaluate stress distributions at 

different load cases. A total of 10 distinct load cases were examined to obtain a 

comprehensive dataset, which could later be used for further validation and potential deep 

learning applications as shown in Table 1. The key performance indicators extracted from 

the results included radial, tangential, and axial stresses for the blisk sector under various 
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loading conditions. These findings provide valuable insights into the structural integrity and 

operational safety of the compressor rotor, contributing to the optimization of its design and 

performance. 

Table 1. Applied loading conditions for the blisk model 

Rotational Velocity 

(RPM) 

Gas Pressure 

(MPa) 

Temperature 

 (°C) 

0  0.25  0  

0  0  1000  

500  0.01  50  

1000  0  0  

2500  0.03  150  

4000  0.2  250  

5000  0.08  450  

7000  0.12  600  

10000  0.3  850  

12000  0.5  1500 

1.2. Deep Learning Model 

Artificial neural networks (ANNs) are computational models inspired by the human brain, 

consisting of interconnected units called perceptron. A perceptron is the fundamental 

building block of an ANN, mimicking biological neurons by receiving weighted inputs, 

applying an activation function, and producing an output using Equ. 3 as shown in Fig. 5. 

When multiple perceptron is organized into layers, they form an ANN, which can learn 

patterns from data and make predictions. Deep learning refers to a subset of machine learning 

where ANNs contain multiple hidden layers, enabling them to model complex and highly 

nonlinear relationships in data. These deep networks are particularly effective in tasks such 

as image recognition, natural language processing, and engineering simulations (Al-

Mahasneh et. Al, 2018). 

 

Figure 5. A biological neuron (left), a perceptron (right)  

Source: Melina et. al, 2023 

In this study, a deep neural network (DNN) was developed to predict the stress distribution 

in the rotor blisk, leveraging FEA-generated data under various operating conditions. The 

methodology and model architecture are comprehensively detailed as follows: 
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• Data Preprocessing: 

The input features (RPM, aerodynamic pressure, temperature) and output stress components 

(radial, tangential, axial) were normalized to the range [–1, 1] to enhance convergence and 

training stability. The dataset was divided into nine subsets for training and one subset for 

validation. Additionally, an unseen load case was reserved to rigorously assess the model's 

generalization capability. 

• Neural Network Architecture: 

The model comprises an input layer accepting normalized parameters, followed by four fully 

connected hidden layers, each containing 256 neurons. The activation function used in all 

hidden layers is the Rectified Linear Unit (ReLU), which transforms negative input values 

to zero while keeping positive values unchanged. This function is computationally efficient 

and helps mitigate the vanishing gradient problem, making it a preferred choice for deep 

networks. The output layer employs a linear activation function that preserves the continuous 

output values. These activation functions are defined in Equations 4 and 5. 

• Training and Optimization: 

Training minimizes the Mean Squared Error (MSE) loss function (Equation 6), which 

calculates the mean of the squared differences between predicted and actual values. MSE is 

widely used in regression problems involving continuous variables, as it penalizes larger 

errors more heavily. The optimization uses the RMSProp algorithm (Equation 7), which 

dynamically adjusts the learning rate for each parameter, improving stability and 

convergence on the validation dataset. The learning rate is set to 0.001, balancing gradual 

convergence and avoiding excessive fluctuations. The model is trained for 500 epochs to 

ensure sufficient learning of complex data patterns while monitoring validation loss. These 

hyperparameters, summarized in Table 2, were carefully selected to optimize the model’s 

performance and enhance its generalization ability. 

 
Figure 6.  The deep neural network structure  

 

𝑦𝑖 = ∑𝑗 𝑓 (𝑊𝑖𝑗𝑦𝑗 + 𝑏𝑖) (3) 

  

𝑓 =  𝑓(𝑥) = {
𝑥, 𝑥 > 0
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4) 
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𝑓 (𝑥) = 𝑥 (5) 

  

ℒ(𝜃) =  
1

𝑛
∑(𝑦(𝑖) − 𝑦̂(𝑖))

2
𝑛

𝑖=1

 (6) 

  

𝑢𝑡 =  𝛽 ∗  𝑢𝑡 + (1 − 𝛽)(∇𝑤𝑡)2 
 

𝑤𝑡+1 =  𝑤𝑡 −
𝜂

√(𝑢𝑡) +  𝜖
 ∇𝑤𝑡 

(7) 

Table 2.  Hyperparameters for the deep learning model 

Hyperparameter Value 

Number of Layers 4 

Neurons per Layer 256 

Activation Function ReLU, Linear 

Loss Function MSE 

Optimizer RMSProp 

Learning Rate 0.001 

Epochs 500 

For the validation, a single validation load set was utilized to assess the convergence of the 

model. The evaluation metric used to measure model accuracy is the Mean Squared Error 

(MSE). A lower MSE indicates improved model accuracy and better alignment with the 

actual data. Figure 8 presents the evaluation of loss and MSE on both the training and 

validation sets. The trends depicted in the graphs provide key insights into the network's 

learning behavior. At the beginning, with a limited number of epochs, MSE values are 

relatively high, showing that the network struggles to accurately capture the complex 

relationships between the input and target variables. As the number of epochs increases, a 

steady decrease in MSE is observed, which is in line with the expected behavior as the 

network continuously adjusts its weights and biases. This ongoing adaptation improves the 

network's ability to more accurately predict the free response of the test bench. To validate 

the DNN model, the predictions made by the trained model using the validation dataset were 

also checked as shown in Fig. 7.  

  
Figure 7. Training and validation loss through epochs (left), predicton of nodal radial 

stresses for validation load set (right) 
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The proposed framework follows a structured pipeline comprising several key steps as 

shown in Table 3: data generation via FEA simulations, data preprocessing and 

normalization, deep neural network training, and final stress prediction. 

Table 3. Workflow Stages for AI-Based Stress Prediction 

Step No Stage Description 

1 Data Generation Stress data were generated by finite element simulations 

2 Preprocessing 
Data were normalized and split for training and 

validation 

3 Model Architecture 
A deep neural network with four hidden layers was 

established 

4 Training The network was trained over 500 epochs  

5 Prediction The model predicts stresses quickly for given inputs 

6 Evaluation Accuracy was validated on unseen data 
 

2. RESULTS AND DISCUSSION 

This study investigates the stress distribution in a compressor rotor blisk subjected to 

centrifugal, gas pressure, and thermal loads using both finite element analysis (FEA) and 

deep neural networks (DNNs). Radial, tangential, and axial stress components were analyzed 

under ten different load cases, and the results were supplied to the DNN for training. The 

model was subsequently tested on an unseen load case, with its predictions compared to FEA 

results.  

Radial stress distribution exhibited a characteristic gradient along the blisk, with maximum 

stress concentrations occurring near the root of the blade due to the transition in cross-

sectional geometry as shown in Fig. 8. FEA results indicated a maximum radial stress of 

1770.3 MPa, whereas the DNN-predicted value for the same location was 1789.5 MPa, 

demonstrating a relative error within an acceptable range. The minimum radial stress was 

observed at the root of the blade, where tensile and compressive stresses balanced out due 

to centrifugal loading effects, with FEA predicting -257.69 MPa and the DNN predicting -

228.96 MPa. The overall radial stress distribution predicted by the DNN closely followed 

the FEA solution, with minor deviations attributed to the interpolation behavior of the neural 

network in regions with high stress gradients. 
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Figure 8. Compressor rotor blisk radial stress results: FEA (left), AI prediction (right) 

Tangential (hoop) stresses, which primarily result from centrifugal forces acting on the 

rotating structure, showed peak values in the vicinity of disk upper bore region due to the 

accumulation of rotational inertia as shown in Fig. 9. FEA simulations revealed a maximum 

tangential stress of 790.13 MPa, while the DNN prediction yielded 661.68 MPa, showing a 

slight underestimation. The minimum tangential stress was located near the inner hub region, 

where compressive forces counterbalanced the tensile effects, with FEA predicting -257.32 

MPa and DNN predicting -294.99 MPa. Despite the minor discrepancies, the overall stress 

distribution trends were accurately captured by the DNN, reinforcing its capability to 

generalize stress patterns under unseen conditions. 
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Figure 9. Compressor rotor blisk tangential stress results: FEA (left), AI prediction (right) 

Axial stress, influenced by both thermal expansion and mechanical loads, exhibited its 

highest values near the disk-blade interface, where constraints on radial expansion induce 

tensile stress as shown in Fig. 10. FEA results showed a peak axial stress of 327.94 MPa, 

whereas the DNN-predicted value was 288.83 MPa, indicating a slight underestimation. The 

minimum axial stress was recorded at the lower disk section, with FEA predicting -418.86 

MPa and the DNN predicting -422.89 MPa, demonstrating strong agreement in compressive 

stress regions. The stress distribution across the component followed a consistent trend, with 

the DNN capturing the overall pattern effectively, though minor deviations were observed 

in localized stress concentrations. 
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Figure 10. Compressor rotor blisk axial stress results: FEA (left), AI prediction (right) 

 

A key advantage of the DNN approach was its significant reduction in computational time. 

The trained neural network predicted stress distributions in 0.005 second, compared to 50 

seconds required for a single FEA run. This computational speed-up makes the DNN method 

highly suitable for real-time applications such as optimization, digital twins, and structural 

health monitoring. Future work will focus on improving prediction accuracy through refined 

training strategies, expanding the dataset with additional load cases, and incorporating 

physics-informed machine learning techniques to enhance generalization. Additionally, 

integrating uncertainty quantification methods will provide confidence intervals for the 

DNN predictions, further increasing its reliability in engineering applications. 

The findings from this study confirm the promising potential of deep learning as a powerful 

tool for accelerating stress analysis in complex engineering components. While minor 

discrepancies exist between DNN predictions and FEA results, particularly in highly 

localized stress concentration regions, the overall accuracy and the substantial reduction in 

computational time underscore the practical applicability of this approach. 
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Additionally, the main findings and their comparison with existing literature are summarized 

as follows and presented in Table 4: 

 The deep neural network (DNN) model accurately predicted radial, tangential, and 

axial stresses within a maximum deviation of 15% compared to finite element 

analysis (FEA), confirming its capability to generalize under unseen loading 

conditions. 

 The DNN approach achieved a computational speed-up exceeding 13,000 times 

compared to conventional FEA, highlighting its potential for real-time structural 

analysis and optimization. 

 The significant reduction in computational storage requirements (from 

approximately 34 MB for FEA results to 0.36 MB for the DNN model) supports the 

feasibility of deploying this model in resource-constrained environments. 

 Minor discrepancies in stress concentration regions indicate opportunities for further 

refinement, possibly through enhanced training datasets or physics-informed 

machine learning techniques. 

 Compared to previous studies focused on fatigue life prediction [10], temperature 

distribution [11], and topology optimization [14], this study uniquely presents full-

field stress prediction with a considerably higher speed-up, thereby extending the 

application of AI in gas turbine blisk analysis. 

 The proposed framework lays the foundation for integration with digital twin 

technologies and structural health monitoring systems, which require rapid and 

reliable stress predictions. 

Table 4.  Summary of key findings and comparison with literature 

Finding Description Comparison with Literature 

Stress prediction 

accuracy 

Maximum deviation of 15% for radial, 

tangential, and axial stresses 

Comparable accuracy to [10], 

[11], [14] 

Computational speed Prediction time of 5 ms compared to 66 s for 

FEA (~13,200× speed-up) 

Significantly higher speed-up 

than prior studies 

Storage efficiency Model size 0.36 MB vs. 34.25 MB for FEA 

results 

Enables lightweight 

deployment 

Applicability to unseen 

load cases 

Successful generalization to previously unseen 

load conditions 

Demonstrates robustness 

beyond training data 

Potential for real-time 

application 

Suitable for design iteration, optimization, 

digital twins, and structural health monitoring 

Extends AI utility in gas 

turbine component analysis 
 

3. CONCLUSION 

This study demonstrates the potential of combining finite element analysis with deep 

learning for efficient stress prediction in the complex geometry of rotor blisks used in gas 

turbine engines. By leveraging FEA to model the blisk’s structural behavior under realistic 

loading conditions, a high-fidelity dataset was created that includes various combinations of 

centrifugal forces, aerodynamic loads, and thermal effects. The application of cyclic 

symmetry allowed for computational efficiency, reducing the need to simulate the full blisk 

geometry while maintaining accuracy. The obtained FEA results served as the foundation 

for training a deep learning model capable of predicting stress distributions in rotor blisks 

under different operational conditions. The deep learning model, trained on the FEA dataset, 
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exhibited strong predictive capabilities, providing a rapid alternative to traditional FEA 

simulations. In comparison, to survey stress results for each node with the traditional FEA 

approach requires 66 seconds for only one loading condition, whereas DNN predicts stress 

results for each node within only 5 milliseconds. Moreover, traditional FEA requires 34250 

kilobytes disk storage whereas DNN only requires 363 kilobytes. By reducing the time 

required to perform complex simulations, this approach holds great promise for improving 

design optimization and life prediction of gas turbine components, which are critical in 

aerospace and energy industries. The deep learning model’s ability to predict stress with high 

accuracy offers a powerful tool for structural engineers, reducing reliance on 

computationally expensive and time-consuming FEA simulations. Through this research, we 

have also shown the potential of AI-enhanced numerical simulations, where the integration 

of deep learning can significantly reduce analysis time without sacrificing accuracy.  

Future studies can focus on enhancing the deep learning model by exploring more advanced 

neural network architectures, such as convolutional or recurrent networks, to better capture 

spatial and temporal dependencies. Expanding the dataset to include a wider range of 

operational conditions and failure modes will also improve model accuracy. Further 

validation through experimental testing and the use of transfer learning for different 

geometries and conditions could make the model more adaptable.  

This study successfully addresses the computational bottleneck associated with traditional 

FEA methods by proposing an accurate and efficient AI-based stress prediction framework 

for rotor blisks. The demonstrated speed-up and reduced storage requirements underscore 

the practical utility of this approach for real-time engineering applications and iterative 

design processes. The insights gained pave the way for more efficient and robust design of 

critical gas turbine components, contributing to advancements in aerospace and energy 

sectors. 
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