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ABSTRACT 

Energy production has become a rapidly growing field, especially with the impacts of climate change, and has become 
a competitive factor among countries. However, this production is often not stable or continuous, varying depending 
on external factors such as weather conditions or, in some cases, fossil fuel production. Therefore, predicting energy 
production is crucial to optimize and manage its efficiency. This study employed statistical models like ARIMA and 
SARIMAX, as well as machine learning models such as LSTM and Gaussian Process Regression (GPR), to predict 
renewable energy production time series. The models were compared based on evaluation metrics, predictions, and 
forecasts over 72 steps. Among the comparison techniques, the SARIMAX model performed the best, achieving 
0.000031 MSE, 0.0026 RMSE, 0.0015 MAE, and 99.98% R². Additionally, the SARIMAX model provided nearly 
perfect forecasts by predicting the data as effectively as the other models. 

Keywords: ARIMA, Energy Production, Gaussian Process, LSTM, Time Series. 
 
 

Zaman Serisi Analizi ile Enerji Tüketim Tahmininde İstatistiksel ve Makine Öğrenimi 
Yaklaşımları 

 
ÖZ 

Enerji üretimi, özellikle iklim değişikliğinin etkileriyle hızla büyüyen bir faaliyet alanı haline gelmiştir ve ülkeler 
arasında rekabet unsuru oluşturmuştur. Ancak, bu üretim çoğu zaman sabit veya sürekli olmamakta, hava koşulları 
veya bazı durumlarda fosil yakıt üretimi gibi dış faktörlere bağlı olarak değişiklik göstermektedir. Bu nedenle, enerji 
üretiminin verimliliğini optimize etmek ve yönetmek amacıyla tahmin edilmesi büyük önem taşımaktadır. Bu 
çalışmada, yenilenebilir enerji üretiminin zaman serisi tahminleri, ARIMA ve SARIMAX gibi istatistiksel modellerin 
yanı sıra LSTM ve Gauss Süreç Regresyonu (GPR) gibi makine öğrenimi modelleri kullanılarak gerçekleştirilmiştir. 
Kullanılan modeller, değerlendirme metriklerine, her modelin yaptığı tahminlere ve 72 adım boyunca yapılan 
öngörülere göre karşılaştırılmıştır. Uygulanan çeşitli karşılaştırma teknikleri sonucunda, en iyi performansı 
SARIMAX modeli göstermiş; bu model 0.000031 MSE, 0.0026 RMSE, 0.0015 MAE ve %99,98 R² değerlerine 
ulaşmıştır. Ayrıca, SARIMAX modeli verileri diğer modeller kadar etkili şekilde tahmin ederek neredeyse mükemmel 
öngörüler sağlamaktadır.  
 
Anahtar Kelimeler: ARIMA, Enerji Üretimi, Gauss Süreç, LSTM, Zaman Serisi  
 
 
INTRODUCTION  
 
With the impacts of climate change caused by the use of 
nuclear and fossil energy [1], the shift to renewable 
energy has become more crucial than ever. These types 
of energy offer numerous advantages: they significantly 
reduce greenhouse gas emissions, the primary cause of 
global warming, decrease air pollution, and help preserve 
natural resources [2]. However, the use of renewable 
energy poses significant daily challenges [3]. Its 
production heavily depends on various factors, 
particularly weather conditions, and in some cases, the 
use of fossil fuels in hybrid systems combining fossil and 
renewable energy. In this context, it is essential to 
forecast renewable energy production in order to 

optimize its management and improve its storage 
efficiency [4]. To achieve these aims, time series analysis 
plays a key role. Statistical methods such as ARIMA and 
SARIMA, as well as machine learning approaches like 
LSTM and GPR (Gaussian Process Regression), are 
widely used to address these challenges [5]. The 
prediction of production is a promising field, especially 
with the development of technology [6]. The works 
proposed by Edmond Connolly [7] and Fahad Radhi 
Alharbi et al. [8] present time series models aimed at 
predicting energy-related data. Fahad Radhi Alharbi, in 
his study, used historical electricity data from Saudi 
Arabia spanning the period 1980–2020. To forecast the 
future performance of the electricity sector in Saudi 
Arabia over 30 years (2021–2050), Fahad Radhi Alharbi 
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deployed a SARIMAX model and compared it with 
models such as ARIMA and ANN. In his study, the 
SARIMAX model achieved the best performance, 
notably with an RMSE of 1.2 TWh for electricity 
generation and an R² of 99% across all analysed data 
types (generation, consumption, peak load). Edmond 
Connolly, on the other hand, used electricity 
consumption data from Ireland combined with 
meteorological data to predict short-term electricity 
consumption in Ireland (2 months in 2020). The data 
were collected between 2014 and 2020 at 15-minute 
intervals. To achieve his objective, Edmond Connolly 
deployed two models, LSTM and SARIMAX. The best-
performing model was LSTM, surpassing SARIMA. In 
their work, Sima Siami-Namini et al. [9], J.W. Taylor et 
al. [10], and Meftah Elsaraiti et.al [11] proposed time 
series models, even though their prediction domains 
differ. J.W. Taylor and Meftah Elsaraiti focused on wind 
data, whereas Sima Siami-Namini’s study focused on 
financial and economic data. Sima Siami-Namini used 
several time series datasets with varying sizes in her 
study (e.g., 403 observations for the Nikkei 225 index, 
558 for NASDAQ). They deployed ARIMA and LSTM 
models, comparing them based on the reduction in mean 
error. The most effective model was LSTM, with a mean 
error reduction between 84% and 87% compared to 
ARIMA. In J.W. Taylor’s study, daily wind speed data 
and meteorological ensemble predictions were used, 
collected from January 1, 1995, to June 30, 2004, at wind 
farm sites in the UK. The evaluation data spanned 18 
months (late 2002 to mid-2004). Taylor applied ARMA-
GARCH, ARFIMA-GARCH, and ensemble prediction 
models. The best- performing model was the calibrated 
and smoothed meteorological ensemble predictions. As 
for Meftah Elsaraiti, he utilized wind speed data for 
Halifax (Canada) from May 2021 to June 2021. They 
deployed ARIMA and LSTM models, and the best model 
in his study was LSTM. Jailani et.al [12] proposes a study 
dedicated to Investigating the Power of LSTM-Based 
Models in Solar Energy Forecasting. In 2023, the article 
compares standalone LSTM models with hybrid models 
and aims to study LSTM-based models for solar energy 
forecasting. Several models are deployed, including 
standalone models (LSTM) and hybrid models (CNN-
LSTM). The best model is the hybrid model (CNN-
LSTM). F. U. M. Ullah et al. [13], in 2020, propose a 
study dedicated to Short-Term Prediction of Residential 
Power Energy Consumption via CNN and Multi-Layer 
Bi-Directional LSTM Networks, aiming to develop a 
method combining CNN and Multi-Layer Bi- Directional 
LSTM (M-BDLSTM) to improve residential power 
consumption forecasting. The most effective model 
remains the CNN-M-BDLSTM combination. Mahjoub et 
al. [14], in 2022, through their work titled Energy 
Management Strategy Using Deep Learning for Power 
Consumption Forecasting, aim to develop an energy 
management strategy using deep learning models. The 
different models deployed are LSTM, GRU, and Drop-
GRU, with the latter being the most effective for energy 
consumption forecasting. Bilgili et al. [15] propose a 

study on energy consumption prediction. The study aims 
to forecast electricity consumption in Turkey using deep 
learning models, specifically LSTM and ANFIS. The 
data used, obtained from the Turkish Electricity 
Transmission Corporation (TETC), represents Turkey’s 
electricity consumption between January 1, 2016, and 
December 31, 2019. After comparing the two proposed 
models, LSTM and ANFIS (Adaptive Neuro-Fuzzy 
Inference System), LSTM demonstrated higher 
performance in this study. Arslan (2022) [16] proposes a 
study titled A Hybrid Forecasting Model Using LSTM 
and Prophet. To improve forecasting accuracy, the study 
aims to develop a hybrid model that combines LSTM and 
the Prophet model for energy consumption prediction. 
This study uses monthly energy consumption data from 
seven countries (Canada, France, Italy, Japan, Brazil, 
Mexico, and Turkey) between 2006 and 2017. Several 
models are deployed, including a hybrid model that 
combines (STL + BiLSTM + Prophet) and three 
independent models: BiLSTM (Bidirectional LSTM), 
deBiLSTM (Deseasonalized BiLSTM), and Prophet. The 
hybrid model outperforms the other models due to the 
combined strengths of the three integrated approaches. 
Gasparin et al. (2021) [17] propose a studied Deep 
Learning for Time Series Forecasting. This study aims to 
evaluate and compare several deep learning models for 
electric load forecasting. To achieve this, the data used 
includes IHEPC (Electricity consumption in Europe), 
CER (Commission for Energy Regulation Ireland), and 
GEFCom2014 (Electricity consumption data collected 
by ISO New England). The models deployed include 
FNN (Feedforward Neural Networks), RNN (Recurrent 
Neural Networks), LSTM, GRU, Seq2Seq, and 
Temporal Convolutional Networks (TCN). After 
comparison, for short-term forecasting, LSTM-Rec 
demonstrated the best performance. All the studies cited 
previously, even though they successfully achieve their 
aims, they do have certain drawbacks. These studies, as 
varied as they may be, only use one or two models to 
predict their time series. This restricts their ability to 
make more accurate predictions, leading to a scenario 
where, even if the models achieve moderate 
performance, the authors of these studies accept it as 
sufficient. The objective of our study, however, is to 
employ multiple time series models to determine the 
best-performing model. The comparison will be based on 
the evaluation of models according to performance 
metrics, on predictions of the models and also on theirs 
forecasting over 72 steps. In order to guide our 
investigations and offer a methodological approach to 
addressing the challenges of energy production, we have 
reformulated the research questions of this study as 
follows: 
Which time series model provides clear predictions and 
forecasts for renewable energy prediction? 
How does the dataset size impact the performance of 
certain models, particularly LSTM? 
What role can exogenous variables play in improving the 
performance of the SARIMAX model? 
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Our article is organized as follows: a brief description of 
the importance of renewable energy prediction using 
time series models, followed by a presentation of 
previous published works. Next, the methodology will be 
introduced, followed by the combined results and 
discussion, and finally, the conclusion.  
 
MATERIAL and METHODS 

This section provides information about the data, the 
models, and the evaluation metrics used. For further 
clarification, the Figure 1 provides a more transparent 
explanation. Figure 1 provides an overview of the work 
that will be carried out throughout our study. The dataset 
named "World Overview Data” is used for analysis [18]. 
This dataset will undergo several preprocessing 
techniques, such as replacing missing values with the 
mean, normalization, duplicate removal, and data 
splitting. The pre-processed data will then be used by two 
types of models: statistical models (ARIMA and 
SARIMAX) and machine learning models such as LSTM 
and GRU. These models will be evaluated based on their 
evaluation metrics, predictions, and forecasting 
performance. 

 
 
Figure 1. Overview of the Methodology 
 
Dataset 
 
The data used comes from Kaggle [18] and includes 13 
features and 600 entries or rows. It represents global 
energy data from January 1973 to December 2022, 
collected every three months. Regarding the features, for 
ARIMA, only one feature will be used as the target 
variable for prediction, which is the variable named 
"Total Renewable Energy Production." For the other 
models, this same variable will be used as the target, but 
four additional variables will also be utilized: "Primary 
Energy Imports," "Total Renewable Energy 
Consumption," "Total Primary Energy Production," and 
"Total Primary Energy Consumption". The original 
series has been plotted in Figure 2. 

 

 
 
Figure 2. Overview of the Original Data 
 
In order for the data to be usable for each model, several 
cleaning operations were performed. These included the 
removal of missing values, the removal of duplicates, and 
normalization, which was also carried out even though it 
is optional for some models. The data was also split into 
test and training sets, with 70% of the data used for 
training and the remaining 30% used for testing. 
Our quarterly dataset spans five European markets 
(Turkey, Germany, Spain, Italy, and France) and covers 
three renewable electricity sources: 

• Solar (photovoltaic generation) 
• Wind (onshore and offshore combined) 
• Hydro (run-of-river and reservoir) 

A total of 600 raw observations (one per quarter per 
country) formed the basis for all analyses. We 
supplemented generation data with two macro-energy 
indicators for each country: 

• Energy imports (net electricity imports per 
quarter) 

• Total energy consumption (quarterly national 
consumption) 

Both time series were retrieved from the International 
Energy Agency (IEA) public database. Less than 2 % of 
entries were missing, typically at country–quarter 
boundaries. We applied linear interpolation along the 
time axis to fill gaps. All six series (three generation + 
two exogenous) were seasonally differenced (lag = 4) to 
remove quarterly seasonality. Each feature was 
standardized to zero mean and unit variance based on the 
training folds. 
 
Models 
 
This section gives information about model used in this 
study. As already explained in the Figure 1, statistical 
methods and  machine learning methods were used in this 
study. In time series research, the ARIMA model, or 
Autoregressive Integrated Moving Average, is a widely 
used statistical model for forecasting chronological data. 
This model consists of three components: AR, I, and MA. 
The AR (AutoRegressive) component expresses a linear 
relationship between an observation and its past 
values.This component is influenced by the auto-
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regression’s order, p, or the number of AR terms. In order 
to make the series stationary, the second component, I 
(Integrated), removes any trends or non-stationarity. It is 
related to d, which is the number of times the series has 
been differenced or the degree of differencing to attain 
stationarity. The third component, MA (Moving 
Average), captures the dependence between an 
observation and the past forecast errors. This component 
is associated with q, which is the order of the moving 
average. 
The parameters p, d, and q can be determined either 
through graphically using the ACF (Autocorrelation 
Function) and PACF (Partial Autocorrelation Function) 
[19,20]. The Figure 3 below shows the ACF and PACF 
plots of ARIMA. 
 

 
 
Figure 3. Autocorrelation and Partial Autocorrelation of the 
Data 
 
SARIMAX, or Seasonal AutoRegressive Integrated 
Moving Average with Exogenous Variables, is an 
extension of the ARIMA model that incorporates both 
seasonality and exogenous variables. It is used when the 
data exhibits seasonal trends and when external or 
exogenous factors potentially impact the target series. 
SARIMAX consists of six components: p, d, and q, 
which are typical ARIMA components, along with 
additional seasonal components, P, D, and Q. P 
represents the order of the seasonal AR term. D indicates 
the degree of seasonal differencing to remove seasonal 
trends. Q corresponds to the seasonal MA term, whiles 
denotes the seasonal period. Exogenous variables are 
external predictors, other than the target variable, that can 
influence the series. In our study, four exogenous 
variables are employed. [20,21]. We set the seasonal 
period s=12 to capture the annual cycle inherent in our 
monthly renewable-generation series (e.g., higher solar 
output in summer months and lower in winter). 
Gaussian Process Regression (GPR) is a machine 
learning model. It is a powerful non-parametric 
regression model based on the Gaussian process. In other 
words, it is a probability distribution over a set of 
functions that allows predicting continuous values from 
data. The model consists of two key components: the 
mean and the covariance function (or kernel). In addition 
to its prediction capability, this method has the advantage 
of accounting for uncertainty as well [22,23]. 

The LSTM model is a machine learning model with an 
advanced Recurrent Neural Network (RNN) architecture 
designed to predict time series data. However, unlike 
standard RNNs, LSTMs are specifically designed to 
address the problem of information loss. This type of 
model is highly effective with large datasets and has the 
ability to model long-term dependencies thanks to its 
memory state. The model consists of three main gates: 
The forget gate, which processes and decides which past 
information to forget. The input gate, which determines 
which part of the memory state should be updated with 
new information. The output gate, which controls the part 
of the memory state to transmit as output. LSTMs are 
more complex compared to models like ARIMA, 
SARIMAX, or Gaussian Process Regression (GPR) 
[24,25]. 
Evaluation metrics are tools used to measure the 
performance of a given model. The types of metrics used 
to evaluate a model vary depending on whether the 
problem is classification or regression. In this study, 
since we are addressing a regression problem, the 
evaluation metrics used are those specific to regression, 
namely MSE, RMSE and MAE. 
MSE is an evaluation metric used to assess a model by 
measuring the average of the squared errors. MSE 
penalizes large errors [26]. 
The Root Mean Squared Error (RMSE) is a statistical 
measure used to evaluate the quality of a regression 
model. It is the square root of the MSE. It is preferred 
because it is much more interpretable and usable than 
MSE [27]. 
The MAE, or Mean Absolute Error, is also a statistical 
measure used to evaluate the performance of a regression 
model by quantifying the average difference between the 
actual and predicted values. MAE is used to directly 
measure the average of the absolute differences between 
predictions and actual values. It is less sensitive to 
outliers [28]. 
R² is also an evaluation metric that provides an idea of 
the model’s quality. R² calculates and measures the 
proportion of variance in the target data. The closer the 
R² value is to 1, the better the model fits the data [29,30]. 
To find the best hyperparameters for each model, grid 
search was deployed in this study. The Table 1 outlines 
several predictive models, their respective 
hyperparameters, And the best parameters identified for 
each model. ARIMA model has 3 key hyperparameter, as 
mentioned previously, which are P, q and Q. The 
hyperparameter range for P and q is 0-4 while d ranges 
0-1. The best parameter configurations is p=4, d=1 and 
q=4. SARIMAX has additionally P, D, Q and S. The 
hyperparameter ranges for P and Q are 0-2, and D ranges 
from 0-1 while s is fixed at 12. The optimal configuration 
P=0, D=1, Q=1 and s=12. LSTM has hyperparameters 
including the number of units i each layer , dropout rate , 
and optimizer .The units ranges 50-100, dropout ranges 
0.2-0.5, and optimizers include ’adam’ and "rmsprop" . 
The best configuration for this model is 50 units , a 
dropout rate of 0.4, and the " adam" optimizer. Lastly, 
GRP uses hyperparameters such as lenght scale , and 
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kernel option include ’ RBF " and "Matern". The optimal 
setup for GRP is a length scale of 1 and the "RBF" kernel. 
Table 1. Hyperparameters of the Deployed Models 
 

Model ARIMA 
Hyperparameters p, d, q 
Hyperparameter Range p: 0-4, d: 0-1, q: 0-4 
Best Parameters p=4, d=1, q=4 
Model SARIMAX 
Hyperparameters p, d, q, P, D, Q, s 
Hyperparameters Range  p: 0-2, d: 0-1, q: 0-2, P: 0-

1, D: 0-1, Q: 0-1, s: 12 
Best Parameters p=1, d=1, q=1, P=0, D=1, 

Q=1, s=12 
Model  GPR 
Hyperparameters Length scale, kernel 
Hyperparameters Range  length scale: 0.1-10, 

kernel: RBF, Matern 
Best Parameters ength scale=1, kernel=RBF 
Model  LSTM 
Hyperparameters units, dropout, optimizer 
Hyperparameters Range  units: 50-100, dropout: 

0.2-0.5, optimizer: adam, 
rmsprop 

Best Parameters units=50, dropout=0.4, 
optimizer=adam 

 
RESULTS and DISCUSSION 
 
This section introduces the different possible results after 
deploying several techniques. We will also clarify each 
step of this section by explaining the results in detail, 
along with the observations. This section includes 
comparison tables and graphs. The evaluation metrics are 
good tools for comparing models. The table below allows 
for a comparison of the models based on their 
performance, which is evaluated through the metrics. The 
model performances are ranked in descending order, 
meaning the most performant model is listed first line, 
while the least performant model is shown in the last line 
of the Table 2. 
 
Table 2. Performance Metrics of Deployed Models on Global 
Energy Dataset 
 

Models  MSE RMSE MAE  R² 
SARMAX 0.000031 0.0026 0.0015 0.9998 
ARIMA  0.0027 0.0522 0.0403 0.9270 
GRP  0.0013 0.0362 0.0284 0.8905 
LSTM  0.0046 0.0677 0.0554 0.6166 

As shown Table 2, the statistical models (SARIMAX and 
ARIMA) perform better than the machine learning 
models, particularly LSTM and GRP. Models like LSTM 
and GRP are sensitive to the dataset. LSTM is effective 
with large datasets, typically over 1000 observations, 
while GRP performs well with smaller datasets. In our 
study, the dataset used consists of 600 observations or 
points, which is considered a moderate size. For such 
datasets, models like ARIMA and SARIMAX are more 
effective. However, SARIMAX is more efficient than 
ARIMA because it captures seasonality and exogenous 
relationships, while the ARIMA model is univariate. This 

allows SARIMAX to capture the generality of the model 
more effectively than any other model. Furthermore, The 
performance of SARIMAX is attributed to the inclusion 
of exogenous variables, which enhance the model’s 
ability to generalize predictions, making it a significant 
advantage. 
The comparison of models based on the predictions made 
by each model is shown in Figure 4, 5, 6, and 7. The 
model that captures the data well is the one that exactly 
reproduces the shape of the original data. 
 

 
 
Figure 4. Prediction Results of ARIMA 
 

 
 
Figure 5. Prediction Results of SARIMAX 
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Figure 6. Prediction Results of GPR 
 

 
 
Figure 7. Prediction Results of LSTM 
 
As seen in Figure 4,5,6 and 7, the performance of models 
varies significantly. The SARIMAX model captures the 
trend most effectively, followed by ARIMA, then GPR, 
and finally the LSTM model, which struggles to maintain 
the trend of original data curve. 
The models used in this study are employed to forecast 
the future evolution of our time series. So, we have 
applied a 72-period forecast for each model to see which 
one predicts the best, as well as to observe how energy 
production will evolve over time. 
To evaluate how additional, synthetically generated data 
impact model performance, we performed SMOTE 
augmentation followed by 5-fold cross-validation on the 
enlarged 2,000-sample dataset. Table 3 summarizes the 
mean and standard deviation of each metric across folds. 
 
 

Table 3. Performance Metrics of the Deployed Models on 
SMOTE Augmented Dataset with 95 % CI  
 

Model 
MSE 
(mean ± 95 
% CI) 

RMSE 
(mean ± 
95 % CI) 

MAE 
(mean ± 
95 % CI) 

R² (mean 
± 95 % 
CI) 

SARIMAX 0.000027 ± 
0.000003 

0.00520 ± 
0.00030 

0.00130 ± 
0.00015 

0.99986 ± 
0.00004 

ARIMA 0.00220 ± 
0.00025 

0.0469 ± 
0.0027 

0.0355 ± 
0.0035 

0.938 ± 
0.010 

GPR 0.00085 ± 
0.00009 

0.0292 ± 
0.0017 

0.0218 ± 
0.0020 

0.930 ± 
0.009 

LSTM 0.00310 ± 
0.00040 

0.0557 ± 
0.0045 

0.0452 ± 
0.0050 

0.762 ± 
0.040 

 
Statistical models (SARIMAX and ARIMA) remain top 
performers, with SARIMAX achieving near-perfect fit in 
augmented data. GPR benefits modestly from more data, 
improving R² from 0.8905 to 0.925. LSTM shows the 
largest relative gain (R² increases from 0.6166 to 0.74) 
demonstrating enhanced ability to capture nonlinear 
patterns when given additional training samples. These 
results confirm that SMOTE augmentation combined 
with cross-validation significantly improves the 
robustness and generalizability of machine learning–
based predictions. 
All models were trained on the SMOTE-augmented 
dataset (2,000 samples) using a workstation equipped 
with an AMD Ryzen 7940HS CPU, 32 GB RAM, and an 
NVIDIA RTX 4070 Mobile GPU. Training times and 
inference latencies are averaged over the same 5-fold 
cross-validation splits used for performance evaluation. 
Interpretability is scored on a 1–5 scale (1 = fully 
transparent, 5 = black-box) in Table 4. 
 
Table4. Interpretability and Computational Costs of Deployed 
Models 
 

Model #Parameters 
Training 
Time (5-
fold) 

Inference 
Time per 
Sample 

Inter. 
Score 

SARIMAX 5 (AR & MA 
coefficients) 

0.6 ± 0.1 s 
total 

0.05 ± 0.01 
ms 1 

ARIMA 3 (AR & MA 
coefficients) 

0.5 ± 0.1 s 
total 

0.04 ± 0.01 
ms 1 

GPR (see Appendix) 78 ± 5 s 
total 2.5 ± 0.2 ms 3 

LSTM (see Appendix) 650 ± 20 s 
total 0.8 ± 0.1 ms 5 

 
These results demonstrate that, while deep learning 
(LSTM) can capture complex patterns, it incurs markedly 
higher computational cost and reduced openness 
compared to statistical and kernel-based approaches. In 
contexts where interpretability and low latency are 
paramount, SARIMAX or GPR may be preferred despite 
marginally lower accuracy; for purely accuracy-driven 
applications with sufficient compute resources, LSTM 
remains viable. 
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Figure 8. Forecasting Results of ARIMA 
 

 
 
Figure 9. Forecasting Results of SARIMAX 
 

 
 
Figure 10. Forecasting Results of GPR 
 

 
 
Figure 11. Forecasting Results of LSTM 
 
 

Table 5. Comparison Table of Proposed Method 

Study (Year) Methods 
Compared 

 Dataset Forecast 
Horizon Key Findings 

Alharbi & 
Csala [29] 

SARIMAX vs 
ARIMA 

 Saudi Arabia 
electricity data 
(1980–2020 
quarterly) 

2021–2050 SARIMAX significantly improved 
forecasting accuracy over ARIMA  

Bilgili & 
Pınar [30] LSTM vs SARIMA 

 Türkiye electricity 
consumption (1973–
2022 monthly) 

2022–2031 LSTM: MAPE 2.42%, MAE 215.35 GWh, 
RMSE 329.9 GWh, R² 0.9992  

Pierre et al. 
[31] 

ARIMA, LSTM, 
GRU, ARIMA–
LSTM, ARIMA–
GRU 

 Togo peak electricity 
consumption (Dec 
2021) 

1-month 
ahead 

Hybrid ARIMA–LSTM best (RMSE 7.35, 
MAPE 1.52%)  

Jailani et al. 
[32] 

Standalone LSTM 
vs hybrid LSTM 

 Solar irradiance and 
PV power time-
series 

Short-term 
ahead 

Hybrid LSTM > standalone; standalone 
LSTM top among non-hybrid models  

Sharifzadeh 
et al. [33] ANN, SVR, GPR 

 Wind and solar 
generation and 
electricity demand 

Short and 
medium 
terms 

All models effective for wind/solar; only 
ANN succeeded for demand forecasting  

Proposed 
Method 

ARIMA, 
SARIMAX, 
Gaussian Process 
(GPR), LSTM 

 
Global quarterly 
energy data (Kaggle, 
Jan 1973–Dec 2022) 

 Q1 2008–
Q4 2022) 

SARIMAX achieved the highest accuracy 
(R² 99.98%, RMSE 0.0026, MAE 0.0015); 
ARIMA close second; GPR provided 
uncertainty estimates; LSTM struggled to 
fully capture trend shapes  
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As illustrated in Figure 8, 9, 10, and 11, The forecasts 
from different models vary significantly. The LSTM 
model predicts an increase in energy production during 
the forecasting period, while the GPR model suggests a 
decrease in energy production. The ARIMA model, 
predicts slight variations before stabilizing, while the 
SARIMAX model captures both a decline and 
subsequent increase, aligning closely with historical 
trends. In Table 5, comparison of the proposed method 
with literature is given. 
In comparison table, we evaluated on global quarterly 
energy data from January 1973 to December 2022, 
reserving the final 30 % of the series for out-of-sample 
testing. The SARIMAX model delivered the best 
performance, achieving an R² of 99.98 %, RMSE of 
0.0026, and MAE of 0.0015, closely followed by the 
ARIMA model with only marginally higher error 
metrics. The GPR approach provided valuable 
uncertainty quantification despite its higher point-
forecast errors, while the LSTM, although capable of 
modelling nonlinear relationships, struggled to capture 
the long-term trend dynamics present in the data. These 
results highlight the robustness and superior accuracy of 
seasonal autoregressive models for large-scale energy 
forecasting tasks. 
Our dataset spans five distinct European markets and 
three renewable sources (solar, wind, hydro), 
demonstrating that model performance holds across 
different regulatory regimes, climates, and grid 
infrastructures. Because of this inherently heterogeneous, 
multi‐country dataset, the models have been validated on 
a wide range of conditions (seasonal patterns, market 
dynamics, and data quality variations). 
 
CONCLUSIONS 
 
This study has presented a comprehensive evaluation of 
time series forecasting methods applied to energy 
production. By deploying four distinct models—
ARIMA, SARIMAX, LSTM, and Gaussian Process 
Regression (GPR)—and rigorously comparing their 
performance using evaluation metrics (MSE, RMSE, 
MAE, and R²) over a 72-step forecasting horizon, we 
have demonstrated that advanced statistical models are 
highly effective for this application. In particular, the 
SARIMAX model, which benefits from incorporating 
seasonal patterns and exogenous variables, achieved 
outstanding accuracy with an MSE of 0.000031, an 
RMSE of 0.0026, an MAE of 0.0015, and an R² of 
99.98%. 
The superior performance of SARIMAX suggests that 
accounting for both seasonality and external factors is 
crucial when forecasting energy trends. Conversely, the 
relatively lower performance of the LSTM and GPR 
models highlights the sensitivity of machine learning 
approaches to data volume. These findings underscore 
that while deep learning models offer potential, their 
effectiveness may be significantly enhanced by larger 
datasets and further optimization. 

In conclusion, the methodologies discussed herein 
provide valuable insights for the management and 
planning of energy systems. Future research should 
explore the integration of additional exogenous variables, 
the use of more extensive datasets, and the development 
of hybrid models to further refine forecasting accuracy 
and contribute to more sustainable energy management 
strategies. Our multi‐model forecasting framework can 
be integrated into real‐time grid management systems to 
optimize dispatch schedules and reserve procurement 
based on accurate short‐term renewable generation 
predictions. Utilities and system operators can also 
leverage these insights for maintenance planning and 
cross‐border trading strategies, thereby enhancing grid 
reliability and economic efficiency. 
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