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AIM AND SCOPES 
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processes that regulate cellular function, and the control 
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drugs or disease. 

Areas of particular interest are four topics. They are; 

A- Ion Channels (Na+- K+ Channels, Cl– channels, Ca2+ 

channels, ADP-Ribose and metabolism of NAD
+
, Patch-

Clamp applications) 

B- Oxidative Stress (Antioxidant vitamins, antioxidant 
enzymes, metabolism of nitric oxide, oxidative stress, 
biophysics, biochemistry and physiology of free oxygen 
radicals) 

C- Interaction Between Oxidative Stress and Ion Channels 
in Neuroscience 
(Effects of the oxidative stress on the activation of the 
voltage sensitive cation channels, effect of ADP-Ribose 
and NAD+ on activation of the cation channels which 
are  sensitive  to  voltage, effect of the oxidative stress 
on activation of the TRP channels in neurodegenerative 
diseases such Parkinson’s and Alzheimer’s diseases) 

D- Gene and Oxidative Stress  
(Gene abnormalities. Interaction between gene and free 
radicals. Gene anomalies and iron. Role of radiation and 
cancer on gene  polymorphism) 
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Abstract 
Although antidepressant drugs have been used for 

approximately 60 years, very little is known about their 
effect mechanism. Structural abnormalities, particularly 
in the hippocampus, are observed in brain structures of 
depressed patients.  

The correction of these abnormalities with 
treatment suggests that major depressive disorders may 
be associated with a decrease in cellular elasticity and 
structural plasticity, and antidepressant treatments may 
provide benefits by treating these disorders. In this 
study, we aimed to investigate the effect of venlafaxine 
treatment on the brain-derived neurotrophic factor 
(BDNF) and BDNF levels in the hippocampus of 
depression-induced rats by using the chronic mild stress 
(CMS) model.  

In this study, 30 eight-week-old, Wistar albino 
male rats were divided into three groups. The first group 
received venlafaxine (20 mg/kg) with CMS, the second 
group a placebo with CMS, and the third group only a 
placebo (n = 10) for four weeks. At the end of the four-
week period, BDNF levels in hippocampus tissues were 
measured. 

The measurements showed that the BDNF levels 
of the depressed group were significantly lower than 
those of the control group. In our study, the 
hippocampal BDNF levels of the venlafaxine-
administered group were similar to those of the control 
group and significantly higher than those of the 
depressed group.   

In concusion, these findings show that the BDNF, 
which has an important function in neuroplasticity, 
plays a role in depression pathophysiology, and 
venlafaxine prevents the BDNF decrease observed in 
depression. This latter result supports the view that 
depression treatment prevents the long-term 
complications of the disorder. 

Keywords: Depression; BDNF; Venlafaxine; 
Hippocampus; Neuroplasticity. 

Introduction 
Although antidepressant drugs have been used for 

approximately 60 years, very little is known to date 
about their effect mechanism. It is currently believed 
that antidepressants show their main biochemical effects 
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by affecting intrasynaptic concentrations of serotonin 
and noradrenaline. However, clinical and preclinical 
studies performed in recent years demonstrated that 
major depressive disorders might be associated with the 
cellular elasticity and plasticity decrease in the brain 
structures of affected patients, and antidepressants could 
be useful in treating these disorders (Manji et al., 2000; 
Manji et al., 2001; Manji and Duman, 2001) 

The first studies about antidepressants’ action 
mechanism in depression focused on the variations in 
receptor levels and neurotransmitter concentrations. 
However, several problems are related to this model 
(Duman et al., 1997). These ideas contradict the finding 
that therapeutic effects of antidepressants require 
chronic administration, but norepinephrine (NE) 
reuptake inhibition by serotonin occurs in a short time. 
In time, along with the monoamine theory, several 
studies pointed out an essential role related to the 
intracellular pathways regulating the neuroplasticity and 
neurodegeneration in depression etiology. 
Antidepressant therapy blocks the neurogenesis 
downregulation caused by stress (Malberg and Duman, 
2003). The increase in brain-derived neurotrophic factor 
(BDNF) expression was shown to be a response to 
antidepressant therapy with different antidepressant 
classes, such as selective serotonin reuptake inhibitors 
(SSRIs) (fluoxetine, fluvoxamine, and sertraline), 
selective NE reuptake inhibitors (desipramine), and dual 
amine reuptake inhibitors (imipramine and 
milnaciprane) (Popoli et al., 2002). 

A member of the neutrophin family, BDNF 
activates the cell surface receptor with high affinity 
(TrkB) that matches the fosfatidilinositol-3-kinase and 
protein kinase B activation. Neurogenesis plays an 
important role in the BDNF, brain development, and 
plasticity by promoting synaptic plasticity and cell 
survival. During the development process of the 
cerebral cortex and hippocampus, the BDNF triggers the 
differentiation of neural stem cells to neurons and 
promotes new neuron development (Lee et al., 2002; 
Cheng et al., 2003). Therefore, the BDNF serves an 
essential function in preventing neuron deaths, and in 
the adult brain, it supports cell survival throughout 
stressful events, such as ischemia and trauma .(Larsson 
et al., 1999) Additionally, the BDNF stimulation in 
synapses develops the long-term potentiation [LTP], 

which is a synaptic refreshment process associated with 
learning and memory (Ernfors and Bramham, 2003; 
Leal et al., 2017). The majority of researchers focus on 
the hippocampus, which is known to have a role in 
mood disorders. The hippocampus is specifically 
sensitive to structural disruptions triggered by stress ( 
Arborelius et al., 1999; Sapolsky, 2000) 

Understanding the role of neurotrophic factors in 
depression will contribute to the knowledge about 
depression etiology and pathophysiology. Moreover, as 
antidepressant therapies cannot be limited to the release 
and reuptake of neurotransmitters or molecules that 
modulate their interaction with receptor systems, new 
molecules with more selective effects, including these 
action mechanisms, will be developed (Uzbay, 2005). 

In this study, we aimed to investigate the effect of 
venlafaxine treatment on the BDNF and hippocampus 
BDNF levels of rats with the chronic mild stress (CMS) 
model-induced depression.  
 
Materials and Methods 
Experimental animals 

This study used thirty 8-week-old, Wistar albino 
male rats, each weighing 200 ± 15 grams. Before the 
experiment, the rats were allowed to adapt to the 
environment for one week. The animals were kept in 
individual plastic cages with beds. Unless indicated 
otherwise, the rats had access to the standard rat food 
and tap water throughout the experiment. To allow the 
rats to get used to the sucrose, they could reach it (1% 
solution) freely during the week before the experimental 
procedure. The cage temperature was maintained at 22 
± 2 ºC; 12 hours each of light and dark cycles were 
maintained, with the lights turned on at 6:00 in the 
morning. The study was approved by the Local 
Experimental Animal Ethical Committee of Suleyman 
Demirel University (SDU). 

The rats were divided into three groups. The first 
group received venlafaxine 20 mg/kg (n = 10) with 
CMS, the second group a placebo with CMS (n = 10), 
and the third group only a placebo (n = 10). The rats 
were placed into specially prepared cages with beds, 
with one rat staying in each cage. Homogeneous 
distribution was provided among the groups. 
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Chronic mild stress model and sucrose preference 
test 

In rats, CMS has been used as the depression 
model. The CMS procedure has been considered a 
suitable model to study the beginning of the 
antidepressant effect on animals (Willner, 1997). The 
CMS model was first described by Wilner (1990). 
Anhedonia, evaluated by the sucrose consumption test 
in rats, has been suggested to be a depression model 
with etiological reliability (Dias et al., 2003). The CMS 
model has been used in many studies to evaluate the 
effectiveness of psychotropic drugs( Sanchez et al., 
2003; Orsetti et al., 2006). The depression model, 
developed with CMS in rats, has high validity (Van 
Kampen et al., 2002).  

The rats were given food, water, and 1% sucrose 
solution as much as they wanted to make them adapt to 
the environment and taste sucrose. The sucrose 
preference test performed in the rats was the test 
initiation. This test was used to define the anhedonia 
term  particularly the decrease in sucrose intake and 
preference compared with baseline values and the 
control group in the sucrose preference test (Grippo et 
al., 2002). In the sucrose preference test, water and 
sucrose consumption of the rats within one hour was 
observed after they were kept without food and water 
for 20 hours (by measuring the weight of the bottle full 
of water and sucrose before the test). The results were 
recorded as basal values. This test was performed at 
12:00 every Wednesday for four weeks, and the results 
were recorded. Then the CMS procedure was 
performed. The CMS-related procedures are presented 
in Table 1. This test was repeated for four weeks. 
During CMS, the rats orally received 20 mg/kg 
venlafaxine, a serotonin-norepinephrine reuptake 
inhibitor (SNRI) group antidepressant. The same 
amount of normal saline was given orally to the control 
group.     
 
Procedure 
The experiment was terminated by decapitation of all 
the rats under 10% ketamine and 2% xylazine 
anesthesia. After sacrificing them, their brain tissues 
were removed, and hippocampus BDNF levels were 
measured by using the ELISA method. 
 

Homogenization of hippocampus samples and 
measurement of BDNF levels 

Hippocampus tissues and serum samples were 
weighed as soon as the removal was finished, and they 
were stored in a -80˚C deep freeze. One week after the 
dissection, 100 mM Tris/HCl (pH 7) buffer containing 
2% bovine serum albumin (BSA), 1 M NaCl, 4 mM 
EDTA.Na2, 2% Triton X-100, 0.1% sodium azide and 
protease inhibitors (Sigma) 5 µg/mL aprotinin, 0.5 
µg/mL antipain, 157 µg/mL benzamidine, 0.1 µg/mL 
pepstatin A, and 17 µg/mL phenylmethyl-sulfonyl 
fluoride was prepared according to the ChemiKine™ 
BDNF Sandwich ELISA kit procedure. After the 
samples were thawed, the hippocampus tissues were 
diluted 10 times, using the Tris/HCL buffer, and cold-
homogenized at 9,500 rpm with the Ultra-Turrax T25 
homogenizer. The homogenates were obtained by 
centrifugation for 30 minutes at 14,000 xg. The 
hippocampus homogenates and serum samples were 
studied according to the kit procedure (after twice 
diluting with the sample diluent), with their 20 times- 
and twice-diluted forms, respectively. Irrigations in this 
procedure were performed with the Elx50 automatic 
strip washer (Bio-Tek Instruments, Inc.), whereas the 
absorbance readings were performed automatically with 
the Microwell System-Reader 530 (Organon Teknika). 
 
Statistical analysis 

Statistical evaluations were performed using the 
SPSS 15.0 for Windows software. Generally, the 
significant differences between groups were evaluated 
by using the Kruskal–Wallis analysis of variance. Paired 
comparisons of the groups were performed using the 
Mann-Whitney U test. The Wilcoxon signed-ranks test 
was used to evaluate the changes in the sucrose 
preference tests compared to the baseline. The p value 
of <0.05 was considered significant. 
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Results 
Sucrose preference test results 

Table 2 shows the results of the sucrose preference 
tests performed before and during the experiment. The 
comparison of the groups’ test results revealed that the 
fourth-week results of Group 1 were significantly higher 
than those of Group 2 and significantly lower than those 
of Group 3 (z = -2.91, p = 0.003, z = -2.83, p = 0.004). 
Additionally, the third- and fourth-week results of 
Group 2 were found to be significantly lower than those 
of Group 3 (z = -2.32, p = 0.02, z = -3.56, p < 0.0001). 
 
Hippocampus BDNF levels 

Table 3 shows the BDNF levels in the 
hippocampus tissues obtained after the beginning of the 
experiment. The tissue levels are 5.84 ± 0.89 in Group 
1, 4.88 ± 0.40 in Group 2, and 5.75 ± 0.61 in Group 3. 
There is a difference between the levels of Group 1 and 
Group 2, but the statistical significance is within the 
limit (z = -2,368, p = 0.018). No statistically significant 
difference is found between the BDNF levels of Group 
1 and Group 3 (z = -0,163, p = 0.873). However, Group 
2 has significantly lower levels than those of Group 3 (z 
= -2,782, p = 0.004). The hippocampus BDNF levels of 
the three groups at the end of the study are indicated 
collectively in Table 3. 

 
Discussion 

Our study’s findings show that CMS is an 
effective method in inducing depression in rats, which 
had been demonstrated in previous depression studies as 
well (Gittos and Papp, 2001; Grippo et al., 2005). 
Moreover, in our study, the results of sucrose preference 
tests are significantly lower in the placebo plus the 
CMS-administered rat group compared with the 
venlafaxine plus CMS-administered group and the 
control group. This outcome suggests that the 
antidepressant effectiveness of venlafaxine has become 
evident. Similar results had been demonstrated in 
clinical and experimental studies (Dilbaz et al., 1999). 

In our study, hippocampus BDNF levels are found 
to be significantly lower in depression-induced rats than 
in the control group. The brain and hippocampus BDNF 
levels had been investigated in several studies using 
different depression models. Four studies using the 
activity restriction model (Nibuya et al., 1995; Smith et 

al., 1995; Ueyama et al., 1997; Vaidya et al., 1997). and 
two studies using the social isolation model (Barrientos  
et al., 2003; Pizarro et al., 2004) reported decreased 
hippocampus BDNF levels. In contrast, another study 
reported an unchanged, rat hippocampus BDNF 
expression with CMS (Gronli et al., 2006). Two studies 
used the depression model with the restraint test; one 
reported decreased hippocampus BDNF levels (Xu et 
al., 2004), whereas the other study indicated no changes 
(Kuroda and Mcewen, 1998). Although the reason for 
these different results could not have been fully 
understood, it is thought to be associated with the timing 
of BDNF measurements.  

In studies conducted on humans, low serum 
BDNF levels were reported in patients with major 
depressive disorders (Shimizu et al. 2003; Gonul et al., 
2005; Gonul et al., 2005; Molendijk et al., 2011; De et 
al., 2014; Bus and Molendijk, 2016; Pedrotti Moreira et 
al.,  2018). 

Lower hippocampus BDNF levels in our study’s 
CMS group and the other findings in the literature 
support the argument that the BDNF plays a role in 
depression pathophysiology. The BDNF is involved in 
the regulation of synaptic protein synthesis and 
regulates the neurotransmitter secretion via upregulation 
of secretory mechanisms (Tyler and Pozzo-Miller, 
2001) . The BDNF provides stable and long-term 
development of neuron functions (Tartaglia et al., 
2001). 

Similar BDNF levels between the venlafaxine 
with the CMS-administered group and the control group 
support the claim that antidepressant therapy is not only 
symptomatic but also provides changes that will 
positively contribute to brain pathology causing 
depression or caused by depression. It has been 
suggested that low BDNF levels may play a role in the 
pathophysiology of major depressive disorders, and 
antidepressants may increase BDNF levels in depressive 
patients (even indirectly). Several studies reported that 
antidepressant agents of different classes increased the 
serum BDNF levels that were low in depressive patients 
(Yoshimura et al., 2007; Piccinni et al., 2008; Lee and 
Kim; 2008; Huang et al., 2008; Guilloux et al., 2012). 
The BDNF levels of depressive patients treated with 
venlafaxine were shown to be significantly higher than 
those of patients who did not receive treatment 
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(Matrisciano et al., 2009). In electroconvulsive therapy 
(ECT) -administered depressive patients, the BDNF 
levels were observed to increase (Marano et al., 2007; 
Piccinni et al., 2009; Bumb et al. 2015). Post-mortem 
studies showed high BDNF levels in the hippocampi of 
antidepressant-treated patients (Chen et al., 2001). In 
post-mortem depressive patients, decreased BDNF 
levels in their hippocampi and cerebral cortices were 
determined (Dwivedi et al., 2003). In another post-
mortem study, decreased BDNF levels were found in 
major depressive patients who committed suicide 
(Pandey et al., 2008). In depressive patients who 
attempted suicide, serum BDNF levels were lower than 
those of the healthy control group (Deveci et al., 2008). 
Another study reported no significant changes in the 
serum BDNF levels of depressive patients receiving 
venlafaxine and fluoxetine therapy (Terzi et al., 2009). 

Studies performed on rats also showed that 
antidepressant drugs and ECT increased hippocampus 
BDNF levels (Nibuya et al., 1995; Tyler and Pozzo-
Miller, 2001; Altar et al., 2003; Xu et al., 2003). and 
regulated the stress-dependent BDNF decrease (Duman, 
2004). On the other hand, one study reported that 
venlafaxine therapy did not affect the BDNF level 
(Solberg et al., 2001). Studies performed using 
venlafaxine showed that it prevented low BDNF levels 
in rats in which depression was induced with the 
chronic restraint test (Xu et al., 2004; Xu et al., 2006). 
In the chronic, unpredictable stress model, it was 
observed that chronically low doses of venlafaxine (5 
mg/kg) increased the hippocampal BDNF amount, but 
the same effect was not observed with 10 mg/day 
venlafaxine administration (Li et al., 2011). An 
increased hippocampal BDNF level was observed with 
venlafaxine administration without the BDNF 
depression model in rats (Czubak et al. 2009). In our 
study, the hippocampal BDNF levels of the venlafaxine-
administered group were similar to those of the control 
group and higher than those of the depressed group, but 
the statistical significance was within the limit. We used 
the 20 mg/kg/day venlafaxine dose in our study. Our 
study supports that of Xu et al. (2006). However, we 
used the CMS model in the rats, the closest one to 
depression in humans.  

In our study, low BDNF levels in CMS-
administered rats and nonlow levels in rats receiving 

venlafaxine treatment support the neuroplasticity theory 
in depression etiology suggested in recent years. 

The downregulation of neurotrophic factor 
expression in some studies showed that structural 
changes might exist in depressed patients ( Manji et al., 
2003). Neuroimaging studies reported decreased 
hippocampus volume in depressed patients (Bremner et 
al., 2000; Rajkowska et al., 2000; Sapolsky, 2000). 
Antidepressant therapy resulted in the stimulation of 
neurotrophic factors and regulation of cellular 
morphology and/or neurogenesis. Chronic 
antidepressant therapy was found to increase 
neurogenesis in the hippocampus of adult rodents 
(Madsen et al., 2000; Manev et al., 2001; Sachs and 
Caron, 2015). 

Some studies reported that antidepressant therapy 
reversed hippocampus atrophy in depressed patients ( 
Watanebe et al., 1992; Sheline at al., 2003; Vermetten et 
al., 2003; Sachs and Caron, 2015). However, no study 
using venlafaxine that has been conducted on humans is 
available. The prominent point of these clinical studies 
involved cell loss and volume decrease associated with 
depressive disorders. It had been shown that venlafaxine 
prevented low BDNF levels and hippocampal cell 
proliferation decrease in depression . Czeh et al. (2001) 
reported that chronic tianeptine therapy might reverse 
disorders triggered by stress, such as a decrease in 
hippocampus volume and neurogenesis (Watanabe et 
al., 1992; Czeh et al., 2001).  

Although it is hard to investigate the underlying 
mechanisms of the variations in the BDNF levels of 
depressed patients, some inferences could be made from 
the clinical data. Depression is typically associated with 
high adrenal glucocorticoid levels, and adrenal 
glucocorticoids decrease BDNF levels in rodents (Smith 
et al., 1995). Cytokines may have a role in the effects of 
depression on the BDNF. It was reported that 
interleukin-1 Beta (IL-1 β) levels increased in 
depression(You et al., 2011). The IL-1 β decreased 
glutamate secretion as much as it decreased Ca2+ flow 
(Murray et al., 1997); a decrease in Ca2+ flow might 
cause a decrease in the activity-dependent expression of 
BDNF in dentate gyrus (Duman, 2004). 

Due to the role of the 5-hydroxytryptamine (5-HT) 
system in depression, the BDNF seems to have a 
significant effect on the branching of both intact 5-HT 

J Cell Neurosci Oxid Stress 2018; 10: 766-775                                                                                                                                                        771 
                                                                                                                           



  7th World Congress of Oxidative Stress,  
Calcium Signaling and TRP Channels, 20-23 Apr. 2018 

 
 

neurons and neurons with neurotoxin lesions. The 
BDNF infusions cause hyperinnervation of 5-HT axons 
in the infusion site in either the cerebral cortex or 
hippocampus (Mamounas et al., 1995). This finding 
supports the claim that BDNF plays an important role in 
the plasticity of 5-HT neurons and can contribute to the 
arrangement of 5-HT nerve conduction in response to 
stress and antidepressant treatment. 

One study reported that adult neurogenesis 
contributed to the antidepressant response, and it was 
mandatory for antidepressant drug therapy (Santarelli et 
al., 2003). Externally administered BDNF showed an 
antidepressant effect on rats (Siuciak et al., 1997; 
Shirayama et al., 2002; Duman, 2004; Ye et al., 2011).  

The data obtained in this study supports the 
finding that BDNF levels that play an important role in 
neural plasticity are low in patients with depression. 
These studies are important to test the validity of the 
neurotrophic hypothesis associated with depression. The 
upregulation of the neurotrophic factors can stop the cell 
loss and atrophy caused by depression and even reverse 
them. This can both contribute to the effects of 
antidepressant treatment and prevent the complications 
associated with depression over the long term.  
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