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Abstract

In this paper, a new modified proximal point algorithm is proposed for finding a common element of the
set of fixed points of a single-valued nonexpansive mapping, and the set of fixed points of a multivalued
nonexpansive mapping, and the set of minimizers of convex and lower semicontinuous functions. We obtain
convergence of the proposed algorithm to a common element of three sets in CAT(0) spaces.
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1. Introduction

A metric space (X, d) is said to be a geodesic space, if it is connected geodesically. A geodesic path
joining x to y in X is a mapping g from a closed interval [0, l] ⊆ R to X such that g(0) = x, g(l) = y and
d(g(s), g(t)) =| s − t | for all s, t ∈ [0, l]. In particular, the mapping g is an isometry and d(x, y) = l. The
image of g is called as a geodesic segment joining x and y, which is uniquely denoted by [x, y]. We denote
the unique point z ∈ [x, y] such that

d(x, z) = kd(x, y) and d(y, z) = (1− k)d(x, y),

by (1− k)x⊕ ky, where 0 ≤ k ≤ 1.
A geodesic space is called as a CAT (0) space, if every geodesic triangle in X is at least as ’thin’ as its

comparison triangle in the Euclidean plane R2. A geodesic triangle 4(x1, x2, x3) in a geodesic space (X, d)
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consists of three points in X (the vertices of 4) and a geodesic segment between each pair of points (the
edges of 4). A comparison triangle for 4(x1, x2, x3) in (X, d) is a triangle 4̄(x1, x2, x3) := 4(x̄1, x̄2, x̄3) in
the Euclidean plane R2 such that

dR2(x̄i, x̄j) = d(xi, xj)

for all i, j ∈ {1, 2, 3}. Let 4 be a geodesic triangle in X and let 4̄ be a comparison triangle in R2. Then the
triangle 4 is said to satisfy the CAT (0) inequality if

d(x, y) ≤ dR2(x̄, ȳ),

for all x, y ∈ 4 and all comparison points x̄, ȳ ∈ 4̄.
The useful inequality of a CAT (0) space is the (CN) inequality[1], that is, if z, x, y are points in a

CAT (0) space and if x⊕y2 is the midpoint of a geodesic segment [x, y], then the CAT (0) inequality implies

d2(z,
x⊕ y

2
) ≤ 1

2
d2(z, x) +

1

2
d2(z, y)− 1

4
d2(x, y), (CN)

which equals to the following inequality[2]

d2(z, λx⊕ (1− λ)y) ≤ λd2(z, x) + (1− λ)d2(z, y)− λ(1− λ)d2(x, y), (CN∗)

for any λ ∈ [0, 1], where λx ⊕ (1 − λ)y denotes a unique point in [x, y]. Moreover, if X is a CAT (0) space
and x, y ∈ X, then for any λ ∈ [0, 1], there exists a unique point λx⊕ (1− λ)y ∈ [x, y] such that

d(z, λx⊕ (1− λ)y) ≤ λd(z, x) + (1− λ)d(z, y), for any z ∈ X. (1.1)

In 2013, the proximal point algorithm was introduced by Bac̆ák [3] into CAT (0) spaces. For any x1 in
a CAT (0) space X, a sequence {xn} generated by

xn+1 = argminy∈X [f(y) +
1

2λn
d2(y, xn)], (1.2)

where λn > 0 for all n ∈ N . If f has a minimizer, then the sequence {xn} ∆−converges to its minimizer.
For all λ > 0, in a complete CAT (0) space X, the Moreau − Y osida resolvent of f [4] is defined as

follows:
Jλ(x) = argminy∈X [f(y) +

1

2λ
d2(y, x)],

where f : X → (−∞,∞] is a proper convex and lower semi-continuous function.
The set F (Jλ) of fixed points of the resolvent associated with f coincides with the set argminy∈Xf(y)

of minimizers of f , which is found in reference [5]. For any λ > 0, the resolvent Jλ of f is nonexpansive [6].
The following algorithm is proposed by Suthep Suantai et.al[7] in 2017 as follows:

zn = argminy∈C [f(y) + 1
2λn

d2(y, xn)],

yn = βnzn ⊕ (1− βn)wn, wn ∈ Szn,
xn+1 = αnxn ⊕ (1− αn)Tyn, ∀n ∈ N,

(1.3)

where T is a single-valued nonexpansive mapping, S is a multi-valued nonexpansive mapping, and {λn} is
a sequence such that λn ≥ λ > 0 for all n ≥ 1 and some λ. Inspired by the above work, in this paper, we
come up with a new modified algorithm, which improved and extended the results[7].
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2. Preliminaries

We collect some definitions, lemmas, which will be used in next section.
Definition2.1[8] Let D be a nonempty closed subset of a CAT (0) space X and let CB(D), CC(D) and

KC(D) denote the families of nonempty closed bounded subsets, closed convex subsets and compact convex
subsets of D, respectively. The Pompeiu−Hausdorff distance on CB(D) is defined by

H(A,B) = max{supx∈Adist(x,B), supy∈Bdist(y,A)}

for A,B ∈ CB(D), where dist(x,D) = inf{d(x, y) : y ∈ D} is the distance from a point x to a subset D.
Definition2.2[7] A single-valued mapping T : D → D is said to be semicompact if for any sequence {xn}

in D such that limn→∞ d(xn, Txn) = 0, there exists a subsequence {xni} of {xn} such that {xni} converges
strongly to p ∈ D. The set of fixed points of T is denoted by F (T ), that is, F (T ) = {x ∈ D : x = Tx}.

Definition2.3[7] A multi-valued mapping S : D → CB(D) is said to be
(1) nonexpansive if H(Sx, Sy) ≤ d(x, y) for all x, y ∈ D;
(2) hemi− compact if for any sequence {xn} in D such that

lim
n→∞

dist(xn, Sxn) = 0,

there exists a subsequence {xni} of {xn} such that {xni} converges strongly to p ∈ D.
An element x ∈ D is called a fixed point of S if x ∈ Sx. The set of all fixed points of S is denoted by

F (S), that is, F (S) = {x ∈ D : x ∈ Sx}.
Definition2.4[7] Let {xn} be a bounded sequence in a CAT (0) space X. For x ∈ X, we define a

mapping r(·, {xn}) : X → [0,∞) by r(x, {xn}) = limn→∞ sup d(x, xn). The asymptotic radius of {xn} is
given by r({xn}) = inf{r(x, {xn}) : x ∈ X} and the asymptotic center of {xn} is the set A({xn}) = {x ∈
X : r(x, {xn}) = r({xn})}. In a complete CAT (0) space, the asymptotic center A({xn}) consists of exactly
one point[9].

Definition2.5[7] A sequence {xn} in a CAT (0) space X is said to ∆ − converge to x ∈ X if x is the
unique asymptotic center of every subsequence of {xn}. In this case, we write ∆− limn→∞xn = x and call
x as ∆− limit of {xn}.

It is easy to see that CAT (0) spaces satisfy Opial condition, which is known in Banach spaces theory
as Opial property, that is, given {xn} ⊆ X such that the sequence {xn} ∆−converges to x ∈ X and given
y ∈ X with x 6= y, then the following inequality holds

lim
n→∞

inf d(xn, x) < lim
n→∞

inf d(xn, y).

Lemma2.6[10] Every bounded sequence in a CAT (0) space has a ∆-convergent subsequence.
Lemma2.7[11] Let D be a nonempty closed convex subset of a CAT (0) space X. If {xn} is a bounded

sequence in D, then the asymptotic center of {xn} is in D.
Lemma2.8[2] If {xn} is a bounded sequence in a complete CAT (0) space with A({xn}) = {x}, {un} is

a subsequence of {xn} with A({un}) = {u} and the sequence {d(xn, u)} converges, then x = u.
Lemma2.9[2] LetD be a nonempty closed convex subset of a complete CAT (0) spaceX and T : D → D

be a nonexpansive mapping. If {xn} is a bounded sequence in D such that limn→∞ d(xn, Txn) = 0 and
∆− limn→∞ xn = x, then x = Tx.

Lemma2.10[6] Let (X, d) be a complete CAT (0) space and f : X → (−∞,∞] be a proper convex and
lower semi-continuous function. Then the following identity holds:

Jλx = Jµ(
λ− µ
λ

Jλx⊕
µ

λ
x),∀x ∈ X,λ > µ > 0,

where Jλ is the Moreau− Y osida resolvent of f .
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Lemma2.11[12] Let (X, d) be a complete CAT (0) space and f : X → (−∞,∞] be a proper convex
and lower semi-continuous function. Then, for all x, y ∈ X and some λ > 0, then the following inequality
holds:

1

2λ
d2(Jλx, y)− 1

2λ
d2(x, y) +

1

2λ
d2(x, Jλx) + f(Jλx) ≤ f(y),

where Jλ is the Moreau− Y osida resolvent of f .

3. Main results

Next, we give the results of proposed algorithms in this section.
Theorem3.1 Suppose that the following conditions are satisfied:
(1) Let X be a complete CAT (0) space and D be a nonempty closed convex subset of X;
(2) Let T : D → D be a single-valued nonexpansive mapping, S : D → CB(D) be a multi-valued

nonexpansive mapping, and f : D → (−∞,∞] be a convex and lower semi-continuous proper function;
(3) {αn},{βn},{γn} are sequences in (0, 1) with 0 < a ≤ αn, βn, γn ≤ b < 1 for all n ∈ N and for some

a, b are positive constants in [0, 1], and {λn} is a sequence such that λn ≥ λ > 0 for all n ∈ N and some λ;
(4) Suppose that Ω = F (T ) ∩ F (S) ∩ argminy∈Df(y) is nonempty and Sq = {q} for all q ∈ Ω;
(5) Suppose that Jλ is semi-compact or T is semi-compact or S is hemi-compact.
For any x1 ∈ D, the sequence {xn} generated in the following manner:

zn = argminy∈D[f(y) + 1
2λn

d2(y, xn)],

tn = γnzn ⊕ (1− γn)wn, wn ∈ Szn,
yn = βnzn ⊕ (1− βn)Ttn,

xn+1 = αntn ⊕ (1− αn)yn, ∀n ∈ N,

(3.1)

then the sequence {xn} converges strongly to a point in Ω.

Proof. This proof will be divided into a few steps as follows.
(i) Let q ∈ Ω. Then we have Tq = q ∈ Sq and f(q) ≤ f(y), for all y ∈ D. It follows that

f(q) +
1

2λn
d2(q, q) ≤ f(y) +

1

2λn
d2(y, q), ∀y ∈ D.

Hence, q = Jλnq for all n ∈ N . Since zn = Jλnxn, it follows by the nonexpansiveness of Jλn that

d(zn, q) = d(Jλnxn, Jλnq) ≤ d(xn, q). (3.2)

For q ∈ Ω, by virtue of Sq = {q}, by (1.1) and (3.1)-(3.2), it shows that

d(tn, q) = d(γnzn ⊕ (1− γn)wn, q)

≤ γnd(zn, q) + (1− γn)d(wn, q)

≤ γnd(zn, q) + (1− γn)dist(Szn, q)

≤ γnd(zn, q) + (1− γn)H(Szn, Sq)

≤ γnd(zn, q) + (1− γn)d(zn, q)

= d(zn, q)

≤ d(xn, q).

(3.3)

By (3.3), we have
d(yn, q) = d(βnzn ⊕ (1− βn)Ttn, q)

≤ βnd(zn, q) + (1− βn)d(Ttn, q)

≤ βnd(zn, q) + (1− βn)d(tn, q)

≤ βnd(zn, q) + (1− βn)d(zn, q)

= d(zn, q)

≤ d(xn, q)

(3.4)
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and we get
d(xn+1, q) = d(αntn ⊕ (1− αn)yn, q)

≤ αnd(tn, q) + (1− αn)d(yn, q)

≤ αnd(zn, q) + (1− αn)d(yn, q)

≤ d(zn, q)

≤ d(xn, q).

(3.5)

Therefore, by (3.5), we obtain that the sequence {d(xn, q)} is decreasing and bounded. So, limn→∞ d(xn, q)
exists for all q ∈ Ω.

(ii) Let
lim
n→∞

d(xn, q) = l ≥ 0. (3.6)

By lemma 2.11, we have

1

2λn
d2(zn, q)−

1

2λn
d2(xn, q) +

1

2λn
d2(zn, xn) ≤ f(q)− f(zn).

Since f(q) ≤ f(zn) for all n ∈ N , we get

d2(zn, xn) ≤ d2(xn, q)− d2(zn, q). (3.7)

From (3.5), we get
d(xn+1, q) ≤ d(zn, q) ≤ d(xn, q).

So, we have
lim
n→∞

d(xn+1, q) ≤ lim
n→∞

d(zn, q) ≤ lim
n→∞

d(xn, q).

This implies that
lim
n→∞

d(zn, q) = l. (3.8)

By virtue of (3.6)− (3.8), it shows that
lim
n→∞

d(xn, zn) = 0. (3.9)

Because of 0 < a ≤ αn ≤ b < 1, also by (3.5) we get

d(xn+1, q) ≤ αnd(xn, q) + (1− αn)d(yn, q)

and change it as

d(yn, q) ≥
1

1− αn
[d(xn+1, q)− αnd(xn, q)]

≥ 1

1− b
[d(xn+1, q)− bd(xn, q)],

(3.10)

thus, we have

lim
n→∞

inf d(yn, q) ≥ lim
n→∞

inf{ 1

1− b
[d(xn+1, q)− bd(xn, q)]} = l

and by (3.4), we obtain
lim
n→∞

sup d(yn, q) ≤ lim
n→∞

sup d(xn, q) = l.

Then, we have
lim
n→∞

d(yn, q) = l. (A∗)

Similarity, by (3.5), we also get

d(xn+1, q) ≤ αnd(tn, q) + (1− αn)d(yn, q)
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and also change it as

d(tn, q) ≥
1

αn
[d(xn+1, q)− (1− αn)d(yn, q)]

≥ 1

a
[d(xn+1, q)− (1− a)d(yn, q)]

≥ 1

a
[d(xn+1, q)− (1− a)d(xn, q)].

So, we have

lim
n→∞

inf d(tn, q) ≥ lim
n→∞

inf{1

a
[d(xn+1, q)− (1− a)d(xn, q)]} = l.

and by (3.3), this show
lim
n→∞

sup d(tn, q) ≤ lim
n→∞

sup d(xn, q) = l

Then, we obtain
lim
n→∞

d(tn, q) = l. (B∗)

Also from the inequality (CN∗), Sq = {q} and (3.1)− (3.3), we have

d2(tn, q) = d2(γnzn ⊕ (1− γn)wn, q)

≤ γnd2(zn, q) + (1− γn)d2(wn, q)− γn(1− γn)d2(zn, wn)

≤ γnd2(zn, q) + (1− γn)dist2(q, Szn)− γn(1− γn)d2(zn, wn)

≤ γnd2(zn, q) + (1− γn)H2(Sq, Szn)− γn(1− γn)d2(zn, wn)

≤ γnd2(zn, q) + (1− γn)d2(zn, q)− γn(1− γn)d2(zn, wn)

≤ d2(xn, q)− γn(1− γn)d2(zn, wn).

(3.11)

By (3.1)− (3.4), we get

d2(yn, q) = d2(βnzn ⊕ (1− βn)Ttn, q)

≤ βnd2(zn, q) + (1− βn)d2(Ttn, q)− βn(1− βn)d2(zn, T tn)

≤ βnd2(xn, q) + (1− βn)d2(tn, q)− βn(1− βn)d2(zn, T tn)

≤ d2(xn, q)− βn(1− βn)d2(zn, T tn).

(3.12)

Similarly, by (3.1)− (3.5), we have

d2(xn+1, q) = d2(αntn ⊕ (1− αn)yn, q)

≤ αnd2(tn, q) + (1− αn)d2(yn, q)− αn(1− αn)d2(tn, yn)

≤ αnd2(xn, q) + (1− αn)d2(yn, q)− αn(1− αn)d2(tn, yn)

≤ d2(xn, q)− αn(1− αn)d2(tn, yn).

(3.13)

Because of 0 < a ≤ αn, βn, γn ≤ b < 1, and from (3.6), and (A∗), (B∗), this shows that

0 ≤ γn(1− γn)d2(zn, wn) ≤ d2(xn, q)− d2(tn, q)→ 0(n→∞),

0 ≤ βn(1− βn)d2(zn, T tn) ≤ d2(xn, q)− d2(yn, q)→ 0(n→∞),

0 ≤ αn(1− αn)d2(tn, yn) ≤ d2(xn, q)− d2(xn+1, q)→ 0(n→∞).

Thus, we obtain that
lim
n→∞

d(zn, wn) = lim
n→∞

d(zn, T tn) = lim
n→∞

d(tn, yn) = 0. (3.14)
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In fact, because tn = γnzn ⊕ (1− γn)wn, we get

d(tn, xn) = d(γnzn ⊕ (1− γn)wn, xn)

≤ γnd(zn, xn) + (1− γn)d(wn, xn)

≤ γnd(zn, xn) + (1− γn){d(wn, zn) + d(zn, xn)}
→ 0(n→∞).

(3.15)

By the nonexpansiveness of T , and this together (3.14) with (3.15) shows that

d(xn, Txn) ≤ d(xn, zn) + d(zn, T tn) + d(Ttn, Txn)

≤ d(xn, zn) + d(zn, T tn) + d(tn, xn)

→ 0(n→∞).

(3.16)

Immediately, we have
lim
n→∞

d(xn, Txn) = 0.

(iii) Because of nonexpansiveness of S, also from (3.10) and (3.14), we get

dist(xn, Sxn) ≤ d(xn, zn) + dist(zn, Szn) +H(Szn, Sxn)

≤ d(xn, zn) + dist(zn, Szn) + d(zn, xn)

≤ 2d(xn, zn) + d(zn, wn)

→ 0(n→∞).

It is easy to see that
lim
n∞

dist(xn, Sxn) = 0.

(iv) By λn > λ > 0, lemma 2.10 and nonexpansiveness of Jλ, and zn = Jλnxn , we have

d(xn, Jλxn) ≤ d(xn, zn) + d(zn, Jλxn)

≤ d(xn, zn) + d(Jλnxn, Jλxn)

= d(xn, zn) + d(Jλ(
λn − λ
λn

Jλnxn ⊕
λ

λn
xn), Jλxn)

≤ d(xn, zn) +
λn − λ
λn

d(Jλnxn, xn) +
λ

λn
d(xn, xn)

= (2− λ

λn
)d(xn, zn)

→ 0(n→∞).

This also shows that
lim
n∞

d(xn, Jλxn) = 0.

(v) Suppose that the mapping S is hemi-compact. By the step of (iii), we get limn→∞ dist(xn, Sxn) = 0.
From the hemi-compactness of S and we have that there exists a subsequence {un} of {xn}, which strongly
converges to an element q in D. Furthermore, by the above(ii)− (iv), we have

lim
n→∞

d(un, Tun) = 0, lim
n→∞

dist(un, Sun) = 0 and lim
n→∞

d(un, Jλun) = 0.

It follows by the nonexpansiveness of T and the nonexpansiveness of Jλ so that q = Tq = Jλq, we get

q ∈ F (T ) ∩ F (Jλ) = F (T ) ∩ argminy∈Df(y).
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By the nonexpansiveness of S, we have

dist(q, Sq) ≤ d(q, un) + dist(un, Sun) +H(Sun, Sq)

≤ 2d(q, un) + dist(un, Sun)

→ 0(n→∞).

It shows that dist(q, Sq) = 0. This implies that q ∈ Sq. Therefore, we get q ∈ F (S). By (3.16), we have

q ∈ F (T ) ∩ F (S) ∩ argminy∈Df(y) = Ω.

Through the double extract subsequence principle, it shows that the sequence {xn} strongly converges to a
point q in Ω.

This completes the proof.

Theorem3.2 Let D be a nonempty closed convex subset of a complete CAT (0) space X. Let T :
D → D be a nonexpansive single-valued mapping, S : D → KC(D) be a nonexpansive multi-valued
mapping, and f : D → (−∞,∞] be a convex and lower semi-continuous proper function. Suppose that
Ω = F (T )∩F (S)∩ argminy∈Df(y) is nonempty and Sp = {p} for all p ∈ Ω. For x1 ∈ D, the sequence {xn}
generated by (3.1), where {αn}, {βn}, {γn} are sequences in [0, 1] such that 0 < a ≤ αn, βn, γn ≤ b < 1 for
all n ∈ N , and {λn} is a sequence such that λn ≥ λ > 0 for all n ∈ N and some λ. Then the sequence {xn}
∆−converges to a point in Ω.

Proof. Let ω∆(xn) :=
⋃
A({un}), where the union is taken over all subsequences {un} of {xn}. Let p ∈

ω∆(xn). So there exists a subsequence {un} of {xn} such that A({un}) = {p}. By Lemmas 2.6 and 2.7,
there exists a subsequence {vn} of {un} such that

∆− lim
n→∞

vn = v ∈ D. (3.17)

From Theorem 3.1(ii), (iv), we have
lim
n→∞

d(vn, T vn) = 0

and
lim
n→∞

d(vn, Jλvn) = 0.

Then, by the nonexpansiveness of T and Jλ, it implies by Lemma 2.9 that v = Tv = Jλv. So, we get

v ∈ F (T ) ∩ F (Jλ) = F (T ) ∩ argminy∈Df(y). (3.18)

Since S is compact valued, for each n ∈ N , there exist rn ∈ Svn and δn ∈ Sv such that d(vn, rn) =
dist(vn, Svn) and d(rn, δn) = dist(rn, Sv). By the third step of Theorem 3.1, it follows that

lim
n→∞

d(vn, rn) = 0.

By the compactness of Sv, so there exists a subsequence {δni} of {δn} such that limi→∞ δni = δ ∈ Sv. Then
we have

lim
i→∞

inf d(vni , δ) ≤ lim
i→∞

inf(d(vni , rni) + d(rni , δni) + d(δni , δ))

≤ lim
i→∞

inf(d(vni , rni) + dist(rni , Sv) + d(δni , δ))

≤ lim
i→∞

inf(d(vni , rni) +H(Svni , Sv) + d(δni , δ))

≤ lim
i→∞

inf(d(vni , rni) + d(vni , v) + d(δni , δ))

= lim
i→∞

inf d(vni , v).
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By (3.17) and the uniqueness of asymptotic centers, we have v = δ ∈ Sv. Thus, by (3.18), we get

v ∈ F (T ) ∩ F (S) ∩ argminy∈Df(y) = Ω.

It follows by the first step of Theorem 3.1 and Lemma 2.8 so that p = v, and hence ω∆(xn) ⊆ Ω.
Suppose that {un} is a subsequence of {xn} with A({un}) = {u∗} and A({xn}) = {x}. Since u∗ ∈

ω∆(xn) ⊆ Ω and {d(xn, u
∗)} converges, it implies by Lemma 2.8 that x = u∗, which shows that ω∆(xn)

consists of exactly one point. This implies that {xn} ∆−converges to a point in Ω.
This completes the proof.
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