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Abstract Keywords
This study investigates the effectiveness of machine learning (ML) models in
diagnosing diabetes and identifying the most influential predictors using the PIMA Diabetes classification,
Indians Diabetes dataset. A particular emphasis is placed on novel neural network Kolmogorov—Arnold networks
architectures, especially the Additive and Multiplicative Neurons Network (AMNN), models,
introduced as a key innovation in this work. Additive and Multiplicative
neurons network models,
The dataset underwent comprehensive preprocessing, including handling missing Machine learning

values, feature scaling, and addressing class imbalance via the SMOTE algorithm. To

interpret the importance of predictors, five feature selection techniques (Correlation, ] ]
Boruta, MRMR, RFE, Random Forest) and two explainable Al (XAl) tools (SHAP Time Scale of Article
and LIME) were applied.

A total of eight machine learning algorithms were tested and evaluated based on Received :11 April, 2025
accuracy, recall, F1-score, and AUC-ROC. Among all models, AMNN achieved the Accepted : 22 November 2025
best performance, with an accuracy of 0.7576, recall of 0.7576, F1-score of 0.7618, Online date : 27 January 2026

and AUC-ROC of 0.8206. MLP-2 and XGBoost also showed competitive results.
Kolmogorov-Arnold Networks (KAN), while not outperforming other models,
demonstrated moderate success and offered interpretability advantages due to its
flexible activation structure.

Consistently, glucose, BMI, age, and pregnancy count were found to be the most
significant predictors across feature selection and XAl evaluations. These results align
with existing clinical insights into diabetes risk.

In conclusion, this study highlights the potential of the AMNN model as a powerful
and interpretable tool for early diabetes detection. These findings suggest that AMNN
offers a compelling balance between performance and interpretability, making it
suitable for real-world medical applications. The integration of feature selection and
XAl techniques supports model transparency, paving the way for its application in
clinical decision-making. Future work should focus on enhancing generalizability
through larger datasets and hybrid modeling strategies.
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1. INTRODUCTION

Diabetes is one of the most widespread chronic diseases worldwide, presenting a growing public-health
challenge due to its serious complications such as cardiovascular disorders, kidney failure, neuropathy,
and blindness [1]. According to the World Health Organization, the global diabetes burden continues to
increase each year, leading to substantial healthcare costs and reduced quality of life [49]. Early and
accurate diagnosis is therefore critical to prevent long-term damage and improve patient health.
However, conventional diagnostic approaches often rely on limited biomarkers and may fail to detect
complex, nonlinear interactions within clinical data. With rapid technological advancements shaping the
modern world, artificial intelligence and machine learning have become pivotal tools in revolutionizing
medical studies, particularly in fields like genetics [43], drug discovery [44], and the diagnosis of
diseases [21]. Despite numerous studies applying conventional ML models such as Random Forests,
Support Vector Machines, and standard neural networks to diabetes prediction, challenges remain in
balancing model performance, interpretability, and generalizability. This gap motivates the exploration
of novel neural architectures capable of both high accuracy and transparent reasoning. Machine learning
methods accelerate the diagnostic process, reducing the time patients spend in healthcare facilities, and
automate healthcare systems, thereby decreasing the need for human labor. Machine learning algorithms
can process large and diverse datasets efficiently. This enables fast and accurate predictions at a reduced
computational cost. Therefore, many researchers prefer machine learning techniques for disease
diagnosis [2]. In this context, the present study introduces the Additive and Multiplicative Neurons
Network (AMNN) as a novel and interpretable neural architecture designed to enhance diabetes
diagnosis performance. Additionally, the study investigates the Kolmogorov—Arnold Networks (KAN),
another emerging model known for its flexible activation structure and interpretability advantages. As
a recently developed model, KAN has begun to find applications particularly in the field of biology [50].
By integrating explainable Al (XAI) tools (SHAP and LIME) and advanced feature selection methods,
this work not only seeks to improve predictive accuracy but also to uncover the most influential clinical
predictors driving diabetes risk.

In this study, the PIMA dataset was used for machine learning algorithms. The dataset originally was
obtained from the National Institute of Diabetes and Digestive and Kidney Diseases. It is designed to
predict whether an individual has diabetes based on a range of diagnostic indicators, while also
highlighting the factors that contribute to diabetes. Notably, all participants in the dataset are Pima
Indian women aged 21 or above [3]. There is extensive research in the literature related to the PIMA
Diabetes dataset. Kayaer and Yildirim [4] examined the General Regression Neural Network (GRNN)
structure on the Pima Indians Diabetes dataset and found that it achieved similar classification accuracy
to more complex neural network models with a simpler structure. They compared GRNN with
commonly used neural network models such as Multi-Layer Perceptron (MLP) and RBF, obtaining an
accuracy rate of 80.21% for GRNN and 81% for ARTMAP-IC.4 Karatsiolis and Schizas [5] aimed to
improve these accuracy rates by using a modified Support Vector Machine (SVM) strategy, achieving
an accuracy of 82.2% for diabetes classification on the Pima Indians Diabetes dataset. Yangin [6]
compared decision trees, Random Forest, Gradient Boosting, and XGBoost (eXtreme Gradient
Boosting) machine learning algorithms on two different datasets, including the Pima Diabetes dataset,
and identified the highest classification accuracy with 82.35%. Ganesh and Sripriya [7] examined
different classification methods on the Pima Indians Diabetes dataset, evaluating the advantages and
disadvantages of techniques used for diabetes prediction and demonstrating that preprocessing improves
classification accuracy. Lakhwani et al. [8] developed an artificial neural network (ANN)-based
automated diabetes diagnosis system using the Pima Indians Diabetes dataset and used cumulative gain
charts to measure model quality. Patra and Khuntia [9] improved the k-nearest neighbors (KNN)
classifier using a new standard deviation-based distance calculation method on the Pima Indians
Diabetes dataset, achieving an accuracy of 83.2%. Mousa et al. [10] compared Long Short-Term
Memory (LSTM), Random Forest (RF), and Convolutional Neural Network (CNN) models for detecting
diabetes using the same dataset, showing that LSTM achieved the highest accuracy (85%) and was
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particularly effective in capturing temporal patterns. Chang et al. [11] developed an e-diagnosis system
for diabetes using the Pima Indians Diabetes dataset and three interpretable machine learning models:
Naive Bayes, Random Forest (RF), and J48 decision trees. The performance of the models was
calculated using accuracy, precision, recall, and specificity. Among these, the Random Forest (RF)
model achieved the highest accuracy (79.57%). However, further comparisons indicated that Naive
Bayes worked effectively with a smaller number of features, whereas J48 excelled in maintaining high
sensitivity. In addition, Farsana and Poulose [12] analyzed the PIMA dataset by comparing hybrid CNN
models with traditional machine learning approaches to aid in the early diagnosis and prevention of
diabetes. Their hybrid CNN model attained an accuracy of 73%.

The objective of this study is to enhance diabetes diagnosis using various machine learning algorithms
and to determine the most influential features in classification performance. To achieve this, different
models were trained and evaluated, and the best-performing algorithm was identified based on key
metrics. Furthermore, feature importance was analyzed using both feature selection techniques and
explainable artificial intelligence (XAI) methods. The primary innovation of this study is the
implementation of the Additive and Multiplicative Neurons Network (AMNN), which outperformed all
other models. Additionally, the study introduces the Kolmogorov-Arnold Networks (KAN) model as an
alternative approach to exploring flexible neural architectures.

The remaining sections of this study are organized as follows: The second section introduces the Pima
Indians Diabetes dataset and describes the preprocessing steps applied to the dataset. The third section
discusses model selection criteria and presents the selected models. The fourth section compares the
methods used in the study and reports the findings. Finally, the last section presents the conclusions and
recommendations based on the obtained results.

2. METHODS

2.1. Dataset

The PIMA dataset consists of 768 observations and 9 variables. Among the 768 individuals in the
dataset, 268 have diabetes, while 500 do not have diabetes. The independent variables for diabetic

individuals are described in Table 1.

Table 1. Variables in the PIMA Indians Diabetes dataset.

Variable Unit Description

Pregnancies Count Number of pregnancies

Glucose mg/dL 2-hour plasma glucose concentration
Blood Pressure mmHg Diastolic blood pressure

Skin Thickness Mm Triceps skin fold thickness

Insulin uU/ml 2-hour serum insulin level

BMI kg/(m?) Body mass index (BMI)

Diabetes Pedigree Function Numeric Diabetes pedigree function

Age Years Age of the individual

Outcome Categorical Class label (0: non-diabetic, 1: diabetic)

To assess the suitability of the dataset, we draw a t-SNE plot, as shown in Figure 1.
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Pima Indian Diabetes - t-SNE Visualization
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Figure 1. Two-dimensional t-SNE visualization of the PIMA Indians Diabetes dataset showing the distribution
and separability of diabetic (orange) and non-diabetic (blue) cases.

As seen in Figure 1, the dataset exhibits certain clustering patterns; some data points form distinct
clusters, while others appear more scattered. The colors in the visualization indicate that data points
labeled as Outcome = 0/no diabetes (blue) and Outcome = 1/diabetes (orange) are somewhat
distinguishable but not completely separable. Thus, it can be concluded that the dataset is suitable for a
classification problem.

2.2. Data Preprocessing

The dataset was preprocessed using Python (version 3.10.12). Descriptive statistics of the dataset are
provided in Table 2.

Table 2. Descriptive statistics of the PIMA Indians Diabetes dataset.

Variable Mean Std Min 25%  50% 75% Max
Pregnancies 3,85 3,37 0,00 1,00 3,00 6,00 17,00
Glucose 120,89 31,97 0,00 99,00 117,00 140,25 199,00
Blood Pressure 69,11 19,36 0,00 62,00 72,00 80,00 122,00
Skin Thickness 20,54 15,95 0,00 0,00 23,00 32,00 99,00
Insulin 79,80 115,24 0,00 0,00 30,50 127,25 846,00
BMI 31,99 7,88 0,00 27,30 32,00 36,60 67,10
Diabetes Pedigree Function 0,47 0,33 0,08 0,24 0,37 0,63 2,42
Age 33,24 11,76 21,00 24,00 29,00 41,00 81,00

Additionally, the following data preprocessing methods were applied throughout the entire analysis
Missing Data: Although there are no explicitly missing values in the dataset, certain variables contain
an excessive number of zero values, which are considered missing. These zero values were treated as
missing observations and imputed using the median.

Data Scaling: An analysis of the dataset revealed that variables have different magnitudes. For instance,
the Age variable ranges from 21 to 81, whereas the Diabetes Pedigree Function variable ranges from
0.07 to 2.42. To eliminate these differences, min-max scaling and Z-score normalization were applied.

Imbalanced Data: Imbalanced data refers to datasets in which the distribution of classes is markedly
unequal, a common challenge in classification problems [13]. In the Pima dataset, there is a pronounced
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imbalance in class representation. In the Pima dataset, there is a noticeable difference between diabetic
(34.9%) and non-diabetic (65.1%) individuals. This class imbalance can hinder the accurate prediction
of the minority class (diabetic individuals). To address this issue, the Oversampling (SMOTE) technique
was applied during the training process [14].

2.3. Feature Engineering
2.3.1. Feature Selection Methods

In this study, after the data were splitted into train and test sets, the feature selection methods described
below were applied to the training data.

Correlation: When selecting features, it is essential to examine the relationships between variables.
Independent variables should be highly correlated with the dependent variable; however, high
correlations among independent variables can cause multicollinearity, which is undesirable. One of the
feature selection techniques, CFS (Correlation Feature Selection), determines a subset of features using
a correlation matrix. When analyzing the correlation matrix, it is observed that the variables with a
correlation value of 0.20with the outcome variable are ['Glucose', 'BMI', 'Pregnancies’, 'Age’]. We plot
the correlation matrix, as seen in Figure 2 below.
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Figure 2. Pearson correlation matrix heatmap for all variables in the PIMA dataset.

Boruta: Another feature selection method used is Boruta [15]. This method analyzes the relationships
between dependent and independent variables to determine which variables are important for the
predictive model. Based on the Random Forest (RF) algorithm, Boruta assesses the importance of each
variable by comparing it with randomly generated "shadow" variables. Through this comparison, it
identifies the most significant real features [16]. Selected important features: ['Pregnancies’, 'Glucose',
'‘BMI', 'DiabetesPedigreeFunction’, 'Age]. Rejected features: [‘BloodPressure’, 'SkinThickness',
‘Insulin].

Maximum Relevance - Minimum Redundancy (MRMR): MRMR is a powerful feature selection
technique that that enhances the relevance of selected features to the output while reducing redundancy
among them [17]. This method selects the most relevant features to the output while ensuring minimal
similarity between selected features. The formula for this method is given in Equation 1 [18].

MRMR = max (= res(f,€) =5 Lropyes (i) (1)
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Selected important features: ['Glucose', 'BMI', 'Pregnancies', 'DiabetesPedigreeFunction’, 'Age'].

Recursive Feature Elimination (RFE): This method iteratively eliminates the least important features
to select the best-performing set of features. It begins by training step with all available features. Then,
in each iteration, it identifies and eliminates the feature with the least significance, retraining the model
with the other features. This process continues until the predetermined number of significant features is
reached [19]. Feature ranking using RFE: [1, 1, 2, 3, 4, 1, 1, 1]. Selected important features:
[Pregnancies’, 'Glucose', 'BMI', 'DiabetesPedigreeFunction’, 'Age’].

Random Forest (RF): Random Forest (RF): RF is a widely used for feature selection and classification
problems. In this method, the importance scores of variables are calculated, and high-scoring features
are retained in the model. RF is an ensemble model consisting of multiple decision trees. It assesses
each feature’s significance by examining its influence on the splits within decision trees, using measures
like Gini index or entropy gain [20,25,47]. The feature importance scores from the RF method are
provided in the appendix, but the five most important features are ['Glucose', 'BMI', 'Age’,
'DiabetesPedigreeFunction’, and 'Pregnancies’].

The features selected by the five different feature selection methods are summarized in Table 3.

Table 3. Features selected by different feature selection methods

Methods Features Selected

Correlation Glucose BMI Age Pregnancies

Boruta Glucose BMI Pregnancies PedigreeFunction Age
MRMR Glucose BMI Pregnancies PedigreeFunction Age

RFE Glucose BMI Pregnancies PedigreeFunction Age
Random Forest Glucose BMI Age PedigreeFunction Pregnancies

Using the majority voting method [22] it is observed that 'Glucose’, 'BMI', '‘Age’, and 'Pregnancies’ were
consistently selected across all methods, highlighting their significance for the model. In methods where
feature ranking is important (Correlation, MRMR, and RF), "Glucose" and "BMI" were ranked among
the top two features, while the rankings of other features varied by method. However, since ranking is
not crucial for Boruta and RFE, features were selected based on their presence rather than their order.
Based on these observations, "Glucose” and "BMI" are identified as the most critical features for
diabetes diagnosis, followed by "Pregnancies”, "DiabetesPedigreeFunction™, and "Age".

2.3.2. Explainable Machine Learning (XAl) Approaches
Explainable machine learning (XAI) methods aim to make model decisions understandable and
interpretable. After training a model on the Pima dataset, widely used XAl methods such as SHAP

(SHapley Additive ExPlanations) or LIME (Local Interpretable Model-Agnostic Explanations) [23].
The SHAP summary plot is provided in Figure 3.
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Figure 3. SHAP (SHapley Additive exPlanations) summary plot displaying feature importance and impact
direction for diabetes prediction. Each point represents a patient, with red indicating high feature values
and blue indicating low values. Glucose emerges as the most influential predictor, followed by BMI,
Age, and Pregnancies. Horizontal spread indicates the magnitude of each feature's impact on model
predictions.

When analyzing the SHAP plot, it is observed that "Glucose" is the most influential feature for diabetes
diagnosis. Higher glucose levels (represented by red points) substantially raise the likelihood of a
diabetes diagnosis, whereas lower glucose levels (blue points) reduce this probability. After glucose, the
next most influential feature is "BMI", which also plays a significant role in predicting diabetes risk. As
BMI increases, the model assigns a higher likelihood of diabetes diagnosis, highlighting the importance
of weight management in diabetes prediction.

2.3.3. Toy LIME example on patient 163

LIME is a model-agnostic technique that provides interpretability by approximating complex model
predictions locally with simpler, interpretable models, thus offering insights into the factors influencing
individual predictions. LIME visualization is presented on the patient number 163 in Figure 4.

No Diabetes

Prediction probabilities ;
Glucose > 148.00 Feature Value
No Diabetes J— . = —
Diabetes BMI = 2558

|Pregnancies > 6.25
HS!.OO <Age<=4200

BloodPressure <= 66

0.26 < DiabetesPedigre.

SkinThickness <= 23
Insulin <= 30.50

(b)
(a)
LIME - Example 163
Glucose > 148.00

Pregnancies > 6.25 .

31.00 < Age <= 42.00

BloodPressure <= 66.00 .

1.26 < DiabetesPedigreeFunction <= 0.41 I
SkinThickness <= 23.00 I

Insulin <= 30.50 |
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Figure 4. LIME analysis for Patient 163: (a) Prediction probabilities showing 71% diabetes likelihood, (b)
Patient's clinical feature values, and (c) Feature contribution plot demonstrating that Glucose >148
increases risk by 34%, while BMI <28.98 reduces risk by 19%, with Age (31-42) and Pregnancies
(>6.25) contributing 6% and 7% respectively.
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According to the LIME results on patient number 163, BMI, Glucose level, Age, and Number of
Pregnancies significantly influence the risk of diabetes. A BMI below 28.98 contributes to a 19%
reduction in risk, while a BMI above this threshold is related with a higher risk of diabetes. Glucose
level is the most influential factor, with a 34% effect; high glucose levels (above 148) substantially
increase the risk of diabetes. The age range of 31-42 years contributes to a 6% increase in risk, and the
number of pregnancies above 6.25 has a 7% effect on diabetes risk. DiabetesPedigreeFunction and other
factors such as Skin Thickness and Insulin level have less significant contributions to the overall risk.
These findings suggest that while glucose level and BMI are the strongest predictors, age and pregnancy
history also play a role, though to a lesser extent.

2.4. Model Selection

Model selection in data mining is critical for identifying the best model for a given task. This process
often involves evaluation criteria that measure accuracy, generalizability, and efficiency. Commonly
used metrics include accuracy, the F1-score, cross-validation performance, and the area under the ROC
curve (AUC-ROC). It is also important to consider model complexity and parameter tuning to avoid
overfitting or underfitting. In addition, the efficiency and speed of the model play a significant role in
the selection process.

A confusion matrix is a valuable tool for visually comparing the performance of different models. Table
4 provides a confusion matrix for a binary classification problem, with the corresponding results detailed
below:

. True Positive (TP): Positive units correctly classified as positive

. False Positive (FP): Units classified as positive but actually negative.
. True Negative (TN): Negative units correctly classified as negative.

. False Negative (FN): Units classified as negative but actually positive.

Table 4. Confusion matrix for the binary classification problem

ACTUAL VALUE
CONFUSION MATRIX Positive: Diabetes Negative: No Diabetes
Positive: Diabetes True Positive (TP) False Positive (FP)
PREDICTED VALUE Negative: No Diabetes | False Negative (FN) | True Negative (TN)

Based on the matrix presented in Table 4, the corresponding performance metrics are calculated. The
performance measures provided sequentially are accuracy, precision, recall (sensitivity), F1-score, and
ROC curve.

Accuracy: Defined as the fraction of instances that are correctly classified relative to the total number
of classified instances. It is commonly used as a measure of prediction performance in classification

problems. However, using accuracy alone can be misleading, so employing multiple performance
. . . . TP+TN
metrics provides a more comprehensive evaluation. Accuracy = ————
TP+FP+TN+FN

Precision: Shows the ratio of truely classified positive ratios to the total number of predicted positive
TP

TP+FP

ratios. Precision =

Recall (Sensitivity): Calculates the model’s ability to correctly identify real positive instances in the test

set. It is calculated as the proportion of true positive rates to the total number of real positive rates.
TP

TP+FN

Recall =
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F1-Score: Since working with two different metrics can sometimes be problematic, researchers may
prefer a single number to measure performance. F1-score is calculated as a combination of recall and

precision F1 — Score = 2*RecallxPrecision

Recall+Precision

ROC Curve: The Receiver Operating Characteristic (ROC) curve is a probability curve for different
classes. The x-axis shows the false positive rate, while the y-axis shows the true positive predictions.
This curve illustrates how well the classifier performs in making predictions. The area under the curve
(AUC) takes values in the range of [0,1] and serves as a measure of model performance. A higher AUC
value reflects a stronger capability of the model to differentiate among the classes within the dataset. In
binary classification problems, an ROC curve visualizes the balance between the model’s performance
to correctly identify positive units and its tendency to misclassify negative units as positive. In summary,
ROC curves are highly useful visual tools for comparing classification methods [24].

2.5. Machine Learning Methods

Classification problems aim to determine the class of a new observation based on the analysis of a given
dataset. Various methods can be used for solving classification problems. In this study, machine learning
methods frequently used in the literature for diabetes diagnosis are considered.

Logistic Regression (LR): A statistical model used in binary classification problems where the
dependent variable is discrete. It is widely applied in computer science, various applied sciences, and
real-world problems. Logistic regression explains the relation between a binary dependent variable and
a set of independent variables using a logistic function (logit function) [26]. The probability of an event
occurring is given by Equation 2. The logit function is calculated as Equation 3 [27].

eBot+B1X 1

P (Y) = 1+ eBPo+B1X = 1+ e~ (Bo+B1X) (2)
P(Y)
n (S) @

Multi-Layer Perceptron (MLP): An MLP is a fundamental type of artificial neural network with a
feedforward architecture, typically composed of at least one hidden layer. It includes an input layer, one
or more hidden layers, and an output layer, all of which are fully connected. MLPs utilize nonlinear
activation functions such as ReL U, Sigmoid, and Tanh to catch complex patterns and relationships. They
are trained through the backpropagation algorithm, and their weights are updated using optimization
techniques based on gradient descent. MLPs are extensively used for classification, regression, and time
series prediction tasks, particularly when addressing nonlinear problems [28].

Extreme Gradient Boosting (XGBoost): XGBoost is a high-performance, optimized gradient boosting
algorithm. It builds upon the gradient boosting framework originally proposed by Friedman [29] and
and includes various enhancements that make it especially effective for large datasets and high-
dimensional feature spaces. XGBoost has shown superior performance across a variety of applications
[30].

Extra-Trees (ET): Extra-Trees is an ensemble learning method developed by Geurts [31] as an
extension of the Random Forest algorithm proposed by Breiman [20]. It constructs multiple decision
trees while increasing randomness to prevent overfitting. Unlike Random Forest, Extra-Trees selects
split points randomly, leading to faster tree construction. This approach reduces computational cost
while maintaining generalization performance. Extra-Trees is used in classification, regression, and
feature importance evaluation, and it performs well on noisy datasets [31].
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K-Nearest Neighbors (KNN): KNN is a hon-parametric approach introduced by Fix and Hodges [32]
and commonly employed for both classification and regression tasks. In classification, it determines a
label by looking at the K nearest neighbors and choosing the class that appears most frequently among
them. Since KNN searches for the closest neighbors for each data point, the computational complexity
increases as the dataset grows. As KNN is distance-based, normalizing the training data can significantly
improve its accuracy.

Gaussian Naive Bayes (GNB): GNB is a type of Naive Bayes classifier that assumes a Gaussian
(Normal) distribution for continuous data. The algorithm relies on Bayes' Theorem to compute
conditional probabilities and make class predictions. GNB assumes that features are independent (the
Naive assumption), making it simple, fast, and computationally efficient. Since GNB considers features
to be normally distributed, it estimates class probabilities using the mean and variance of each feature.
GNB is particularly effective for high-dimensional datasets and small sample sizes. It is widely applied
in text classification, medical diagnosis, fraud detection [33].

Kolmogorov-Arnold Networks (KAN): Kolmogorov-Arnold Networks (KANS) represent a novel type
of neural network that adopts a basically different learning paradigm compared to conventional MLPs.
In contrast to MLPs, which rely on fixed activation functions at the nodes (or “neurons”), KANs place
adaptable activation functions on the edges. Although this might seem like a minor adjustment, it
substantially boosts both performance and interpretability. In KANs, each weight is replaced by a
univariate function-often modeled as a spline-thus eliminating the use of linear weights altogether. The
nodes in a KAN basically gather incoming signals without applying any nonlinear transformations. The
foundation of KAN lies in the Kolmogorov—Arnold representation theorem, which asserts that any
continuous multivariate function can be represented as a finite combination of univariate continuous
functions and addition operations. Specifically, Kolmogorov-Arnold theorem [48] expresses a
continuous function f (xy, x5,...,xy) as in Equations 4.

2n+1 n
f(x) = f(x1, %2, 00, ) = Z @, Z Bap (xp) (4)
a=1 P=1

where ®,:R—R and @,,:[0,1]— R are univariate continuous functions. Building on this principle, the
KAN replaces conventional neuron activations with learnable spline-based univariate functions,
enabling it to approximate nonlinear mappings with fewer parameters and improved interpretability. For
a given input vector X =[x, x5,...,x5], the KAN output is defined as in Equations 5.
M N
y= zwid)i zlpi,j (x;) (5)
i=1 j=1

j=

Here @; and 1, jdenote the nonlinear spline transformations learned during training, while w; are
trainable weights analogous to those in conventional neural networks. M and N represent the model
width and input dimension, respectively. By leveraging spline-based activation functions and a reduced
parameterization, the KAN achieved high generalization performance while maintaining
interpretability. This balance between expressive power and transparency makes KAN particularly
suitable for Al-assisted clinical decision support systems, where model explainability is critical [34].

2.5.1 Artificial neural network approach with additive and multiplicative neurons (AMNN)

Deep Learning-Based Alternative Model: Neural Network Approach with Additive and Multiplicative
Neurons (AMNN): Traditional artificial neural networks (ANNSs) are primarily based on additive
processing, where each neuron computes a weighted sum of its inputs and applies an activation function.
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However, this structure may fall short in modeling complex nonlinear relationships in certain
applications. To address this limitation, more flexible models have been developed that integrate both
additive and multiplicative neurons. AMNN offer an enhanced ability to learn richer representations by
employing both summation (3)) and multiplication ([]) operations on the inputs. Specifically,
multiplicative neurons are beneficial for modeling interactions between inputs. This approach helps
overcome the limited linear combination capability of traditional neural networks, enabling the model
to capture more intricate relationships. Models utilizing both additive and multiplicative neurons have
been developed as an alternative to conventional ANNs, aiming to achieve more effective results in
specific problems by allowing the network to learn more complex dependencies between input features
[45, 46]. As shown in Figure 5, the model includes two parallel computational pathways. (1) a linear
component based on McCulloch—Pitts neurons (X, f;), and (2) a nonlinear component based on
multiplicative neurons (I1, f;). The activation functions for these components are defined as Equations
(6-7).

1
=X, = 6—17
@ =x  f0)= 1= 6-7)
The hidden layer computes outputs for both components as Equations (8-11).

m
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Finally, the outputs of both paths are combined in the output layer as shown in Equation (12-13).
5} = W3101 + W3202 + b3 (12 - 13)

This formulation allows the AMNN to learn both additive and multiplicative dependencies within the
same framework, where w4, and ws, are adaptively learned to balance the contribution of linear and
nonlinear components during training. Such a structure provides a more expressive approximation
capability than conventional additive-only neural networks. As illustrated in the model architecture
diagram in Figure 5, the network comprises two parallel paths originating from the input layer. The first
path includes a conventional neuron that performs a weighted summation (i.e., linear combination),
while the second path consists of a computational unit that multiplies all input features together. These
two pathways are subsequently merged through summation to generate a unified representation. A
hidden layer with ReL.U activation follows this combined output, and finally, a sigmoid-activated output
neuron is employed for binary classification.
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Figure 5. Architectural schematic of the proposed Additive and Multiplicative Neurons Network (AMNN). The
architecture integrates two parallel computational pathways: (i) an additive neuron path, which performs a
weighted summation of the input signals, and (ii) a multiplicative neuron path, which computes the product
of all input features. The outputs of these two streams are subsequently combined and passed through a
hidden layer with ReLU activation, followed by a sigmoid-activated output layer for binary classification.

3. RESULTS

In this study, the performance of various machine learning algorithms used in diabetes classification
was compared. Within the scope of the analysis, 70% of the dataset was allocated for training and 30%
for testing, followed by the application of 5-fold cross-validation. Different algorithms such as LR,
KNN, MLP, XGB, ET, GNB, KAN and AMNN were evaluated in terms of accuracy, precision, recall,
F1-score, and the AUC-ROC. MLP models were tested with different configurations. For instance,
MLP-2 used a two hidden layer (100 and 50 neurons), the ReLU activation function, and the “Adam”
optimization algorithm. In the KAN model, spline-based activation functions and 10 hidden layer units
were employed. In the AMNN model, a hybrid deep learning architecture was constructed that combines
additive and multiplicative neurons to better capture both linear and nonlinear relationships. The model
consisted of two parallel processing paths: a summation path using ReLU-activated dense neurons (16
units) and a multiplicative path using a custom Lambda layer. These two paths were merged and
followed by a hidden layer with 8 neurons (ReLU) and a sigmoid output neuron for binary classification.
The AMNN model was compiled using the binary cross-entropy loss function and Adam optimizer, and
trained over 100 epochs with a batch size of 32. Performance evaluation was conducted on the test
dataset, with metrics such as accuracy, precision, recall, F1-score, and AUC-ROC being calculated. A
summary of the performance comparison of all models is presented in Table 5.

Table 5. Performance metrics of selected machine learning algorithms (LR: Logistic Regression, MLP: Multi-
Layer Perceptron, XGbhoost: Extreme Gradient Boosting, ET: Extra Trees, KNN: K-Nearest Neighbors,
GNB: Gaussian Naive Bayes, KAN: Kolmogorov—Arnold Networks, AMNN: Additive and
Multiplicative Neurons.)

Classification Report Accuracy Precision Recall F1-score AUC-ROC

LR 0.7316 0.7386 0.7316 0.7342 0.8347
MLP-2 0.7359 0.7482 0.7359 0.7398 0.7888
XGboost 0.7489 0.7520 0.7489 0.7503 0.8332
ET 0.7489 0.7463 0.7489 0.7474 0.8286
KNN 0.7489 0.7755 0.7489 0.7542 0.8028
GNB 0.7273 0.7354 0.7273 0.7302 0.8015
KAN 0.7272 0.7185 0.7272 0.7186 0.8225
AMNN 0.7576 0.7733 0.7576 0.7618 0.8206
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Examining Table 5 reveals that the AMNN model exhibited the best overall performance among the
listed models, achieving the highest accuracy (0.7576), recall (0.7576), and F1-score (0.7618). It also
delivered a strong precision score (0.7733) and a competitive AUC-ROC value of 0.8206. These results
highlight AMNN’s effectiveness in classification tasks, particularly its ability to balance sensitivity and
specificity. The model’s high precision suggests strong control over false positives, which is valuable
in medical diagnostics. This success is likely due to AMNN’s unique hybrid architecture, combining
additive and multiplicative neurons for capturing both linear and nonlinear data relationships.

Following AMNN, the XGBoost, ET, and KNN models formed a mid-performance group, all attaining
an accuracy of 0.7489. Among them, KNN stood out with the highest precision (0.7755), indicating
reliable positive class identification. XGBoost and ET had competitive F1-scores (0.7503 and 0.7474,
respectively), and solid AUC-ROC values above 0.82, reflecting good classification capacity.

The MLP-2 model, with an accuracy of 0.7359 and AUC-ROC of 0.7888, demonstrated moderate
performance. LR (Logistic Regression) showed similar trends, achieving an AUC-ROC of 0.8347, the
highest among all models, despite its lower accuracy (0.7316), highlighting its strength in distinguishing
classes across thresholds.

Models such as GNB, KAN, and LR ranked at the bottom in terms of accuracy and F1-score, though
their AUC-ROC values remained above 0.80. KAN, for instance, had a relatively low accuracy (0.7272),
but its AUC-ROC (0.8225) suggests stable probability predictions, making it potentially useful in
threshold-sensitive applications.

To further illustrate the discriminative performance of the models, Figure 6 presents the ROC curves,
generated using the [51], for four representative classifiers: LR, XGBoost, KAN, and the proposed
AMNN. The figure clearly demonstrates the superior area under the curve of the AMNN model
compared with the conventional and ensemble-based approaches.

ROC Curv ROC Curve

(a) (b)

ROC Curve

(c) (d)

Figure 6. Receiver Operating Characteristic (ROC) curves of the selected classification models: (a) Logistic
Regression (LR), (b) XGBoost, (¢) Kolmogorov-Arnold Network (KAN), and (d) the proposed Additive
and Multiplicative Neurons Network (AMNN). The figure highlights the superior discriminative
performance of the proposed AMNN model compared to conventional and ensemble-based approaches.
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Overall, these findings suggest that the AMNN model is a competitive alternative to traditional
classifiers, excelling in both accuracy and precision. It is particularly well-suited for domains where
minimizing false positives is critical. Ensemble-based models and tree-based learners (like XGBoost
and ET) also proved effective, while simpler models like LR and GNB, despite lower classification
metrics, still offer value in terms of interpretability and AUC-based ranking.

4. DISCUSSION

This study sought to evaluate the diagnostic performance of various machine learning algorithms for
diabetes, with the aim of determining which model proved most effective. Using the PIMA Indians
Diabetes dataset, the analysis revealed that the AMNN models achieved the highest performance. These
models outperformed others in terms of accuracy and AUC-ROC scores, suggesting that deep learning-
based approaches and ensemble models are highly effective for diabetes classification.

The application of XAl methods such as SHAP and LIME provided valuable insights into model
decision-making processes. These methods highlighted that glucose level, BMI, and age are the most
critical features in predicting diabetes. Among these, glucose level was found to be the strongest
predictor, significantly influencing the model's ability to classify individuals as diabetic or non-diabetic.
This finding aligns with clinical evidence, as elevated blood glucose levels are a primary diagnostic
criterion for diabetes and play a central role in disease progression [35]. BMI, another key factor, is
strongly associated with insulin resistance and metabolic dysfunction, making it a crucial indicator for
early intervention [36]. Age-related changes in glucose metabolism and pancreatic function further
emphasize the importance of age as a predictive variable in diabetes risk assessment [37]. Other
important features included Diabetes Pedigree Function and the number of pregnancies. A strong family
history of diabetes, as indicated by the Diabetes Pedigree Function, suggests a genetic predisposition,
which is critical for identifying at-risk individuals before clinical symptoms appear [38]. Additionally,
the number of pregnancies may reflect the impact of gestational diabetes, a known risk factor for type 2
diabetes in later life [39]. Recognizing these risk factors through machine learning models allows for
earlier lifestyle modifications, targeted screening programs, and personalized treatment plans [40,41].
However, features like blood pressure, skin thickness, and insulin levels had a lower impact on the
model’s predictions. While these factors may not be the strongest predictors, they still contribute to the
overall assessment of metabolic health and should not be overlooked in clinical practice [42].

These findings are largely consistent with previous studies in the literature. For instance, Kayaer and
Yildirim [4] achieved 80.21% accuracy using a GRNN on the same dataset, while Patra and Khuntia [9]
improved the KNN classifier to achieve 83.2% accuracy. Similarly, Mousa et al. [10] found that LSTM
achieved the highest accuracy (85%) among various models applied to the PIMA dataset. In this study,
although the LSTM model was not implemented, a number of classical and hybrid machine learning
models were tested, including ensemble and deep learning-based approaches.

According to the experimental results, the best performance was achieved by the AMNN model, with
an accuracy of 75.76%, a recall of 75.76%, and an F1-score of 76.18%. These metrics demonstrate a
competitive performance compared to several previously reported models. Furthermore, ensemble
models such as XGBoost and ET (Extra Trees) also showed promising results, with accuracy values of
74.89%, aligning with the findings of Yangin [6] and Chang et al. [11], who emphasized the strength of
ensemble-based methods like XGBoost and RF. Additionally, KNN achieved a solid precision of
77.55%, which is consistent with the enhanced version presented by Patra and Khuntia [9].

On the other hand, logistic regression (LR) yielded a relatively lower accuracy of 73.16% but reached
the highest AUC-ROC value of 0.8347, indicating a good balance between sensitivity and specificity.
This result also resonates with the findings by Chang et al. [11], where interpretable models like Naive
Bayes and decision trees were found to be effective with fewer features.
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In summary, the findings of this study confirm the effectiveness of neural and ensemble learning
approaches for diabetes classification and reinforce the idea that hybrid models like AMNN can provide
robust performance across multiple evaluation metrics. The consistency of these results with prior
research supports the continued use and development of such models in medical diagnostic tasks
involving structured datasets like PIMA.

Despite these promising results, the study has certain limitations. This study draws on the Pima Indians
Diabetes dataset (n = 768), composed solely of adult women of Pima descent. While this dataset provides
a well-characterized sample, its narrow demographic scope and modest size may introduce spectrum
bias and limit the generalizability of the findings to populations beyond Pima women. Additionally, the
dataset is imbalanced, with fewer diabetic cases compared to non-diabetic ones. To address this, the
SMOTE method was applied. However, it is important to evaluate how such oversampling technigues
might affect the model’s ability to generalize to real-world scenarios. Future research could benefit from
larger and more balanced datasets to enhance model reliability and robustness.

Another limitation is that the PIMA dataset includes only female participants, which prevents an analysis
of gender-based differences in diabetes prediction. Future studies could incorporate datasets that include
both male and female individuals to examine potential gender-based variations in diabetes risk factors.

To further improve generalizability, future validation should involve multi-center and demographically
diverse cohorts that include different ethnicities, age groups, and clinical settings. In addition, nested
cross-validation and external test evaluations are recommended to ensure model stability and
reproducibility across heterogeneous populations.

Moreover, this study incorporated both traditional machine learning algorithms and deep learning
models, including a novel hybrid approach (AMNN). For future research, exploring more advanced
hybrid models, transfer learning strategies, or federated learning techniques could further enhance
diabetes classification performance. Additionally, implementing these models in real-world clinical
decision support systems could help validate their practical applicability.

5. CONCLUSION

This study aims to improve diabetes classification using various machine learning models, while also
identifying the most influential variables through explainable Al (XAl) and feature selection methods.
A key innovation of the study is the implementation of the AMNN model, a novel artificial neural
network (ANN) architecture that outperformed all other models in diabetes prediction. In addition, the
study explores the KAN model, another recent ANN approach, which offers a distinctive design through
learnable edge-based activation functions.

AMNN's SHAP-based local explanations can support threshold-based decisions by providing clinicians
with patient-specific risk factors. Real-time feature extraction and missing data imputation will be
critical for integration with electronic health records (EHRs). In addition, ensuring model
interpretability, calibration across diverse patient populations, and seamless workflow integration
represent key challenges for clinical adoption. Future implementations could involve embedding
AMNN-driven alerts or risk dashboards within clinical decision support systems, enabling clinicians to
validate model outputs and adjust thresholds based on institutional or demographic contexts.

The experimental results demonstrate that the AMNN model achieved the highest classification
performance, with an accuracy of 75.76%, recall of 75.76%, and F1-score of 76.18%, outperforming
other models in overall predictive capability. Although LR (Logistic Regression) recorded the highest
AUC-ROC value (0.8347), indicating strong discriminatory power, the overall balanced performance of
AMNN across all metrics makes it the most effective model in this study.
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Ensemble models like XGBoost and ET (Extra Trees) also showed competitive results, confirming their
robustness in medical classification tasks. While the KAN model did not surpass AMNN, it achieved a
respectable accuracy of 72.72% and AUC-ROC of 0.8225. Its innovative use of learnable activation
functions at the edges instead of traditional fixed-node activations offers greater adaptability and
interpretability, marking it as a promising direction for future studies.

In terms of feature importance, both feature selection and XAl techniques consistently highlighted
glucose level, BMI, and age as the most significant predictors of diabetes. Additionally, Diabetes
Pedigree Function and number of pregnancies were found to contribute meaningfully to classification
outcomes, which aligns with established medical knowledge.

Despite these encouraging findings, some limitations remain. The dataset is relatively small, includes
only female participants of Pima Indian heritage, and is class-imbalanced, which may limit
generalizability. Future research should aim to address these limitations by utilizing larger, more diverse
datasets and integrating advanced techniques such as hybrid learning, transfer learning, or federated
learning to improve model accuracy and robustness.

In conclusion, the results confirm that machine learning, particularly deep learning and ensemble-based
methods like AMNN and XGBoost, hold great potential for early diabetes diagnosis. The integration of
XAl techniques enhances model transparency, facilitating trust and interpretability in clinical decision-
making. Moreover, innovative models like KAN warrant further exploration, especially in hybrid
configurations, to advance diabetes prediction and support personalized healthcare applications.

Building upon the promising results achieved by AMNN and KAN, future research could explore hybrid
models that integrate both architectures to leverage their complementary strengths. Specifically,
combining the additive-multiplicative capabilities of AMNN with the nonlinear transformation power
of KAN could lead to a more robust model that captures even more complex patterns and relationships
in data. Additionally, investigating the application of federated learning could expand the models'
applicability, enabling decentralized training across multiple institutions or devices while preserving
data privacy. Such an approach would facilitate the development of scalable, privacy-preserving
solutions, particularly in sensitive fields like healthcare, where data sharing is often limited. Future
efforts should also focus on model interpretability in these hybrid settings, ensuring that the combined
models remain transparent and understandable to end-users, especially in high-stakes domains such as
clinical decision-making.
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