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Öz 

Sc3AlN ve Sc3InN anti-perovskit yapıdaki bileşikler olup, bu gruptaki bileşikler teknolojik uygulamalar için önemli 

malzemelerdir. Bu çalışmada, teorik olarak Sc3AlN ve Sc3InN bileşiklerinin yapısal ve mekanik özellikleri 0-80 GPa 

basınç aralıklarında incelenmiştir. Hesaplamalar, yoğunluk fonksiyonel teorisi (DFT) çerçevesinde PBEsol tipi 
genelleştirilmiş gradyent yaklaşımı (GGA) kullanılarak VASP kodu aracılığıyla gerçekleştirilmiştir. Bileşiklerin elastik 

sabitleri, sünek/kırılgan karakterleri, işlenebilirlik indeksi, bulk modülü, kayma modülü, Young modülü, Cauchy basıncı, 

Poisson oranı ve sertlik gibi önemli mekanik özellikleri hesaplanarak, basınç ile değişimleri incelenmiştir. Ayrıca bazı 

mekanik özelliklerin anizotropik yapısı açıklanmıştır. Artan basınçla beraber incelenen bileşiklerin örgü sabiti 

değerlerinin azaldığı, elastik sabitleri değerlerinin arttığı elde edilmiştir. Sc3AlN ve Sc3InN bileşiklerinin 0-80 GPa 

arasında mekanik olarak kararlı olduğu bulunmuştur. 

 

Anahtar kelimeler: Mekanik özellikler, Yapısal özellikler, Yoğunluk Fonksiyonel Teorisi  

 

 

Abstract 

Sc3AlN and Sc3InN are anti-perovskite compounds, and compounds in this group are important materials for 
technological applications. In this study, the structural and mechanical properties of Sc3AlN and Sc3InN compounds were 

theoretically investigated in the pressure ranges of 0-80 GPa.The calculations were performed with the VASP code using 

the PBEsol-type generalized gradient approximation (GGA) within the framework of density functional theory (DFT). 

Important mechanical properties such as elastic constants, ductile/brittle characters, machinability index, bulk modulus, 

shear modulus, Young’s modulus, Cauchy pressure, Poisson ratio and hardness were calculated and their changes with 

pressure were examined. Additionally, the anisotropic nature of some mechanical properties was explained. It was 

obtained that the lattice constant values of these compounds decreased with increasing pressure, while the elastic 

constants values increased. Sc3AlN and Sc3InN compounds were found to be mechanically stable between 0-80 GPa. 

 

Keywords: Mechanical properties, Structural properties, Density functional theory 

 
 

1. Giriş 

1. Introduction 

 
ABX3 genel formülüne sahip perovskit bileşikler, keşfedildiklerinden beri çok çeşitli endüstriyel 

uygulamalarda büyük ilgi gören malzemeler olmuştur. Örneğin, ABO3 oksit perovskit bileşikleri, piezo-

elektrik, ferro-elektrik ve termo-elektrik malzemeler olarak kullanılmaktadır (Höglund vd., 2008; Nuraje & 
Su, 2013; Zheng vd., 2018; Wu & Gao, 2018; Hao vd., 2019; Tang vd., 2022). Ayrıca oksijen atomunun yerine 

halojen atomları yerleştirilerek oluşturulan perovskit bileşikleri daha düşük enerji bant aralığına sahip olmaları 

nedeniyle foto-katalitik, ışık yayan diyotlar, foto-detektörler, lazerler ve enerji depolama uygulamalarında 

kullanılabilmektedir (Tang vd., 2022; Nobin vd., 2023; Zhang vd., 2024).  
 

Enerji krizinin yaşandığı günümüzde perovskit bileşikler, dünya çapında sürdürülebilirlik çözümleri için 

önerilen en yaygın ve ucuz malzeme grubudur. Son yıllarda perovskit malzemelerin fotovoltaik uygulamalarda 
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kullanılması yaygınlaşmıştır. Ayrıca sahip oldukları termoelektrik özellikleri nedeniyle perovskit malzemeler 

sera gazı salınımını indirmeye yarayacak sistemlerde kullanılabilme potansiyeline sahiptirler (Haddadi vd., 
2012; Rani, 2021; Tang vd., 2022; Nobin vd., 2023). Anti-perovskit veya ters perovskit olarak adlandırılan 

bileşikler, yüksek manyetik direnci, neredeyse sıfır sıcaklık özdirenç katsayısına sahip olmaları gibi çok yönlü 

fiziksel ve kimyasal özelliklerinden dolayı oldukça ilgi çekmektedirler. (Magnuson vd. 2008; Mattesini vd., 
2009; Mikhaylushkin vd., 2009; Haddadi vd., 2012; Hossain vd., 2013; Rani, 2021). 

 

Perovskit nitrürler, genellikle anti-perovskit (veya ters perovskit) yapıda kristalleşir. Bu malzeme grubu, anti-

perovskit bileşiklerle aynı teknolojik ve endüstriyel öneme sahiptir. Ancak bu malzemelerin birçok fiziksel 
özelliği henüz incelenmemiştir. Anti-perovskit nitrürler, iletken, yalıtkan veya yarı iletken olarak işlev 

görmelerini sağlamak için değiştirilebilen elektronik özelliklere sahiptir. Bu da onları çok geniş teknolojilerde 

kullanabilir hale getirmektedir (Höglund vd., 2008; Mattesini vd., 2009; Kanchana & Ram, 2012). Bu 
çalışmada anti-perovskit yapıdaki Sc3AlN ve Sc3InN bileşiklerinin yapısal ve mekanik özellikleri 

incelenmiştir. Bu bileşikler önemli mekanik özelliklere sahiptir. R3NIn (R=nadir toprak elementleri) 

bileşiklerinin kristal yapısı ve fiziksel özellikleri Kirchner vd. (2003) tarafından deneysel olarak çalışılmıştır. 

Höglund vd. (2008), Sc3AlN bileşiğini perovskit yapıda sentezleyerek, örgü parametresini 4.40 Å değerinde 
bulmuştur. Magnuson vd. (2008) tarafından Sc3AlN bileşiğinin elektronik yapısı incelenmiştir. Haddadi vd. 

(2012), Sc3AC (A= Al, Ga, In, Tl) bileşiklerinin yapısal elektronik, elastik ve örgü dinamiği özelliklerini 

yoğunluk fonksiyonel teorisi ile CASTEP programı kullanarak hesaplamıştır. Kanchana ve Ram (2012) ilk-
prensip yaklaşımıyla üçlü Skandiyum tabanlı anti-perovskit Sc3AC (A= Al, Ga, In, Tl) ve Sc3BN (B=Al, In) 

bileşiklerinin elektronik yapısı ve elastik özelliklerini WIEN2k programı kullanılarak incelemiştir. 

Çalışmalarında, Sc3AlN ve Sc3InN bileşiklerinin kırılgan yapıda ve anizotropiye sahip olduğu öngörülmüştür. 
Hossain vd. (2013) tarafından Sc3InX (X = B, C, N) bileşiklerinin mekanik, termodinamik ve optik özellikleri 

yoğunluk fonksiyonel teorisi kullanılarak incelenmiştir. Mikhaylushkin vd. (2009), Sc3EN (E=B, Al, Ga, In) 

bileşiklerinin mekanik ve termodinamik kararlılığını ilk-prensip yöntemi kullanarak araştırmıştır. Bağcı vd. 

(2010) ab-initio yöntem kullanarak Sc3AlN bileşiğinin yapısal, elastik, elektronik özellikleri ve fonon 
spektrumlarını hesaplamış ve perovskit yapıda Sc3AlN bileşiğinin dinamik olarak kararlı olduğunu 

bulmuşlardır. Ghule vd. (2020) çalışmalarında Sc3MO (M =Al, Ga, In, Tl) ve Sc3MZ (Z =B, C, N, O) 

bileşiklerinin yapısal optimizasyonu ve elektronik özelliklerini ilk-prensipler yöntemiyle araştırmıştır.  
 

Bu çalışmada, herhangi bir deneysel parametre kullanmadan teorik olarak hesaplama yapabilen ilk-prensipler 

yöntemi kullanılarak kübik yapıdaki Sc3AlN ve Sc3InN bileşiklerinin fiziksel özelliklerinin basınca bağlı 
değişimi araştırılmıştır. Makalenin ikinci bölümünde hesaplama yöntemi hakkında ayrıntılara yer verilmiştir. 

Yapısal ve elastik özelliklerin hesaplamalarına ilişkin sonuçlar üçüncü bölümde sunulmuştur. Son kısımda ise 

elde edilen sonuçlar özetlenmiştir. 

 
2. Hesaplama yöntemi 

2. Calculation method 

 

Bu çalışmada yapılan tüm hesaplamalar yoğunluk fonksiyonel teorisini kullanan VASP kodu (Kresse & 

Hafner, 1993; Kresse & Furthmüller, 1996a; 1996b) ile gerçekleştirilmiştir. Bir bileşiğin geometrik 

optimizasyonu doğru hesaplamak ondan elde edilecek diğer özellikleri etkileyeceğinden oldukça önemlidir. 

Bu nedenle yaptığımız hesaplamalarda katılarda oldukça iyi taban durum özellikleri sonucunu veren PBEsol 
(Perdew vd., 2008) yaklaşımı kullanılmıştır. Elektron ve iyon etkileşimi PAW metodu (Blöchl, 1994; Kresse 

& Joubert, 1999) yardımıyla hesaplanmıştır. Yapılan optimizasyon hesaplamalarında düzlem dalga temel 

setinin kesme enerjisi 650 eV ve toplam yakınsama enerjisi olarak 10-6 eV değerinin yeterli olduğu 
belirlenmiştir. Brillouin bölgesi entegrasyonu, Monkhorst-Pack yöntemi (Monkhorst & Pack, 1976) ile 

14×14×14 k-noktası gridler kullanılarak hesaplanmıştır. Yapısal optimizasyonda tüm atomik konumlar ve örgü 

parametreleri tamamen serbest bırakılmıştır. 
 

3. Bulgular ve tartışma 

3. Results and discussion 

 
3.1. Yapısal özellikler 

3.1. Structural properties 

Sc3AlN ve Sc3InN anti-perovskit bileşikleri Pm3m (No:221) uzay grubunda kristalleşmektedir. 
Hesaplamalarda Wyckoff konumları Sc: 3c (0.0, 0.5, 0.5), X (X=Al, In): 1a (0.0,0.0,0.0) ve N: 1b (0.5, 0.5, 
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0.5) yerleştirilmiştir. VESTA programı (Momma & Izumi, 2011) kullanılarak çizilen bileşiklere ait kristal 

yapısı Şekil 1 ile sunulmuştur. 10 GPa aralıklarla hesaplanan 0-80 GPa basınç aralıklarındaki denge 
konumundaki örgü sabitleri mevcut teorik ve deneysel çalışmalarla birlikte Tablo 1 ile verilmiştir. PBEsol 

yaklaşımı kullanılarak elde edilen sonuçlar literatürdeki çalışmalarla oldukça tutarlıdır. Ayrıca artan basınçla 

beraber örgü sabiti değerlerinin azaldığı elde edilmiştir. 
 

 
 

Şekil 1. Sc3AlN ve Sc3InN bileşiklerinin kristal yapısı. 

Figure 1. Crystal structure of Sc3AlN and Sc3InN compounds. 
 

Tablo 1. PBEsol yaklaşımı altında Sc3AlN ve Sc3InN bileşiklerinin farklı basınç değerlerinde örgü sabiti 

değerleri. 

Table 1. Lattice constant values of Sc3AlN and Sc3InN compounds at different pressure under the PBEsol 
approximation. 

 
 

Bileşik 

a (Å) 

Basınç (GPa) 

 0 10  20  30  40  50  60  70  80  

Sc3AlN Bu çalışma (PBEsol) 4.367 4.267 4.189 4.126 4.072 4.025 3.983 3.945 3.911 

Deneysel (Höglund vd., 2008) 4.40         

Teorik (Mattesini vd., 2009) 4.374         

Teorik (Bağcı vd., 2010) 4.416          

Teorik (Kanchana & Ram, 2012) 4.42         

Teorik (Ghule vd., 2020) 4.419         

Sc3InN Bu çalışma (PBEsol) 4.415 4.311 4.232 4.167 4.112 4.065 4.023 3.985 3.950 

Deneysel (Kirchner vd., 2003) 4.448          

Teorik (Mattesini vd., 2009) 4.411         

Teorik (Kanchana & Ram, 2012) 4.47         

Teorik (Hossain vd., 2013) 4.47         

Teorik (Ghule vd., 2020) 4.474         
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3.2. Mekanik özellikler 

3.2. Mechanical properties 
 

3.2.1. Elastik sabitler (Cij)  

3.2.1.Elastic constants (Cij) 
 

Malzemelerin mekanik özelliklerinin incelenmesi, sertlik, mekanik kararlılık, süneklik/kırılganlık ve elastik 

anizotropi gibi önemli pek çok fiziksel özellikleri açıklamaya ve çeşitli sektördeki olası uygulamalarını tahmin 

etmeye yardımcı olur (Saddique vd., 2022). Bu çalışmada, incelenen bileşiklerin 10 GPa aralıklarla 0-80 GPa 
basınç aralığındaki mekanik özellikleri ilk-prensip yaklaşımı ile zor-zorlanma yöntemi (Le Page & Saxe, 2002) 

kullanılarak hesaplanmıştır. Sc3AlN ve Sc3InN bileşikleri kübik yapıda oldukları için C11, C12 ve C44 olmak 

üzere üç tane bağımsız elastik sabiti sahiptir. C11, (100) düzleminde <100> yönünde uygulanan eksenel 
gerilimin neden olduğu uzunluğundaki değişime karşı malzemenin direncini tanımlar. C12, (100) düzleminde 

<010> yönünde eksenel (boyuna) gerilimden kaynaklanan deformasyona karşı malzemenin direncini gösterir. 

C44 elastik sabiti ise malzemenin (010) düzleminde <001> yönünde uygulanan teğetsel kesme geriliminden 

kaynaklanan deformasyona karşı malzemenin direncini ifade eder (Varshney&Shriya, 2013; Khanzadeh & 
Alahyarizadeh, 2021).  

 

PBEsol yaklaşımı kullanılarak hesaplanan sıfır basınçtaki elastik sabitleri değerleri Tablo 2’de sunulmuştur. 
Bileşiklerin basınca bağlı olarak elastik sabitleri değişim eğrileri Şekil 2’de gösterilmiştir. Bir bileşiğin 

mekanik olarak kararlığını belirten Born kararlılık kriterleri kübik yapı için (Born & Huang, 1996; Mouhat & 

Coudert, 2014); C11 + 2C12 >0, C11 > 0, C44 > 0, (C11 − C12) > 0, C11 < B < C12 şeklindedir. Ayrıca kübik 
kristallerin izotropik sıkıştırma altında üç bağımsız kararlılık durumu (Wang vd., 1993; Khanzadeh & 

Alahyarizadeh, 2021; Shah, 2023): (C11+ 2C12+ P) > 0, (C44 − P) > 0, (C11−C12−2P) > 0 ile ifade edilmektedir. 

İncelenen bileşiklerin elastik sabit değerleri 0-80 GPa arasında mekanik kararlılık koşullarını sağladıkları için 

bileşikler Pm3m yapıda mekanik olarak kararlıdır. Şekil 2’de verilen grafiğe göre artan basınçla birlikte üç 
elastik sabiti değeri de basınçla beraber artmaktadır. C11’deki artış C12 ve C44 elastik sabitlerine göre daha 

baskındır.  

 

 
 

Şekil 2. a) Sc3AlN ve b) Sc3InN bileşikleri için elastik sabitlerinin basınçla değişimi eğrileri. 

Figure 2. Variation of elastic constants with pressure for a) Sc3AlN and b) Sc3InN compounds. 
 

0 GPa’da elde edilen tüm sonuçlar mevcut çalışmalarla uyumludur. Ancak incelenen bileşiklerin basınç 

etkisine yönelik çalışmaların literatürde olmaması nedeniyle, bu çalışmada elde edilen basınç etkisi verileri 

doğrudan literatürle kıyaslanamamıştır.  Buna karşın literatürde aynı grupta yer alan Sc3AC (A =Al, Ga, In and 
Tl) bileşikleri 0–40 GPa basınç değerleri arasında incelenmiştir. Elde edilen sonuçlar, malzemelerin 40 GPa’ya 
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kadar mekanik olarak kararlı ve kırılgan olduğunu göstermektedir. Ayrıca basınç artmasıyla beraber elastik 

sabitleri değerlerinin arttığı bulunmuştur (Haddadi vd., 2012). Bu sonuçlar Sc3AlN ve Sc3InN bileşikleri için 
elde edilen sonuçlarla örtüşmektedir. 

 

Tablo 2. PBEsol yaklaşımı altında Sc3AlN ve Sc3InN bileşiklerinin 0 GPa’da elastik sabitleri (Cij, GPa). 
Table 2. Elastic constants (Cij, GPa) of Sc3AlN and Sc3InN compounds at 0 GPa under PBEsol approximation. 

 

Elastik Sabitler (Cij) Sc3AlN Sc3InN 

 

C11 (GPa) 

262.328  

234.32 (Mattesini vd., 2009) 
223.3 (Bağcı vd., 2010) 

241 (Kanchana & Ram, 2012) 

246.993 

238.57 (Mattesini vd., 2009) 
210 (Kanchana & Ram, 2012) 

208.7 (Hossain vd., 2013) 

 

C12 (GPa) 

57.184 
54.21 (Mattesini vd., 2009) 

48.3 (Bağcı vd., 2010) 

52 (Kanchana & Ram, 2012) 

59.558 
54.28 (Mattesini vd., 2009) 

54 (Kanchana & Ram, 2012) 

52.8 (Hossain vd., 2013) 

 

C44 (GPa) 

88.991 
87.76 (Mattesini vd., 2009) 

85.5 (Bağcı vd., 2010) 

76 (Kanchana & Ram, 2012) 

87.109 
90.76 (Mattesini vd., 2009) 

80 (Kanchana & Ram, 2012) 

83.7 (Hossain vd., 2013) 

 

3.2. 2. Elastik sabitlerine bağlı mekanik özellikler  

3.2.2. Mechanical properties depending on elastic constants 

 
Mekanik özellikler, Voigt (üst) (1928) ve Reuss (alt) (1929) sınırlarının geometrik ortalamasını ifade eden Hill 

(1952) yaklaşımı kullanılarak elastik sabitleri yardımıyla elde edilmiştir. Hesaplamalarda kullanılan 

denklemler aşağıda yer almaktadır (Voigt, 1928; Reuss, 1929; Hill, 1952; Varshney & Shriya, 2013; 
Khanzadeh & Alahyarizadeh, 2021; Shah, 2023):  

 

𝐵𝑉 = 𝐵𝑅 =
𝐶11+2𝐶12

3
 ;   𝐵 =

𝐵𝑉+𝐵𝑅

2
          (1) 

 

𝐺𝑉 =
𝐶11−𝐶12+3𝐶44

5
 ;   𝐺𝑅 =

5(𝐶11−𝐶12)𝐶44

4𝐶44+3(𝐶11−𝐶12)
 ;    𝐺 =

𝐺𝑉+𝐺𝑅

2
      (2) 

 

𝐸 =
9𝐵𝐺

3𝐵+𝐺
              (3) 

 
Bulk modülü (B), bir malzemenin hidrostatik basınca maruz kaldığında plastik deformasyona karşı direncini, 

Young modülü (E) çekme yükü altında gerilim-gerinim oranı, kayma modülü (G) ise kayma gerilimine maruz 

kaldığında direnci ifade eder. Çok yüksek Young modülü değerine sahip bir malzemenin kabaca sert 
olabileceği ifade edilebilir (Varshney & Shriya, 2013; Shah, 2023). İncelediğimiz iki bileşiğin 0 GPa basınçtaki 

hesaplanan mekanik özellikleri Tablo 3 ile verilmiştir. Basınca bağlı olarak değişim eğrileri ise Şekil 3 ile 

gösterilmiştir. Artan basınçla beraber B, E ve G değerleri artmaktadır. Her iki bileşik içinde elastik modülleri 
büyüklükleri E (Young modülü) > B (bulk modülü) > G (kayma modülü) şeklindedir. Young modülünün 

değerleri basınç arttığında yükseldiği için malzemelerin sertliğini önemli ölçüde etkilemektedir. Sc3AlN 

bileşiği için elde edilen elastik modülü değerleri Sc3InN bileşiğinden daha büyük bulunmuştur.  

 
Cauchy basıncı (Cp), bir bileşikteki atomik bağın açısal özelliğini belirler ve kübik kristal yapı için C12 ve C44 

arasındaki fark olarak tanımlanır. Katı kristalin karakterizasyonu için önemli bir mekanik parametre olan 

Cauchy basıncı, aynı zamanda bir malzemenin kırılgan ve sünek yapısını belirlemeye yarayan bir ifadedir. 
Pozitif Cauchy basıncı (Cp>0), bir malzemenin iyonik bağını ve süneklik karakterini gösterirken, negatif 

Cauchy basıncı (Cp<0) ise kovalent bağı ve kırılganlığı gösterir (Pettifor, 1992; Ahmed vd. 2023; Shah, 2023). 

İncelediğimiz bileşiklerin basınca bağlı Cauchy basıncı değişim eğrisi Şekil 3’te elastik modüllerinin basınca 

bağlı değişim grafiklerinin yanında gösterilmiştir. Şekil 3’e göre, 0-80 GPa basınç aralığında Sc3AlN ve 
Sc3InN bileşikleri negatif Cauchy basıncı değerine sahip oldukları için kırılgan malzeme olarak 

sınıflandırılabilirler. 
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Tablo 3. PBEsol yaklaşımı altında Sc3AlN ve Sc3InN bileşiklerinin 0 GPa’da mekanik özellikleri. 

Table 3. Mechanical properties of Sc3AlN and Sc3InN compounds at 0 GPa under the PBEsol approximation. 
 
Bileşik Referans B  

(GPa) 

E  

(GPa) 

G 

(GPa) 

v Cp 

(GPa) 

B/G 𝜇
𝑀

 Hmakro 

(GPa) 

Hv 

(GPa) 

Hmikro 

(GPa) 

Sc3AlN Bu çalışma 125.57 226.06 94.20 0.200 -31.8 1.33 1.41 17.41 16.58 18.84 

Teorik (Mattesini 
vd., 2009) 

114.25 211.33  88.67  0.192       

Teorik (Bağcı vd., 
2010) 

106.6          

Teorik (Kanchana 
& Ram, 2012) 

114.76  201 83.02  0.21  -24.37      

Teorik (Ghule vd., 
2020) 

108.7           

Sc3InN Bu çalışma 122.04 216.13 89.69 0.205 -27.55 1.36 1.40 16.36 15.64 17.65 

Teorik (Mattesini 

vd., 2009) 

115.71  216.88  91.311 0.188       

Teorik (Kanchana 
& Ram, 2012) 

106.11  193  80.39  0.20  -27.94      

Teorik (Hossain 
vd., 2013) 

104.7  193.9  81.4  0.192        

Teorik (Ghule vd., 

2020) 

106.0          

 

 
 

Şekil 3.  Mekanik özelliklerin basınca bağlı değişimi a) Sc3AlN, b) Sc3InN 

Figure 3. Pressure dependence of the mechanical properties of a) Sc3AlN, b) Sc3InN 

 
Pugh oranı (B/G), bulk modülünün kayma modülüne oranıdır. B/G oranının basınçla değişimi grafiği Şekil 4 

(a) ile verilmiştir. Sc3AlN bileşiği için 0 GPa basınçta B/G oranı 1.33 (80 GPa basınçta 1.73), Sc3InN bileşiği 

için 1.36 (80 GPa basınçta 1.715) değerinde hesaplanmıştır. Eğer B/G oranı 1.75 değerinden büyükse malzeme 
sünek, aksi takdirde kırılgan malzeme olarak sınıflandırılmaktadır (Pugh, 1954; Ahmed vd. 2023). 0-80 GPa 

basınç aralığında Sc3AlN ve Sc3InN bileşikleri için hesaplanan B/G oranı değerleri 1.75 değerinden küçük 

olduğu için bu bileşikler kırılgan özellik sergilemektedir. Basınç artışı ile incelenen her iki bileşiğinde B/G 
oranı değeri artmaktadır. 

 

Poisson oranı (𝜈) bir malzemenin bağ yapısı ve sünek/kırılgan özelliklerini ifade etmek için kullanılmaktadır. 

Poisson oranı, 
 

𝜈 =
3𝐵−2𝐺

6𝐵+2𝐺
               (4) 
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denklemi kullanılarak hesaplanmıştır. Poisson oran değeri için ν = 0.26 değeri belirleyici bir değerdir. Eğer 

Poisson oranın değeri 0.26 değerinden büyükse malzeme sünek, 0.26 değerinden küçük ise kırılgan özellik 
sergilemektedir (Nobin vd., 2023; Shah vd., 2023). Poisson oranının basınçla değişimi grafiği Şekil 4 (b) ile 

verilmiştir. 0-80 GPa basınç aralıklarında Poisson oranı değerleri 0.26 değerinin altında olduğu için Sc3InN ve 

Sc3AlN bileşikleri kırılgan özellik göstermektedir. Ayrıca artan basınçla beraber Poisson oranı değeri her iki 
bileşik için de artmaktadır. Malzemelerin elastik özelliklerinden kırılgan mı yoksa sünek mi davranış 

sergilediğini tahmin etmek için Cauchy basıncı (Cp), Pugh oranı (B/G) ve Poisson oranı üç önemli kriterdir. 

Bu üç kritere göre, Sc3AlN ve Sc3InN bileşikleri 0-80 GPa basınç aralığında kırılgan özellik sergilemektedir. 

 

        
 

Şekil 4. Sc3AlN ve Sc3InN bileşikleri için a) B/G oranının basınçla değişimi, b) Poisson oranının basınçla 

değişimi. 
Figure 4. For Sc3AlN and Sc3InN compounds, a) the variation of B/G ratio with pressure, b) the variation of 

Poisson’s ratio with pressure. 

 
İleriye dönük mühendislik uygulamaları için çok önemli bir performans parametresi olan işlenebilirlik indeksi, 

bir katının istenilen şekle getirilme kolaylığını veya zorluğunu gösterir. Bir malzemenin işlenebilirlik indeksi 

(𝜇𝑀) şu şekilde tanımlanabilir: 
 

𝜇𝑀 =
𝐵

𝐶44
                           (5) 

 

İşlenebilirlik indeksi 𝐶44 elastik sabitine oldukça bağlıdır. Yüksek B/C44 değeri, bir malzemenin az sürtünmeye 

ve daha yüksek plastik gerilmeye sahip olduğu anlamına gelir. (Mitro vd., 2021; Parvin & Naqib, 2021; Nobin 

vd., 2023). İncelenen bileşikler için 0 GPa basınçtaki hesaplanan işlenebilirlik indeksi değerleri Tablo 3’te, 
basınca bağlı değişim eğrileri Şekil 5’te verilmiştir. Sc3AlN ve Sc3InN bileşiklerinin işlenebilirlik indeksi 

değerleri artan basınçla beraber doğrusal olarak artmaktadır. 

 

 

Şekil 5. Sc3AlN ve Sc3InN bileşikleri için 

işlenebilirlik indeksinin basınçla değişimi. 

Figure 5. The variation of machinability 
index with pressure for Sc3AlN and Sc3InN 

compounds. 
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Bir malzemenin sertliği ile ilgili bilgiler, yüksek stres altındaki mekanik ve yapısal tepkilerini anlamak için 

gereklidir. Bu çalışmada çeşitli sertlik ifadeleri elastik özellikleri yardımıyla hesaplanmıştır (Yousef vd., 2006; 
Chen vd., 2011; Tian vd., 2012; Ahmed vd. 2023; Islam vd., 2023). 

 

𝐻𝑚𝑖𝑘𝑟𝑜 =
(1−2𝜐)𝐸

6(1+𝜐)
                                           (6) 

 

𝐻𝑚𝑎𝑘𝑟𝑜 = 2 [(
𝐺

𝐵
)
2

𝐺]
0.585

− 3                                                (7) 

 

𝐻𝑉 = 0.92 (
𝐺

𝐵
)
1.137

𝐺0.708                                                   (8) 

 
0 GPa’da hesaplanan sertlik sonuçları Tablo 3’te, basınca bağlı değişim eğrileri ise Şekil 6 ile gösterilmiştir. 

Sertlik değerlerindeki fark, denklemlerde yer alan farklı parametrelerden kaynaklanmaktadır. Sc3AlN için 

hesaplanan sertlik değeri, Höglund vd. (2008) tarafından deneysel olarak bulunan sertlik değeri 14.2 GPa ile 
uyumludur. 40 GPa üzerindeki malzemeler sertlik açısından süper sert malzeme olarak sınıflandırıldığı için 

(Teter, 1998), incelediğimiz bileşikler 0 GPa basınç değerinde süper sert malzeme değildir. Ancak Şekil 6’da 

incelenen iki bileşiğinde artan basınç ile beraber sertlik değerlerinin arttığı görülmektedir.  

 

 
 

Şekil 6. Basınca bağlı sertlik değişimi a) Sc3AlN, b) Sc3InN. 

Figure 6. The pressure dependent hardness a) Sc3AlN, b Sc3InN. 
 

3.2.3. Elastik anizotropi  

3.2.3. Elastic anisotropy 

 
ELATE (Gaillac vd., 2016) programı aracılığıyla incelenen bileşiklerin elastik anizotropi özellikleri; Young 

modülü, lineer sıkıştırılabilirlik, kayma modülü ve Poisson oranının yöne bağlı değişimleri açıklanmıştır. 

Young modülü, lineer sıkıştırılabilirlik, kayma modülü ve Poisson oranının 0 GPa, 40 GPa ve 80 GPa basınç 
değerlerindeki 3-boyutlu grafikleri Sc3AlN bileşiği için Şekil 7’de, Sc3InN bileşiği için grafikler Şekil 8’de 

sunulmuştur. 3-boyutlu grafiklerde eğer malzeme izotropik yapıda ise küresel şekil gözlemlenmektedir. 

Küresel şekilden sapmalar ise bileşiğin sahip olduğu anizotropi derecesini gösterir. İncelenen iki bileşiğin 0 
GPa, 40 GPa ve 80 GPa basınç değerlerindeki lineer sıkıştırılabilirlik grafiklerinde küresel şekil 

gözlenmektedir. Dolayısıyla Sc3AlN ve Sc3InN bileşikleri lineer sıkıştırılabilirlik açısından izotropik davranış 

sergilemektedir. İncelenen her iki bileşik için de Young modülü, kayma modülü ve Poisson oranı grafiklerinde 

küresel şekilden sapmalar meydana geldiği için anizotropik davranış sergilemektedirler. Ayrıca artan basınç 
ile beraber grafiklerdeki küresel şekilden sapmalar daha baskın olup anizotropi dereceleri artmaktadır. 
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Şekil 7. Sc3AlN bileşiğinin 3-boyutta elastik özellikleri grafikleri. 

Figure 7. 3-dimensional elastic properties graphs of Sc3AlN compound. 
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Şekil 8. Sc3InN bileşiğinin 3-boyutta elastik özellikleri grafikleri. 

Figure 8. 3-dimensional elastic properties graphs of Sc3InN compound. 
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0, 40 ve 80 GPa basınç değerlerinde Sc3AlN ve Sc3InN bileşikleri için hesaplanan minumum ve maksimum 

Young modülü (E), lineer sıkıştırılabilirlik (β), kayma modülü (G), Poisson oranı (ν) ve elastik anizotropi 
değerleri Tablo 4 ile sunulmaktadır. Hesaplama sonuçlarına göre, her iki bileşik için de lineer sıkıştırılabilirlik 

(βmin, βmak) değerlerinin artan basınçla birlikte azaldığı belirlenmiştir. Lineer sıkıştırılabilirlik (β) parametresi 

basınç değişiminden etkilenmemiştir ve incelenen basınç değerlerinde izotropik bulunmuştur. Buna karşın, 
Young modülü (E), kayma modülü (G) ve Poisson oranı (ν) değerleri basınç artışıyla birlikte belirgin bir 

şekilde yükselmekte ve her iki bileşiğin elastik anizotropi değerleri artmaktadır.  

 

Tablo 4. PBEsol yaklaşımı altında Sc3AlN ve Sc3InN bileşiklerinin minumun ve maksimum Young modülü 
(Emin, Emak), lineer sıkıştırılabilirlik (βmin, βmak), kayma modülü (Gmin, Gmak) ve Poisson oranı (νmin, νmak) 

değerleri.  

Table 4. Minimum and maximum values of Young modulus (Emin, Emax), linear compressibility (βmin, βmax), shear 
modulus (Gmin, Gmax) and Poisson ratio (νmin, νmax) of Sc3AlN and Sc3InN compounds under the PBEsol 

approximation. 

 

 

Mekanik Özellikler 

Sc3AlN Sc3InN 

0 GPa 40 GPa 80 GPa 0 GPa 40 GPa 80 GPa 

E  Emin (GPa) 215.96 311.46 358 211.1 317.43 376.83 

Emak (GPa) 241.86 472.55 656.5 223.85  452.27 637.35 

Anizotropi 1.12 1.517 1.834 1.06 1.425 1.691 

β βmin (TPa
–1

) 2.65 1.433 1.048 2.731 1.437 1.04 

βmak (TPa
–1

) 2.65 1.433 1.048 2.731 1.437 1.04 

Anizotropi 1.00 1.00 1.00 1.00 1.00 1.00 

G Gmin (GPa) 88.99 121.96 136.4 87.11 124.79 144.49 

Gmak (GPa) 102.57 203.42 283.98 93.72 192.46 272.7 

Anizotropi 1.153 1.668 2.082 1.076 1.542 1.887 

ν νmin 0.164 0.116 0.096 0.186 0.133 0.111 

νmak 0.247 0.396 0.481 0.229 0.374 0.452 

Anizotropi 1.503 3.402 5.012 1.233 2.821 4.075 

 

4. Sonuçlar 

4. Conclusions 

 
Özetle, bu çalışmada ilk-prensip yöntemi kullanılarak Sc3AlN ve Sc3InN anti-perovskit bileşiklerinin yüksek 

basınçta yapısal, elastik ve elastiğe bağlı özellikleri araştırılmıştır. PBEsol yaklaşımı altında hesaplanan 

sonuçların literatürdeki çalışmalarla uyumlu olduğu görülmüştür. İncelenen bileşiklerin örgü sabitlerinin 

basınçla beraber azaldığı bulunmuştur. Elastik özellik hesaplamaları, Sc3AlN ve Sc3InN bileşiklerinin 0-80 
GPa basınç aralığında mekanik olarak kararlı ve kırılgan yapıda olduğunu ortaya çıkarmıştır. Ayrıca elastik 

özelliklerine bağlı sertlik değerleri artan basınçla beraber artmaktadır.  Elde edilen sonuçlar, bu bileşiklerin 

yüksek basınç altında sertlik ve mekanik kararlılık gerektiren uygulamalarda kullanılma potansiyeline sahip 
olduğunu göstermektedir. Bu çalışma, DFT hesaplamalarına dayalı olarak, Sc3AlN ve Sc3InN anti-perovskit 

bileşiklerinin teknolojik uygulamalara yönelik tasarımına temel oluşturacak teorik bir yol haritası sunmaktadır. 
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