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Abstract  Keywords 

This study investigates the effectiveness of machine learning (ML) models in 
diagnosing diabetes and identifying the most influential predictors using the PIMA 
Indians Diabetes dataset. A particular emphasis is placed on novel neural network 
architectures, especially the Additive and Multiplicative Neurons Network (AMNN), 
introduced as a key innovation in this work. 
 
The dataset underwent comprehensive preprocessing, including handling missing 
values, feature scaling, and addressing class imbalance via the SMOTE algorithm. To 
interpret the importance of predictors, five feature selection techniques (Correlation, 
Boruta, MRMR, RFE, Random Forest) and two explainable AI (XAI) tools (SHAP 
and LIME) were applied. 
 
A total of eight machine learning algorithms were tested and evaluated based on 
accuracy, recall, F1-score, and AUC-ROC. Among all models, AMNN achieved the 
best performance, with an accuracy of 0.7576, recall of 0.7576, F1-score of 0.7618, 
and AUC-ROC of 0.8206. MLP-2 and XGBoost also showed competitive results. 
Kolmogorov-Arnold Networks (KAN), while not outperforming other models, 
demonstrated moderate success and offered interpretability advantages due to its 
flexible activation structure. 
 
Consistently, glucose, BMI, age, and pregnancy count were found to be the most 
significant predictors across feature selection and XAI evaluations. These results align 
with existing clinical insights into diabetes risk. 
 
In conclusion, this study highlights the potential of the AMNN model as a powerful 
and interpretable tool for early diabetes detection. These findings suggest that AMNN 
offers a compelling balance between performance and interpretability, making it 
suitable for real-world medical applications. The integration of feature selection and 
XAI techniques supports model transparency, paving the way for its application in 
clinical decision-making. Future work should focus on enhancing generalizability 
through larger datasets and hybrid modeling strategies.  
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1. INTRODUCTION 
 

Diabetes is one of the most widespread chronic diseases worldwide, presenting a growing public-health 

challenge due to its serious complications such as cardiovascular disorders, kidney failure, neuropathy, 

and blindness [1]. According to the World Health Organization, the global diabetes burden continues to 

increase each year, leading to substantial healthcare costs and reduced quality of life [49]. Early and 

accurate diagnosis is therefore critical to prevent long-term damage and improve patient health. 

However, conventional diagnostic approaches often rely on limited biomarkers and may fail to detect 

complex, nonlinear interactions within clinical data. With rapid technological advancements shaping the 

modern world, artificial intelligence and machine learning have become pivotal tools in revolutionizing 

medical studies, particularly in fields like genetics [43], drug discovery [44], and the diagnosis of 

diseases [21]. Despite numerous studies applying conventional ML models such as Random Forests, 

Support Vector Machines, and standard neural networks to diabetes prediction, challenges remain in 

balancing model performance, interpretability, and generalizability. This gap motivates the exploration 

of novel neural architectures capable of both high accuracy and transparent reasoning. Machine learning 

methods accelerate the diagnostic process, reducing the time patients spend in healthcare facilities, and 

automate healthcare systems, thereby decreasing the need for human labor. Machine learning algorithms 

can process large and diverse datasets efficiently. This enables fast and accurate predictions at a reduced 

computational cost. Therefore, many researchers prefer machine learning techniques for disease 

diagnosis [2]. In this context, the present study introduces the Additive and Multiplicative Neurons 

Network (AMNN) as a novel and interpretable neural architecture designed to enhance diabetes 

diagnosis performance. Additionally, the study investigates the Kolmogorov–Arnold Networks (KAN), 

another emerging model known for its flexible activation structure and interpretability advantages. As 

a recently developed model, KAN has begun to find applications particularly in the field of biology [50]. 

By integrating explainable AI (XAI) tools (SHAP and LIME) and advanced feature selection methods, 

this work not only seeks to improve predictive accuracy but also to uncover the most influential clinical 

predictors driving diabetes risk. 

 

In this study, the PIMA dataset was used for machine learning algorithms. The dataset originally was 

obtained from the National Institute of Diabetes and Digestive and Kidney Diseases. It is designed to 

predict whether an individual has diabetes based on a range of diagnostic indicators, while also 

highlighting the factors that contribute to diabetes. Notably, all participants in the dataset are Pima 

Indian women aged 21 or above [3]. There is extensive research in the literature related to the PIMA 

Diabetes dataset. Kayaer and Yildirim [4] examined the General Regression Neural Network (GRNN) 

structure on the Pima Indians Diabetes dataset and found that it achieved similar classification accuracy 

to more complex neural network models with a simpler structure. They compared GRNN with 

commonly used neural network models such as Multi-Layer Perceptron (MLP) and RBF, obtaining an 

accuracy rate of 80.21% for GRNN and 81% for ARTMAP-IC.4 Karatsiolis and Schizas [5] aimed to 

improve these accuracy rates by using a modified Support Vector Machine (SVM) strategy, achieving 

an accuracy of 82.2% for diabetes classification on the Pima Indians Diabetes dataset. Yangın [6] 

compared decision trees, Random Forest, Gradient Boosting, and XGBoost (eXtreme Gradient 

Boosting) machine learning algorithms on two different datasets, including the Pima Diabetes dataset, 

and identified the highest classification accuracy  with 82.35%. Ganesh and Sripriya [7] examined 

different classification methods on the Pima Indians Diabetes dataset, evaluating the advantages and 

disadvantages of techniques used for diabetes prediction and demonstrating that preprocessing improves 

classification accuracy. Lakhwani et al. [8] developed an artificial neural network (ANN)-based 

automated diabetes diagnosis system using the Pima Indians Diabetes dataset and used cumulative gain 

charts to measure model quality. Patra and Khuntia [9] improved the k-nearest neighbors (KNN) 

classifier using a new standard deviation-based distance calculation method on the Pima Indians 

Diabetes dataset, achieving an accuracy of 83.2%. Mousa et al. [10] compared Long Short-Term 

Memory (LSTM), Random Forest (RF), and Convolutional Neural Network (CNN) models for detecting 

diabetes using the same dataset, showing that LSTM achieved the highest accuracy (85%) and was 
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particularly effective in capturing temporal patterns. Chang et al. [11] developed an e-diagnosis system 

for diabetes using the Pima Indians Diabetes dataset and three interpretable machine learning models: 

Naïve Bayes, Random Forest (RF), and J48 decision trees. The performance of the models was 

calculated using accuracy, precision, recall, and specificity. Among these, the Random Forest (RF) 

model achieved the highest accuracy (79.57%). However, further comparisons indicated that Naïve 

Bayes worked effectively with a smaller number of features, whereas J48 excelled in maintaining high 

sensitivity. In addition, Farsana and Poulose [12] analyzed the PIMA dataset by comparing hybrid CNN 

models with traditional machine learning approaches to aid in the early diagnosis and prevention of 

diabetes. Their hybrid CNN model attained an accuracy of 73%. 

  

The objective of this study is to enhance diabetes diagnosis using various machine learning algorithms 

and to determine the most influential features in classification performance. To achieve this, different 

models were trained and evaluated, and the best-performing algorithm was identified based on key 

metrics. Furthermore, feature importance was analyzed using both feature selection techniques and 

explainable artificial intelligence (XAI) methods. The primary innovation of this study is the 

implementation of the Additive and Multiplicative Neurons Network (AMNN), which outperformed all 

other models. Additionally, the study introduces the Kolmogorov-Arnold Networks (KAN) model as an 

alternative approach to exploring flexible neural architectures. 

The remaining sections of this study are organized as follows: The second section introduces the Pima 

Indians Diabetes dataset and describes the preprocessing steps applied to the dataset. The third section 

discusses model selection criteria and presents the selected models. The fourth section compares the 

methods used in the study and reports the findings. Finally, the last section presents the conclusions and 

recommendations based on the obtained results. 

 

2. METHODS 

 

2.1. Dataset 
 

The PIMA dataset consists of 768 observations and 9 variables. Among the 768 individuals in the 

dataset, 268 have diabetes, while 500 do not have diabetes. The independent variables for diabetic 

individuals are described in Table 1. 

 
Table 1. Variables in the PIMA Indians Diabetes dataset. 

 

Variable Unit Description 

Pregnancies Count Number of pregnancies 

Glucose mg/dL 2-hour plasma glucose concentration 

Blood Pressure mmHg Diastolic blood pressure 

Skin Thickness Mm Triceps skin fold thickness 

Insulin 𝜇U/ml 2-hour serum insulin level 

BMI kg/(𝑚2) Body mass index (BMI) 

Diabetes Pedigree Function Numeric Diabetes pedigree function 

Age Years Age of the individual 

Outcome Categorical Class label (0: non-diabetic, 1: diabetic) 

 

To assess the suitability of the dataset, we draw a t-SNE plot, as shown in Figure 1. 
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Figure 1. Two-dimensional t-SNE visualization of the PIMA Indians Diabetes dataset showing the distribution 

and separability of diabetic (orange) and non-diabetic (blue) cases.  

 

As seen in Figure 1, the dataset exhibits certain clustering patterns; some data points form distinct 

clusters, while others appear more scattered. The colors in the visualization indicate that data points 

labeled as Outcome = 0/no diabetes (blue) and Outcome = 1/diabetes (orange) are somewhat 

distinguishable but not completely separable. Thus, it can be concluded that the dataset is suitable for a 

classification problem. 

 

2.2. Data Preprocessing  

 

The dataset was preprocessed using Python (version 3.10.12). Descriptive statistics of the dataset are 

provided in Table 2. 

 
Table 2. Descriptive statistics of the PIMA Indians Diabetes dataset. 

 

Variable Mean Std Min 25% 50% 75% Max 

Pregnancies 3,85 3,37 0,00 1,00 3,00 6,00 17,00 

Glucose 120,89 31,97 0,00 99,00 117,00 140,25 199,00 

Blood Pressure 69,11 19,36 0,00 62,00 72,00 80,00 122,00 

Skin Thickness 20,54 15,95 0,00 0,00 23,00 32,00 99,00 

Insulin 79,80 115,24 0,00 0,00 30,50 127,25 846,00 

BMI 31,99 7,88 0,00 27,30 32,00 36,60 67,10 

Diabetes Pedigree Function 0,47 0,33 0,08 0,24 0,37 0,63 2,42 

Age 33,24 11,76 21,00 24,00 29,00 41,00 81,00 

 

Additionally, the following data preprocessing methods were applied throughout the entire analysis 

Missing Data: Although there are no explicitly missing values in the dataset, certain variables contain 

an excessive number of zero values, which are considered missing. These zero values were treated as 

missing observations and imputed using the median. 

 

Data Scaling: An analysis of the dataset revealed that variables have different magnitudes. For instance, 

the Age variable ranges from 21 to 81, whereas the Diabetes Pedigree Function variable ranges from 

0.07 to 2.42. To eliminate these differences, min-max scaling and Z-score normalization were applied. 

 

Imbalanced Data: Imbalanced data refers to datasets in which the distribution of classes is markedly 

unequal, a common challenge in classification problems [13]. In the Pima dataset, there is a pronounced 
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imbalance in class representation. In the Pima dataset, there is a noticeable difference between diabetic 

(34.9%) and non-diabetic (65.1%) individuals. This class imbalance can hinder the accurate prediction 

of the minority class (diabetic individuals). To address this issue, the Oversampling (SMOTE) technique 

was applied during the training process [14]. 

 

2.3. Feature Engineering 

 

2.3.1. Feature Selection Methods 

 

In this study, after the data were splitted into train and test sets, the feature selection methods described 

below were applied to the training data. 

 

Correlation: When selecting features, it is essential to examine the relationships between variables. 

Independent variables should be highly correlated with the dependent variable; however, high 

correlations among independent variables can cause multicollinearity, which is undesirable. One of the 

feature selection techniques, CFS (Correlation Feature Selection), determines a subset of features using 

a correlation matrix. When analyzing the correlation matrix, it is observed that the variables with a 

correlation value of 0.20+with the outcome variable are ['Glucose', 'BMI', 'Pregnancies', 'Age']. We plot 

the correlation matrix, as seen in Figure 2 below. 

 
 

Figure 2. Pearson correlation matrix heatmap for all variables in the PIMA dataset. 

 

Boruta: Another feature selection method used is Boruta [15]. This method analyzes the relationships 

between dependent and independent variables to determine which variables are important for the 

predictive model. Based on the Random Forest (RF) algorithm, Boruta assesses the importance of each 

variable by comparing it with randomly generated "shadow" variables. Through this comparison, it 

identifies the most significant real features [16]. Selected important features: ['Pregnancies', 'Glucose', 

'BMI', 'DiabetesPedigreeFunction', 'Age']. Rejected features: ['BloodPressure', 'SkinThickness', 

'Insulin']. 

 

Maximum Relevance - Minimum Redundancy (MRMR): MRMR is a powerful feature selection 

technique that that enhances the relevance of selected features to the output while reducing redundancy 

among them [17]. This method selects the most relevant features to the output while ensuring minimal 

similarity between selected features. The formula for this method is given in Equation 1 [18].  

𝑀𝑅𝑀𝑅 = 𝑚𝑎𝑥  (
1

|𝑆|
∑ 𝐼(𝑓, 𝑐) −𝑓∈𝑆

1

|𝑆|2
∑ 𝐼(𝑓𝑖 , 𝑓𝑗)𝑓𝑖,𝑓𝑗∈𝑆 ) (1) 
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Selected important features: ['Glucose', 'BMI', 'Pregnancies', 'DiabetesPedigreeFunction', 'Age']. 

 

Recursive Feature Elimination (RFE): This method iteratively eliminates the least important features 

to select the best-performing set of features. It begins by training step with all available features. Then, 

in each iteration, it identifies and eliminates the feature with the least significance, retraining the model 

with the other features. This process continues until the predetermined number of significant features is 

reached [19]. Feature ranking using RFE: [1, 1, 2, 3, 4, 1, 1, 1]. Selected important features: 

['Pregnancies', 'Glucose', 'BMI', 'DiabetesPedigreeFunction', 'Age']. 

 

Random Forest (RF): Random Forest (RF): RF is a widely used for feature selection and classification 

problems. In this method, the importance scores of variables are calculated, and high-scoring features 

are retained in the model. RF is an ensemble model consisting of multiple decision trees. It assesses 

each feature’s significance by examining its influence on the splits within decision trees, using measures 

like Gini index or entropy gain [20,25,47]. The feature importance scores from the RF method are 

provided in the appendix, but the five most important features are ['Glucose', 'BMI', 'Age', 

'DiabetesPedigreeFunction', and 'Pregnancies']. 

 

The features selected by the five different feature selection methods are summarized in Table 3. 

 
Table 3. Features selected by different feature selection methods 

 

Methods Features Selected 

Correlation Glucose BMI Age Pregnancies  

Boruta Glucose BMI Pregnancies PedigreeFunction Age 

MRMR Glucose BMI Pregnancies PedigreeFunction Age 

RFE Glucose BMI Pregnancies PedigreeFunction Age 

Random Forest Glucose BMI Age PedigreeFunction Pregnancies 

 

Using the majority voting method [22] it is observed that 'Glucose', 'BMI', 'Age', and 'Pregnancies' were 

consistently selected across all methods, highlighting their significance for the model. In methods where 

feature ranking is important (Correlation, MRMR, and RF), "Glucose" and "BMI" were ranked among 

the top two features, while the rankings of other features varied by method. However, since ranking is 

not crucial for Boruta and RFE, features were selected based on their presence rather than their order. 

Based on these observations, "Glucose" and "BMI" are identified as the most critical features for 

diabetes diagnosis, followed by "Pregnancies", "DiabetesPedigreeFunction", and "Age". 

 

2.3.2. Explainable Machine Learning (XAI) Approaches 

 

Explainable machine learning (XAI) methods aim to make model decisions understandable and 

interpretable. After training a model on the Pima dataset, widely used XAI methods such as SHAP 

(SHapley Additive ExPlanations) or LIME (Local Interpretable Model-Agnostic Explanations) [23]. 

The SHAP summary plot is provided in Figure 3. 
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Figure 3. SHAP (SHapley Additive exPlanations) summary plot displaying feature  importance and impact 

direction for diabetes prediction. Each point represents a patient, with red indicating high feature values 

and blue indicating low values. Glucose emerges as the most influential predictor, followed by BMI, 

Age, and Pregnancies. Horizontal spread indicates the magnitude of each feature's impact on model 

predictions. 
 

When analyzing the SHAP plot, it is observed that "Glucose" is the most influential feature for diabetes 

diagnosis. Higher glucose levels (represented by red points) substantially raise the likelihood of a 

diabetes diagnosis, whereas lower glucose levels (blue points) reduce this probability. After glucose, the 

next most influential feature is "BMI", which also plays a significant role in predicting diabetes risk. As 

BMI increases, the model assigns a higher likelihood of diabetes diagnosis, highlighting the importance 

of weight management in diabetes prediction. 

 

2.3.3. Toy LIME example on patient 163 

 

LIME is a model-agnostic technique that provides interpretability by approximating complex model 

predictions locally with simpler, interpretable models, thus offering insights into the factors influencing 

individual predictions. LIME visualization is presented on the patient number 163 in Figure 4. 
 

 
Figure 4. LIME analysis for Patient 163: (a) Prediction probabilities showing 71% diabetes likelihood, (b) 

Patient's clinical feature values, and (c) Feature contribution plot demonstrating that Glucose >148 

increases risk by 34%, while BMI <28.98 reduces risk by 19%, with Age (31-42) and Pregnancies 

(>6.25) contributing 6% and 7% respectively. 



Demirel Tatlı et al./ Estuscience – Life , 15 (1) – 2026 

 

53 

 

According to the LIME results on patient number 163, BMI, Glucose level, Age, and Number of 

Pregnancies significantly influence the risk of diabetes. A BMI below 28.98 contributes to a 19% 

reduction in risk, while a BMI above this threshold is related with a higher risk of diabetes. Glucose 

level is the most influential factor, with a 34% effect; high glucose levels (above 148) substantially 

increase the risk of diabetes. The age range of 31-42 years contributes to a 6% increase in risk, and the 

number of pregnancies above 6.25 has a 7% effect on diabetes risk. DiabetesPedigreeFunction and other 

factors such as Skin Thickness and Insulin level have less significant contributions to the overall risk. 

These findings suggest that while glucose level and BMI are the strongest predictors, age and pregnancy 

history also play a role, though to a lesser extent. 
 

2.4. Model Selection 
 

Model selection in data mining is critical for identifying the best model for a given task. This process 

often involves evaluation criteria that measure accuracy, generalizability, and efficiency. Commonly 

used metrics include accuracy, the F1-score, cross-validation performance, and the area under the ROC 

curve (AUC-ROC). It is also important to consider model complexity and parameter tuning to avoid 

overfitting or underfitting. In addition, the efficiency and speed of the model play a significant role in 

the selection process. 

 

A confusion matrix is a valuable tool for visually comparing the performance of different models. Table 

4 provides a confusion matrix for a binary classification problem, with the corresponding results detailed 

below: 

 

• True Positive (TP): Positive units correctly classified as positive 

• False Positive (FP): Units classified as positive but actually negative. 

• True Negative (TN): Negative units correctly classified as negative. 

• False Negative (FN): Units classified as negative but actually positive. 

 
Table 4. Confusion matrix for the binary classification problem 

 

CONFUSION MATRIX 
ACTUAL VALUE 

Positive: Diabetes Negative: No Diabetes 

PREDICTED VALUE 
Positive: Diabetes True Positive (TP) False Positive (FP) 

Negative: No Diabetes False Negative (FN) True Negative (TN) 

 

Based on the matrix presented in Table 4, the corresponding performance metrics are calculated. The 

performance measures provided sequentially are accuracy, precision, recall (sensitivity), F1-score, and 

ROC curve. 

 

Accuracy: Defined as the fraction of instances that are correctly classified relative to the total number 

of classified instances. It is commonly used as a measure of prediction performance in classification 

problems. However, using accuracy alone can be misleading, so employing multiple performance 

metrics provides a more comprehensive evaluation.   𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

 𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 

 

Precision: Shows the ratio of truely classified positive ratios to the total number of predicted positive 

ratios. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

 𝑇𝑃+𝐹𝑃
 

 

Recall (Sensitivity): Calculates the model’s ability to correctly identify real positive instances in the test 

set. It is calculated as the proportion of true positive rates to the total number of real positive rates. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

 𝑇𝑃+𝐹𝑁
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F1-Score: Since working with two different metrics can sometimes be problematic, researchers may 

prefer a single number to measure performance. F1-score is calculated as a combination of recall and 

precision. 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2∗𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

 𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

 

ROC Curve: The Receiver Operating Characteristic (ROC) curve is a probability curve for different 

classes. The x-axis shows the false positive rate, while the y-axis shows the true positive predictions. 

This curve illustrates how well the classifier performs in making predictions. The area under the curve 

(AUC) takes values in the range of [0,1] and serves as a measure of model performance. A higher AUC 

value reflects a stronger capability of the model to differentiate among the classes within the dataset.  In 

binary classification problems, an ROC curve visualizes the balance between the model’s performance 

to correctly identify positive units and its tendency to misclassify negative units as positive. In summary, 

ROC curves are highly useful visual tools for comparing classification methods [24]. 

 

2.5. Machine Learning Methods 

 

Classification problems aim to determine the class of a new observation based on the analysis of a given 

dataset. Various methods can be used for solving classification problems. In this study, machine learning 

methods frequently used in the literature for diabetes diagnosis are considered.  

 

Logistic Regression (LR): A statistical model used in binary classification problems where the 

dependent variable is discrete. It is widely applied in computer science, various applied sciences, and 

real-world problems. Logistic regression explains the relation between a binary dependent variable and 

a set of independent variables using a logistic function (logit function) [26]. The probability of an event 

occurring is given by Equation 2. The logit function is calculated as Equation 3 [27]. 
 

𝑃 (𝑌) =
𝑒𝛽0+𝛽1𝑋

1+ 𝑒𝛽0+𝛽1𝑋 = 
1

 1+ 𝑒−(𝛽0+𝛽1𝑋)  (2) 

𝑙𝑛 (
𝑃(𝑌) 

1−𝑃 (𝑌)
)    (3) 

 

Multi-Layer Perceptron (MLP): An MLP is a fundamental type of artificial neural network with a 

feedforward architecture, typically composed of at least one hidden layer. It includes an input layer, one 

or more hidden layers, and an output layer, all of which are fully connected. MLPs utilize nonlinear 

activation functions such as ReLU, Sigmoid, and Tanh to catch complex patterns and relationships. They 

are trained through the backpropagation algorithm, and their weights are updated using optimization 

techniques based on gradient descent. MLPs are extensively used for classification, regression, and time 

series prediction tasks, particularly when addressing nonlinear problems [28]. 

 

Extreme Gradient Boosting (XGBoost): XGBoost is a high-performance, optimized gradient boosting 

algorithm. It builds upon the gradient boosting framework originally proposed by Friedman [29] and 

and includes various enhancements that make it especially effective for large datasets and high-

dimensional feature spaces. XGBoost has shown superior performance across a variety of applications 

[30]. 

 

Extra-Trees (ET): Extra-Trees is an ensemble learning method developed by Geurts [31] as an 

extension of the Random Forest algorithm proposed by Breiman [20]. It constructs multiple decision 

trees while increasing randomness to prevent overfitting. Unlike Random Forest, Extra-Trees selects 

split points randomly, leading to faster tree construction. This approach reduces computational cost 

while maintaining generalization performance. Extra-Trees is used in classification, regression, and 

feature importance evaluation, and it performs well on noisy datasets [31].  
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K-Nearest Neighbors (KNN): KNN is a non-parametric approach introduced by Fix and Hodges [32] 

and commonly employed for both classification and regression tasks. In classification, it determines a 

label by looking at the K nearest neighbors and choosing the class that appears most frequently among 

them. Since KNN searches for the closest neighbors for each data point, the computational complexity 

increases as the dataset grows. As KNN is distance-based, normalizing the training data can significantly 

improve its accuracy.  

 

Gaussian Naive Bayes (GNB): GNB is a type of Naive Bayes classifier that assumes a Gaussian 

(Normal) distribution for continuous data. The algorithm relies on Bayes' Theorem to compute 

conditional probabilities and make class predictions. GNB assumes that features are independent (the 

Naive assumption), making it simple, fast, and computationally efficient. Since GNB considers features 

to be normally distributed, it estimates class probabilities using the mean and variance of each feature. 

GNB is particularly effective for high-dimensional datasets and small sample sizes. It is widely applied 

in text classification, medical diagnosis, fraud detection [33].  

 

Kolmogorov-Arnold Networks (KAN): Kolmogorov-Arnold Networks (KANs) represent a novel type 

of neural network that adopts a basically different learning paradigm compared to conventional MLPs. 

In contrast to MLPs, which rely on fixed activation functions at the nodes (or “neurons”), KANs place 

adaptable activation functions on the edges. Although this might seem like a minor adjustment, it 

substantially boosts both performance and interpretability. In KANs, each weight is replaced by a 

univariate function-often modeled as a spline-thus eliminating the use of linear weights altogether. The 

nodes in a KAN basically gather incoming signals without applying any nonlinear transformations. The 

foundation of KAN lies in the Kolmogorov–Arnold representation theorem, which asserts that any 

continuous multivariate function can be represented as a finite combination of univariate continuous 

functions and addition operations. Specifically, Kolmogorov-Arnold theorem [48] expresses a 

continuous function 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) as in Equations 4. 
 

                                         𝑓(𝑥) = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = ∑ 𝛷𝑞

2𝑛+1

𝑞=1

(∑ ∅𝑞.𝑝

𝑛

𝑃=1

(𝑥𝑝))                                          (4) 

where Φ𝑞:ℝ→ℝ  and ∅𝑞.𝑝:[0,1]→ ℝ are univariate continuous functions. Building on this principle, the 

KAN replaces conventional neuron activations with learnable spline-based univariate functions, 

enabling it to approximate nonlinear mappings with fewer parameters and improved interpretability. For 

a given input vector 𝑋 =[𝑥1, 𝑥2, . . . , 𝑥𝑁], the KAN output is defined as in Equations 5. 
 

                                                                    𝑦̂ =  ∑ 𝑤𝑖𝛷𝑖

𝑀

𝑖=1

(∑ 𝜓𝑖,𝑗

𝑁

𝑗=1

(𝑥𝑗))                                                        (5) 

 

Here 𝛷𝑖 and 𝜓𝑖,𝑗denote the nonlinear spline transformations learned during training, while w𝑖 are 

trainable weights analogous to those in conventional neural networks. 𝑀 and 𝑁 represent the model 

width and input dimension, respectively. By leveraging spline-based activation functions and a reduced 

parameterization, the KAN achieved high generalization performance while maintaining 

interpretability. This balance between expressive power and transparency makes KAN particularly 

suitable for AI-assisted clinical decision support systems, where model explainability is critical [34].  
 

2.5.1 Artificial neural network approach with additive and multiplicative neurons (AMNN)  
 

Deep Learning-Based Alternative Model: Neural Network Approach with Additive and Multiplicative 

Neurons (AMNN): Traditional artificial neural networks (ANNs) are primarily based on additive 

processing, where each neuron computes a weighted sum of its inputs and applies an activation function. 
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However, this structure may fall short in modeling complex nonlinear relationships in certain 

applications. To address this limitation, more flexible models have been developed that integrate both 

additive and multiplicative neurons. AMNN offer an enhanced ability to learn richer representations by 

employing both summation (∑) and multiplication (∏) operations on the inputs. Specifically, 

multiplicative neurons are beneficial for modeling interactions between inputs. This approach helps 

overcome the limited linear combination capability of traditional neural networks, enabling the model 

to capture more intricate relationships. Models utilizing both additive and multiplicative neurons have 

been developed as an alternative to conventional ANNs, aiming to achieve more effective results in 

specific problems by allowing the network to learn more complex dependencies between input features 

[45, 46]. As shown in Figure 5, the model includes two parallel computational pathways.  (1) a linear 

component based on McCulloch–Pitts neurons (Σ, 𝑓1), and (2) a nonlinear component based on 

multiplicative neurons (Π, 𝑓1). The activation functions for these components are defined as Equations 

(6-7).  

                                                             𝑓1(𝑥) = 𝑥,           𝑓2(𝑥) =  
1

1 + 𝑒−𝑥
                                              (6 − 7)  

 

The hidden layer computes outputs for both components as Equations (8-11). 

                                         𝑛𝑒𝑡1 = ∑ 𝑤1𝑗𝑦𝑡−𝑗 + 𝑏1

𝑚

𝑗=1

,       𝑜1 = 𝑓1(𝑛𝑒𝑡1) = (𝑛𝑒𝑡1)                               (8 − 9)  

                       𝑛𝑒𝑡2 = ∑ 𝑤2𝑗𝑦𝑡−𝑗 + 𝑏2𝑗 ,         𝑜2 = 𝑓1(𝑛𝑒𝑡2) =
1

1 + exp (−𝑛𝑒𝑡2)

𝑚

𝑗=1

                     (10 − 11) 

 

Finally, the outputs of both paths are combined in the output layer as shown in Equation (12-13). 

 

                                                                  𝑦̂ = 𝑤31𝑜1 + 𝑤32𝑜2 + 𝑏3                                                       (12 − 13) 

 

This formulation allows the AMNN to learn both additive and multiplicative dependencies within the 

same framework, where 𝑤31 and 𝑤32 are adaptively learned to balance the contribution of linear and 

nonlinear components during training. Such a structure provides a more expressive approximation 

capability than conventional additive-only neural networks. As illustrated in the model architecture 

diagram in Figure 5, the network comprises two parallel paths originating from the input layer. The first 

path includes a conventional neuron that performs a weighted summation (i.e., linear combination), 

while the second path consists of a computational unit that multiplies all input features together. These 

two pathways are subsequently merged through summation to generate a unified representation. A 

hidden layer with ReLU activation follows this combined output, and finally, a sigmoid-activated output 

neuron is employed for binary classification. 
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Figure 5. Architectural schematic of the proposed Additive and Multiplicative Neurons Network (AMNN). The 

architecture integrates two parallel computational pathways: (i) an additive neuron path, which performs a 

weighted summation of the input signals, and (ii) a multiplicative neuron path, which computes the product 

of all input features. The outputs of these two streams are subsequently combined and passed through a 

hidden layer with ReLU activation, followed by a sigmoid-activated output layer for binary classification. 

 

3. RESULTS 
 

In this study, the performance of various machine learning algorithms used in diabetes classification 

was compared. Within the scope of the analysis, 70% of the dataset was allocated for training and 30% 

for testing, followed by the application of 5-fold cross-validation. Different algorithms such as LR, 

KNN, MLP, XGB, ET, GNB, KAN and AMNN were evaluated in terms of accuracy, precision, recall, 

F1-score, and the AUC-ROC. MLP models were tested with different configurations. For instance, 

MLP-2 used a two hidden layer (100 and 50 neurons), the ReLU activation function, and the “Adam” 

optimization algorithm. In the KAN model, spline-based activation functions and 10 hidden layer units 

were employed. In the AMNN model, a hybrid deep learning architecture was constructed that combines 

additive and multiplicative neurons to better capture both linear and nonlinear relationships. The model 

consisted of two parallel processing paths: a summation path using ReLU-activated dense neurons (16 

units) and a multiplicative path using a custom Lambda layer. These two paths were merged and 

followed by a hidden layer with 8 neurons (ReLU) and a sigmoid output neuron for binary classification. 

The AMNN model was compiled using the binary cross-entropy loss function and Adam optimizer, and 

trained over 100 epochs with a batch size of 32. Performance evaluation was conducted on the test 

dataset, with metrics such as accuracy, precision, recall, F1-score, and AUC-ROC being calculated. A 

summary of the performance comparison of all models is presented in Table 5. 
 

Table 5. Performance metrics of selected machine learning algorithms (LR: Logistic Regression, MLP: Multi-

Layer Perceptron, XGboost: Extreme Gradient Boosting, ET: Extra Trees, KNN: K-Nearest Neighbors, 

GNB: Gaussian Naive Bayes, KAN: Kolmogorov–Arnold Networks, AMNN: Additive and 

Multiplicative Neurons.) 
 

Classification Report Accuracy Precision Recall F1-score AUC-ROC 

LR 0.7316 0.7386 0.7316 0.7342 0.8347 

MLP-2 0.7359 0.7482 0.7359 0.7398 0.7888 

XGboost 0.7489 0.7520 0.7489 0.7503 0.8332 

ET 0.7489 0.7463 0.7489 0.7474 0.8286 

KNN 0.7489 0.7755 0.7489 0.7542 0.8028 

GNB 0.7273 0.7354 0.7273 0.7302 0.8015 

KAN 0.7272 0.7185 0.7272 0.7186 0.8225 

AMNN 0.7576 0.7733 0.7576 0.7618 0.8206 
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Examining Table 5 reveals that the AMNN model exhibited the best overall performance among the 

listed models, achieving the highest accuracy (0.7576), recall (0.7576), and F1-score (0.7618). It also 

delivered a strong precision score (0.7733) and a competitive AUC-ROC value of 0.8206. These results 

highlight AMNN’s effectiveness in classification tasks, particularly its ability to balance sensitivity and 

specificity. The model’s high precision suggests strong control over false positives, which is valuable 

in medical diagnostics. This success is likely due to AMNN’s unique hybrid architecture, combining 

additive and multiplicative neurons for capturing both linear and nonlinear data relationships. 
 

Following AMNN, the XGBoost, ET, and KNN models formed a mid-performance group, all attaining 

an accuracy of 0.7489. Among them, KNN stood out with the highest precision (0.7755), indicating 

reliable positive class identification. XGBoost and ET had competitive F1-scores (0.7503 and 0.7474, 

respectively), and solid AUC-ROC values above 0.82, reflecting good classification capacity. 
 

The MLP-2 model, with an accuracy of 0.7359 and AUC-ROC of 0.7888, demonstrated moderate 

performance. LR (Logistic Regression) showed similar trends, achieving an AUC-ROC of 0.8347, the 

highest among all models, despite its lower accuracy (0.7316), highlighting its strength in distinguishing 

classes across thresholds. 
 

Models such as GNB, KAN, and LR ranked at the bottom in terms of accuracy and F1-score, though 

their AUC-ROC values remained above 0.80. KAN, for instance, had a relatively low accuracy (0.7272), 

but its AUC-ROC (0.8225) suggests stable probability predictions, making it potentially useful in 

threshold-sensitive applications. 
 

To further illustrate the discriminative performance of the models, Figure 6 presents the ROC curves, 

generated using the [51], for four representative classifiers: LR, XGBoost, KAN, and the proposed 

AMNN. The figure clearly demonstrates the superior area under the curve of the AMNN model 

compared with the conventional and ensemble-based approaches. 

 
Figure 6. Receiver Operating Characteristic (ROC) curves of the selected classification models: (a) Logistic 

Regression (LR), (b) XGBoost, (c) Kolmogorov-Arnold Network (KAN), and (d) the proposed Additive 

and Multiplicative Neurons Network (AMNN). The figure highlights the superior discriminative 

performance of the proposed AMNN model compared to conventional and ensemble-based approaches. 
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Overall, these findings suggest that the AMNN model is a competitive alternative to traditional 

classifiers, excelling in both accuracy and precision. It is particularly well-suited for domains where 

minimizing false positives is critical. Ensemble-based models and tree-based learners (like XGBoost 

and ET) also proved effective, while simpler models like LR and GNB, despite lower classification 

metrics, still offer value in terms of interpretability and AUC-based ranking. 

 

4. DISCUSSION 

 

This study sought to evaluate the diagnostic performance of various machine learning algorithms for 

diabetes, with the aim of determining which model proved most effective. Using the PIMA Indians 

Diabetes dataset, the analysis revealed that the AMNN models achieved the highest performance. These 

models outperformed others in terms of accuracy and AUC-ROC scores, suggesting that deep learning-

based approaches and ensemble models are highly effective for diabetes classification. 

 

The application of XAI methods such as SHAP and LIME provided valuable insights into model 

decision-making processes. These methods highlighted that glucose level, BMI, and age are the most 

critical features in predicting diabetes. Among these, glucose level was found to be the strongest 

predictor, significantly influencing the model's ability to classify individuals as diabetic or non-diabetic. 

This finding aligns with clinical evidence, as elevated blood glucose levels are a primary diagnostic 

criterion for diabetes and play a central role in disease progression [35]. BMI, another key factor, is 

strongly associated with insulin resistance and metabolic dysfunction, making it a crucial indicator for 

early intervention [36]. Age-related changes in glucose metabolism and pancreatic function further 

emphasize the importance of age as a predictive variable in diabetes risk assessment [37]. Other 

important features included Diabetes Pedigree Function and the number of pregnancies. A strong family 

history of diabetes, as indicated by the Diabetes Pedigree Function, suggests a genetic predisposition, 

which is critical for identifying at-risk individuals before clinical symptoms appear [38]. Additionally, 

the number of pregnancies may reflect the impact of gestational diabetes, a known risk factor for type 2 

diabetes in later life [39]. Recognizing these risk factors through machine learning models allows for 

earlier lifestyle modifications, targeted screening programs, and personalized treatment plans [40,41]. 

However, features like blood pressure, skin thickness, and insulin levels had a lower impact on the 

model’s predictions. While these factors may not be the strongest predictors, they still contribute to the 

overall assessment of metabolic health and should not be overlooked in clinical practice [42]. 

 

These findings are largely consistent with previous studies in the literature. For instance, Kayaer and 

Yıldırım [4] achieved 80.21% accuracy using a GRNN on the same dataset, while Patra and Khuntia [9] 

improved the KNN classifier to achieve 83.2% accuracy. Similarly, Mousa et al. [10] found that LSTM 

achieved the highest accuracy (85%) among various models applied to the PIMA dataset. In this study, 

although the LSTM model was not implemented, a number of classical and hybrid machine learning 

models were tested, including ensemble and deep learning-based approaches. 

 

According to the experimental results, the best performance was achieved by the AMNN model, with 

an accuracy of 75.76%, a recall of 75.76%, and an F1-score of 76.18%. These metrics demonstrate a 

competitive performance compared to several previously reported models. Furthermore, ensemble 

models such as XGBoost and ET (Extra Trees) also showed promising results, with accuracy values of 

74.89%, aligning with the findings of Yangın [6] and Chang et al. [11], who emphasized the strength of 

ensemble-based methods like XGBoost and RF. Additionally, KNN achieved a solid precision of 

77.55%, which is consistent with the enhanced version presented by Patra and Khuntia [9]. 

 

On the other hand, logistic regression (LR) yielded a relatively lower accuracy of 73.16% but reached 

the highest AUC-ROC value of 0.8347, indicating a good balance between sensitivity and specificity. 

This result also resonates with the findings by Chang et al. [11], where interpretable models like Naïve 

Bayes and decision trees were found to be effective with fewer features. 
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In summary, the findings of this study confirm the effectiveness of neural and ensemble learning 

approaches for diabetes classification and reinforce the idea that hybrid models like AMNN can provide 

robust performance across multiple evaluation metrics. The consistency of these results with prior 

research supports the continued use and development of such models in medical diagnostic tasks 

involving structured datasets like PIMA. 

 

Despite these promising results, the study has certain limitations. This study draws on the Pima Indians 

Diabetes dataset (n = 768), composed solely of adult women of Pima descent. While this dataset provides 

a well-characterized sample, its narrow demographic scope and modest size may introduce spectrum 

bias and limit the generalizability of the findings to populations beyond Pima women. Additionally, the 

dataset is imbalanced, with fewer diabetic cases compared to non-diabetic ones. To address this, the 

SMOTE method was applied. However, it is important to evaluate how such oversampling techniques 

might affect the model’s ability to generalize to real-world scenarios. Future research could benefit from 

larger and more balanced datasets to enhance model reliability and robustness. 

 

Another limitation is that the PIMA dataset includes only female participants, which prevents an analysis 

of gender-based differences in diabetes prediction. Future studies could incorporate datasets that include 

both male and female individuals to examine potential gender-based variations in diabetes risk factors. 

 

To further improve generalizability, future validation should involve multi-center and demographically 

diverse cohorts that include different ethnicities, age groups, and clinical settings. In addition, nested 

cross-validation and external test evaluations are recommended to ensure model stability and 

reproducibility across heterogeneous populations. 

 

Moreover, this study incorporated both traditional machine learning algorithms and deep learning 

models, including a novel hybrid approach (AMNN). For future research, exploring more advanced 

hybrid models, transfer learning strategies, or federated learning techniques could further enhance 

diabetes classification performance. Additionally, implementing these models in real-world clinical 

decision support systems could help validate their practical applicability. 

 

5. CONCLUSION 

 

This study aims to improve diabetes classification using various machine learning models, while also 

identifying the most influential variables through explainable AI (XAI) and feature selection methods. 

A key innovation of the study is the implementation of the AMNN model, a novel artificial neural 

network (ANN) architecture that outperformed all other models in diabetes prediction. In addition, the 

study explores the KAN model, another recent ANN approach, which offers a distinctive design through 

learnable edge-based activation functions.  
 
AMNN's SHAP-based local explanations can support threshold-based decisions by providing clinicians 

with patient-specific risk factors. Real-time feature extraction and missing data imputation will be 

critical for integration with electronic health records (EHRs). In addition, ensuring model 

interpretability, calibration across diverse patient populations, and seamless workflow integration 

represent key challenges for clinical adoption. Future implementations could involve embedding 

AMNN-driven alerts or risk dashboards within clinical decision support systems, enabling clinicians to 

validate model outputs and adjust thresholds based on institutional or demographic contexts. 

 

The experimental results demonstrate that the AMNN model achieved the highest classification 

performance, with an accuracy of 75.76%, recall of 75.76%, and F1-score of 76.18%, outperforming 

other models in overall predictive capability. Although LR (Logistic Regression) recorded the highest 

AUC-ROC value (0.8347), indicating strong discriminatory power, the overall balanced performance of 

AMNN across all metrics makes it the most effective model in this study. 
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Ensemble models like XGBoost and ET (Extra Trees) also showed competitive results, confirming their 

robustness in medical classification tasks. While the KAN model did not surpass AMNN, it achieved a 

respectable accuracy of 72.72% and AUC-ROC of 0.8225. Its innovative use of learnable activation 

functions at the edges instead of traditional fixed-node activations offers greater adaptability and 

interpretability, marking it as a promising direction for future studies. 

 

In terms of feature importance, both feature selection and XAI techniques consistently highlighted 

glucose level, BMI, and age as the most significant predictors of diabetes. Additionally, Diabetes 

Pedigree Function and number of pregnancies were found to contribute meaningfully to classification 

outcomes, which aligns with established medical knowledge. 

 

Despite these encouraging findings, some limitations remain. The dataset is relatively small, includes 

only female participants of Pima Indian heritage, and is class-imbalanced, which may limit 

generalizability. Future research should aim to address these limitations by utilizing larger, more diverse 

datasets and integrating advanced techniques such as hybrid learning, transfer learning, or federated 

learning to improve model accuracy and robustness. 

 

In conclusion, the results confirm that machine learning, particularly deep learning and ensemble-based 

methods like AMNN and XGBoost, hold great potential for early diabetes diagnosis. The integration of 

XAI techniques enhances model transparency, facilitating trust and interpretability in clinical decision-

making. Moreover, innovative models like KAN warrant further exploration, especially in hybrid 

configurations, to advance diabetes prediction and support personalized healthcare applications. 

 

Building upon the promising results achieved by AMNN and KAN, future research could explore hybrid 

models that integrate both architectures to leverage their complementary strengths. Specifically, 

combining the additive-multiplicative capabilities of AMNN with the nonlinear transformation power 

of KAN could lead to a more robust model that captures even more complex patterns and relationships 

in data. Additionally, investigating the application of federated learning could expand the models' 

applicability, enabling decentralized training across multiple institutions or devices while preserving 

data privacy. Such an approach would facilitate the development of scalable, privacy-preserving 

solutions, particularly in sensitive fields like healthcare, where data sharing is often limited. Future 

efforts should also focus on model interpretability in these hybrid settings, ensuring that the combined 

models remain transparent and understandable to end-users, especially in high-stakes domains such as 

clinical decision-making. 
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