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Abstract: In this study we shall obtain  some sufficient conditions for the existence 
of positive solutions of variable coefficient nonlinear second order neutral 
differential equation with distributed deviating arguments. The main tool for 
proving our results is the Banach contraction principle. For this reason, we define a 
conversion and we show that it's a contraction transformation. The example at the 
end of the article is given to illustrate the effectiveness of our results. Our results 
improve  and extend some existing results. 

  
  

Dağıtılmış Sapma Argümentlerine Sahip İkinci Mertebeden Nötral Diferensiyel 
Denklemlerin Pozitif Çözümleri  

 
 

Anahtar Kelimeler 
Sabit Nokta, 
Nötral Diferensiyel Denklem, 
Pozitif Çözüm, 
Dağıtılmış Sapma   
Argümenti 
 

Öz: Bu çalışmada, dağıtılmış sapma argümentlere sahip değişken katsayılı lineer 
olmayan ikinci mertebeden nötral diferensiyel denklemlerin pozitif çözümlerinin 
varlığı için yeterli koşulları elde edeceğiz. Sonuçlarımızı kanıtlamanın ana aracı 
Banach daralma ilkesidir. Bunun için bir dönüşüm tanımlayıp daralma dönüşümü 
olduğunu göstereceğiz. Makalenin sonundaki örnek, sonuçlarımızın etkililiğini 
göstermek için verilmiştir. Sonuçlarımız bazı mevcut sonuçları iyileştirmekte  ve 
genişletmektedir. 

  
 

1. Introduction
 
 
In this work we consider the second-order  neutral nonlinear differential equation with distributed deviating 
arguments of  form 
 

       (𝑥(𝑡) − ∫ 𝑃(𝑡, 𝜉
𝑏1

𝑎1
)𝑥(𝑡 − 𝜉)𝑑𝜉)

′′

+  ∫ 𝑓 (𝑡, 𝑥(𝜎(𝑡, 𝜉))) 𝑑𝜉 = 0 ,
𝑏2

𝑎2
                                                    (1) 

 
where  𝑃(𝑡, 𝜉) ∈ 𝐶([𝑡0,∞) × [a1, b1] , ℝ)   for  0 <  𝑎1 <  𝑏1 and  𝜎(𝑡, 𝜉) ∈ 𝐶([𝑡0,∞) × [a2, b2] , ℝ)   with 
lim
𝑡→∞

𝜎(𝑡, 𝜉) = ∞  and  0 ≤  𝑎2 <  𝑏2 . 

 
In this paper, we assume that 𝑓(𝑡, 𝑥) ∈ 𝐶([𝑡0,∞) × ℝ, ℝ)   is nondecreasing in 𝑥, 𝑥𝑓(𝑡, 𝑥) > 0 for  𝑥 ≠ 0  and 
satisfies 

 
|𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)|  ≤ 𝑞(𝑡)|𝑥 − 𝑦|      for   𝑡 ∈ [𝑡0,∞)       and       𝑥, 𝑦 ∈ [𝑒, 𝑓],                                  (2) 

 
where 𝑞 ∈ 𝐶([𝑡0,∞) , ℝ+)   and  [𝑒, 𝑓] (0 < 𝑒 < 𝑓  or  𝑒 < 𝑓 < 0)  is any closed interval. 
 
Furthermore, suppose that 
 
 
 

∫ 𝑠𝑞(𝑠)𝑑𝑠 <  ∞
∞

𝑡0
 ,                                                                                                  (3) 
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∫ 𝑠|𝑓(𝑠, 𝑑|𝑑𝑠 <  ∞
∞

𝑡0
 ,                      for   some  𝑑 ≠ 0 .                                      (4) 

 
The nonoscillatory behavior of solutions of neutral differential equations has been considered by different 
authors in the past. Yang, Zang and Ge in [1] concerned with the existence of nonoscillatory solutions of second-
order differential equation of the form 
 

(𝑥(𝑡) − 𝑝(𝑡)𝑥(𝑡 − 𝜏))′′ + 𝑓1 (𝑡, 𝑥(𝜎1(𝑡))) − 𝑓2 (𝑡, 𝑥(𝜎2(𝑡))) = 0.                                            (5) 

 
 T. Candan  and  R. S. Dahiya in [2] studied with the existence of first and second order neutral differential 
equations of the form 
 
 

𝑑𝑘

𝑑𝑡𝑘 [𝑥(𝑡) + 𝑃(𝑡)𝑥(𝑡 − 𝜏)] + ∫ 𝑞1(𝑡, 𝜉)𝑥(𝑡 − 𝜉)𝑑𝜉 − ∫ 𝑞2(𝑡, µ)𝑥(𝑡 − µ)𝑑µ
𝑑

𝑐
= 0.

𝑏

𝑎
                            (6) 

 
This work was motivated by the (5) and (6) equations. For the other works and related books concerning 
oscillatory and nonoscillatory  of neutral differential  equations, we refer to  [3-11]. 
 
The purpose of this article is to give some sufficient conditions for the nonoscillatory solutions of (1) according 
to different cases of the range of  𝑝(𝑡) by using Banach Contraction Principle. 
 

Let  𝑇0 = min {𝑡1 − 𝑏1, inf
𝑡≥𝑡1

min
𝜉∈[𝑎2,𝑏2]

𝜎(𝑡, 𝜉)}  for  𝑡1 ≥ 𝑡0. By a solution of equation (1), we mean a function  𝑥 ∈

  𝐶([𝑇1, ∞), ℝ)  in the sense that   𝑥(𝑡) − ∫ 𝑃(𝑡, 𝜉
𝑏1

𝑎1
)𝑥(𝑡 − 𝜉)𝑑𝜉  is two times continuously differentiable on [𝑡1, ∞) 

and such that equation (1) is satisfied for  𝑡 ≥  𝑡1. 
 
As is customary, a solution of (1) is said to be oscillatory if it has arbitrary large zeros. Otherwise the solution is 
called nonoscillatory. 
 
2.  Main Results 
 

Theorem 2.1.  Assume that (3)-(4) hold, 𝑃(𝑡, 𝜉) ≥ 0  and ∫ 𝑃(𝑡, 𝜉
𝑏1

𝑎1
)𝑑𝜉 ≤ 𝑝 < 1.  Then (1) has a bounded 

nonoscillatory  solution. 
 
Proof.  Suppose  (4)  holds with  𝑑 > 0.  A  similar  argument  holds  for  𝑑 < 0.  Let  𝑁2 = 𝑑. 
 
Set  

𝐴 =  {𝑥 ∈ 𝑋 ∶   𝑁1  ≤ 𝑥(𝑡) ≤  𝑁2,   𝑡 ≥  𝑡0}, 
 
where  𝑁1  and  𝑁2  are  positive  constants  such  that 
 

𝑁1 < (1 − 𝑝)𝑁2. 
 
It is obvious that  A  is a closed, bounded and convex subset of  X. Because of  (3)-(4), we can take  a  𝑡1 >  𝑡0 
sufficiently large such that 𝑡 − 𝑏1  ≥  𝑡0,   𝜎(𝑡, 𝜉) ≥  𝑡0, 𝜉 ∈ [𝑎𝑖 , 𝑏𝑖]   for  𝑡 ≥  𝑡1, 𝑖 = 1,2  and  
 
 

𝑝 +  ∫ 𝑠(𝑏2 − 𝑎2)𝑞(𝑠)𝑑𝑠 ≤  𝜃1 < 1 ,
∞

𝑡1
                                                                    (7) 

 

 ∫ 𝑠(𝑏2 − 𝑎2)𝑓(𝑠, 𝑑)𝑑𝑠 ≤  𝛼 − 𝑁1 ,
∞

𝑡1
                                                                       (8) 

 
 
where  𝛼 ∈ (𝑁1, (1 − 𝑝)𝑁2].  Define  a  mapping  𝑆 ∶ 𝐴 → 𝑋   as follows: 
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          (𝑆𝑥)(𝑡) =   {
𝛼 + ∫ 𝑃(𝑡, 𝜉

𝑏1

𝑎1
)𝑥(𝑡 − 𝜉)𝑑𝜉 − ∫ (𝑠 − 𝑡) ∫ 𝑓 (𝑠, 𝑥(𝜎(𝑠, 𝜉)))

𝑏2

𝑎2
𝑑𝜉

∞

𝑡
𝑑𝑠,     𝑡 ≥  𝑡1

(𝑆𝑥)(𝑡1),      𝑡0  ≤  𝑡 ≤  𝑡1.                 
                        

 
It is easy to see that   𝑆𝑥  is continuous. For every 𝑥 ∈ 𝐴 and  𝑡 ≥  𝑡1  we can get 
 
 

(𝑆𝑥)(𝑡) =  𝛼 + ∫ 𝑃(𝑡, 𝜉
𝑏1

𝑎1
)𝑥(𝑡 − 𝜉)𝑑𝜉 − ∫ (𝑠 − 𝑡) ∫ 𝑓 (𝑠, 𝑥(𝜎(𝑠, 𝜉)))

𝑏2

𝑎2
𝑑𝜉

∞

𝑡
𝑑𝑠 

 
                                                     ≤  𝛼 + 𝑝𝑁2 
 
                                                      ≤ 𝑁2 
 
and  taking (8) in to account, we  can get 
 
 

(𝑆𝑥)(𝑡) =  𝛼 + ∫ 𝑃(𝑡, 𝜉
𝑏1

𝑎1
)𝑥(𝑡 − 𝜉)𝑑𝜉 − ∫ (𝑠 − 𝑡) ∫ 𝑓 (𝑠, 𝑥(𝜎(𝑠, 𝜉)))

𝑏2

𝑎2
𝑑𝜉

∞

𝑡
𝑑𝑠 

  

                                                      ≥  𝛼 −  ∫ 𝑠(𝑏2 − 𝑎2)𝑓(𝑠, 𝑑)𝑑𝑠 
∞

𝑡1
 

 
                                                      ≥  𝑁1. 
 
Thus we proved that  𝑆𝐴 ⊂ 𝐴.  Now we shall show that  S  is a contraction mapping on A.  
 
In fact, for  𝑥, 𝑦 ∈ 𝐴  and  𝑡 ≥  𝑡1,   in view of  (2)  and  (7)  we have 
 
 

                                    |(𝑆𝑥)(𝑡) − (𝑆𝑦)(𝑡)|  ≤  ∫ 𝑃(𝑡, 𝜉
𝑏1

𝑎1
)|𝑥(𝑡 − 𝜉) − 𝑦(𝑡 − 𝜉)|𝑑𝜉 

                                                                                  

                                                                            + ∫ (𝑠 − 𝑡) ∫ |𝑓 (𝑠, 𝑥(𝜎(𝑠, 𝜉))) − 𝑓 (𝑠, 𝑦(𝜎(𝑠, 𝜉)))|
𝑏2

𝑎2
𝑑𝜉

∞

𝑡
𝑑𝑠  

 

                                                                            ≤  ∫ 𝑃(𝑡, 𝜉
𝑏1

𝑎1
)|𝑥(𝑡 − 𝜉) − 𝑦(𝑡 − 𝜉)|𝑑𝜉 

 

                                                                            + ∫ 𝑠 ∫  𝑞(𝑠)|𝑥(𝜎(𝑠, 𝜉)) − 𝑦(𝜎(𝑠, 𝜉))|
𝑏2

𝑎2
𝑑𝜉

∞

𝑡1
𝑑𝑠 

 

                                                                             ≤  ‖𝑥 − 𝑦‖ [ 𝑝 + ∫ 𝑠(𝑏2 − 𝑎2)𝑞(𝑠)𝑑𝑠 
∞

𝑡1
 ] 

 
                                                                             ≤  𝜃1‖𝑥 − 𝑦‖, 
 
which implies the sup norm that 
 

‖𝑆𝑥 − 𝑆𝑦‖ ≤  𝜃1‖𝑥 − 𝑦‖. 
 

Since   𝜃1 < 1,  𝑆  is  a  contraction mapping on  𝐴.  By Banach Contraction Mapping Principle, there exist a unique 
fixed point  𝑥 ∈ 𝐴  such that  𝑆𝑥 = 𝑥, which is obviously  a positive  solution of  (1). This  completes the proof. 
 
  
 

Theorem 2.2.  Assume that (3)-(4) hold,  𝑃(𝑡, 𝜉) ≤ 0  and  −1 < −𝑝 ≤ ∫ 𝑃(𝑡, 𝜉
𝑏1

𝑎1
)𝑑𝜉 ≤ 𝑝.  Then  (1) has a bounded 

nonoscillatory solution. 
 
Proof.  Suppose  (4)  holds  with  𝑑 > 0.  A  similar  argument  holds  for  𝑑 < 0.  Let  𝑁4 = 𝑑. 
 
Set  

𝐴 =  {𝑥 ∈ 𝑋 ∶   𝑁3  ≤ 𝑥(𝑡) ≤  𝑁4,   𝑡 ≥  𝑡0}, 
 
where  𝑁3  and  𝑁4  are  positive  constants  such  that 
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𝑝𝑁4 +  𝑁3 < 𝑁4. 

 
It  is  clear  that  A  is a closed, bounded and convex subset of  X. Because of  (3)-(4), we can take  a  𝑡1 >  𝑡0 
sufficiently large such that  𝑡 − 𝑏1  ≥  𝑡0,    𝜎(𝑡, 𝜉) ≥  𝑡0,   𝜉 ∈ [𝑎𝑖 , 𝑏𝑖]   for  𝑡 ≥  𝑡1, 𝑖 = 1,2   and  
 

 

𝑝 +  ∫ 𝑠(𝑏2 − 𝑎2)𝑞(𝑠)𝑑𝑠 ≤  𝜃2 < 1 ,
∞

𝑡1
                                                                    (9) 

 

 ∫ 𝑠(𝑏2 − 𝑎2)𝑓(𝑠, 𝑑)𝑑𝑠 ≤  𝛼 − 𝑝𝑁4 − 𝑁3 ,
∞

𝑡1
                                                              (10) 

 
 
where  𝛼 ∈ (𝑝𝑁4 + 𝑁3, 𝑁4].  Define  a  mapping  𝑆 ∶ 𝐴 → 𝑋   as follows: 
 
   

        (𝑆𝑥)(𝑡) =   {
𝛼 + ∫ 𝑃(𝑡, 𝜉

𝑏1

𝑎1
)𝑥(𝑡 − 𝜉)𝑑𝜉 −  ∫ (𝑠 − 𝑡) ∫ 𝑓 (𝑠, 𝑥(𝜎(𝑠, 𝜉)))

𝑏2

𝑎2
𝑑𝜉

∞

𝑡
𝑑𝑠,     𝑡 ≥  𝑡1

(𝑆𝑥)(𝑡1),      𝑡0  ≤  𝑡 ≤  𝑡1.                 
                        

 
 
It is easy to see  that   𝑆𝑥  is continuous. For every 𝑥 ∈ 𝐴 and  𝑡 ≥  𝑡1  we can get 
 
 

(𝑆𝑥)(𝑡) =  𝛼 + ∫ 𝑃(𝑡, 𝜉
𝑏1

𝑎1
)𝑥(𝑡 − 𝜉)𝑑𝜉 − ∫ (𝑠 − 𝑡) ∫ 𝑓 (𝑠, 𝑥(𝜎(𝑠, 𝜉)))

𝑏2

𝑎2
𝑑𝜉

∞

𝑡
𝑑𝑠 

 
                                                     ≤  𝛼 
 
                                                      ≤ 𝑁4 
 
and  taking (10) in to account, we  can get 
 
 

(𝑆𝑥)(𝑡) =  𝛼 + ∫ 𝑃(𝑡, 𝜉
𝑏1

𝑎1
)𝑥(𝑡 − 𝜉)𝑑𝜉 − ∫ (𝑠 − 𝑡) ∫ 𝑓 (𝑠, 𝑥(𝜎(𝑠, 𝜉)))

𝑏2

𝑎2
𝑑𝜉

∞

𝑡
𝑑𝑠 

  

                                                      ≥  𝛼 − 𝑝𝑁4 −  ∫ 𝑠(𝑏2 − 𝑎2)𝑓(𝑠, 𝑑)𝑑𝑠 
∞

𝑡1
 

 
                                                      ≥  𝑁3. 
 
Thus we proved that  𝑆𝐴 ⊂ 𝐴.  Now we shall show that  S  is a contraction mapping on A.  
 
In fact, for  𝑥, 𝑦 ∈ 𝐴  and  𝑡 ≥  𝑡1,   in view of (2)  and  (9)  we have 
 
 

                                    |(𝑆𝑥)(𝑡) − (𝑆𝑦)(𝑡)|  ≤  ∫ (−𝑃(𝑡, 𝜉
𝑏1

𝑎1
))|𝑥(𝑡 − 𝜉) − 𝑦(𝑡 − 𝜉)|𝑑𝜉 

                                                                                  

                                                                            + ∫ (𝑠 − 𝑡) ∫ |𝑓 (𝑠, 𝑥(𝜎(𝑠, 𝜉))) − 𝑓 (𝑠, 𝑦(𝜎(𝑠, 𝜉)))|
𝑏2

𝑎2
𝑑𝜉

∞

𝑡
𝑑𝑠  

 

                                                                            ≤  ∫ (−𝑃(𝑡, 𝜉
𝑏1

𝑎1
))|𝑥(𝑡 − 𝜉) − 𝑦(𝑡 − 𝜉)|𝑑𝜉 

 

                                                                            + ∫ 𝑠 ∫  𝑞(𝑠)|𝑥(𝜎(𝑠, 𝜉)) − 𝑦(𝜎(𝑠, 𝜉))|
𝑏2

𝑎2
𝑑𝜉

∞

𝑡1
𝑑𝑠 

 

                                                                             ≤  ‖𝑥 − 𝑦‖ [ 𝑝 + ∫ 𝑠(𝑏2 − 𝑎2)𝑞(𝑠)𝑑𝑠 
∞

𝑡1
 ] 

 
                                                                             ≤  𝜃2‖𝑥 − 𝑦‖, 
 
which implies the sup norm that 
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‖𝑆𝑥 − 𝑆𝑦‖ ≤  𝜃2‖𝑥 − 𝑦‖. 
 

Since  𝜃2 < 1,  𝑆  is  a  contraction mapping on  𝐴.  By Banach Contraction Mapping Principle, there exist a unique 
fixed point  𝑥 ∈ 𝐴  such that  𝑆𝑥 = 𝑥, which is obviously  a positive  solution of  (1). This  completes the proof. 
 
Example 2.3.  For  𝑡 > 4,  consider the equation   
 
 

       (𝑥(𝑡) − ∫ exp(𝑡 − 𝜉)
4

3
𝑥(𝑡 − 𝜉)𝑑𝜉)

′′

+ ∫ exp(2𝜉)𝑥(𝑡 − 2𝜉) 𝑑𝜉 = 0.
2

1
                                         (11) 

 
Note that  𝑃(𝑡, 𝜉) =  exp(𝑡 − 𝜉),  𝜎(𝑡, 𝜉) = 𝑡 − 2𝜉,  𝑓(𝑡, 𝑢) =  exp(2𝜉)𝑢.  We can check that the conditions of 
Theorem 2.1 are all satisfied.  We note that 𝑥(𝑡) = exp(−𝑡)  is a nonoscillatory solution of (11). 
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