DEU FMD 28(82) (2026) 128-134
Dokuz Eyliil Universitesi Miithendislik Fakiiltesi Fen ve Miithendislik Dergisi
Dokuz Eylul University Faculty of Engineering Journal of Science and Engineering
Elektronik/Online ISSN: 2647-958X

RESEARCH ARTICLE / ARASTIRMA MAKALESI

Machine Learning-Based Real-Time Tremor Level Detection for Parkinson
Disease

Parkinson Hastaligl icin Makine Ogrenimi Tabanli Ger¢ek Zamanl Tremor
Seviyesi Saptanmasi

Altug Yigit 1*¥, Hakan Dalkilig 2

1 [zmir Institute of Technology, Computer Engineering Dept., izmir, TURKIYE
2 Yasar University, Computer Technologies Dept., izmir, TURKIYE

Corresponding Author / Sorumlu Yazar *: altugyigit@iyte.edu.tr

Abstract

Parkinson's disease is one of the neurodegenerative diseases that affects neurons in the brain and causes motor functions to
deteriorate. The most common symptom of this disease is involuntary tremor, especially in the hands and fingers, when the patient
is in a resting position. In this study, a machine learning-based embedded system is proposed that can detect tremor and determine
its level according to sensor data obtained from fingers. Subsequently, tremor data was obtained using Arduino UNO and MPU-6050
sensor, machine learning models were trained, and autonomous decision making have been performed. The study aims to evaluate
tremor autonomously in real time, report it to the specialist, and assist in diagnosis and treatment. Unlike the studies in the literature,
in this study, tremor signals were processed in real time with machine learning techniques instead of rule-based decision making.
Tremor signals are digitally generated using sensors via the Internet of Things. Since mobility is crucial in the healthcare industry, the
data was transferred wirelessly to the local server and evaluated for ease of use. As a result of this study, 96% accuracy was achieved
using artificial neural networks in tremor level detection. By increasing the amount of data and the number of participants, the
potential for the system to be developed and used in clinics is quite high.
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Parkinson hastaligl beyindeki ndronlar etkileyerek motor fonksiyonlarinin bozulmasina neden olan nérodejeneratif hastaliklardan
biridir. Bu hastaligin bilinen en yaygin belirtisi hastanin dinlenir pozisyondayken 6zellikle el ve parmaklardaki istemsiz tremordur.
Bu ¢alismada el parmaklarindan elde edilen sensor verilerine gére tremoru tespit ederek, seviyesini saptayabilen makine 6grenmesi
tabanl bir gémiilii sistem 6nerilmektedir. Arduino UNO ve MPU-6050 sensorii kullanilarak tremor verileri elde edildikten sonra
makine 6grenmesi modelleri egitilerek otonom karar verme islemi yapilmistir. Calismanin amaci tremoru gergek zamanli, otonom
olarak degerlendirebilmek, uzmana raporlama yapmak, teshis ve tedavi islemine yardimci olmaktir. Literatiirde bulunan
calismalardan farkl olarak bu ¢alismada kural tabanli karar vermek yerine tremor sinyalleri ger¢ek zamanli olarak makine 6grenmesi
teknikleri ile islenmistir. Tremor sinyalleri nesnelerin interneti araciligiyla sensér kullanilarak sayisal olarak tiretilmistir. Saghk
sektoriinde mobiliteye 6nem verildigi icin kullanim kolaylig1 saglamasi amaciyla veriler kablosuz olarak yerel sunucuya aktarilarak
degerlendirme yapilmistir. Calisma sonucunda yapilan deneyler ile tremor seviye tespitinde yapay sinir aglar1 kullanilarak %96
basar1 elde edilmistir. Veri miktar1 ve katilimci sayisinin arttirilmasiyla birlikte sistemin gelistirilme ve kliniklerde kullanilma
potansiyeli oldukea yiiksektir.

Anahtar Kelimeler: Makine Ogrenmesi, Nesnelerin Interneti, Parkinson Hastaligi, Ger¢ek Zamanli Teshis, Tremor Tespiti

1. Introduction allows the specialist to determine the tremor frequency. Using
Internet of Things (IoT) devices as an alternative to the existing

Parkinson's disease is a neurodegenerative disease that can L . . .
devices is very suitable for solving this problem.

occur with age-related risks of both environmental and genetic

factors [1]. Although some risk factors have been identified, the
cause of this disease in many patients is not fully known, except
for genetic factors. It causes dopamine deficiency due to neuron
losses in the brain region called substantia nigra, causing
impairment of motor functions, affecting mobility and
involuntary tremors [2]. Tremor is clinically defined as
involuntary, rhythmic, and variable movements of one or more
limbs of the body [3]. In Parkinson's disease, tremor is seen in
different parts of the body at different frequencies. Involuntary
tremor movements, especially those that occur while at rest, are
common in Parkinson's disease [4]. Despite this, movement
tremor is also observed in patients [5]. The use of devices with
sensitive measurement capabilities in the diagnosis of the disease
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10T devices have been widely preferred in wearable technologies
in recent years [6-11]. Reducing the size of sensors and
microcontroller cards and designing them to consume less
energy allows their use with wearable technologies. Through
smart watches and wearable smart textiles, the sensors people
carry can collect health-related data such as the number of steps
and heartrate [12-13]. In this way, interpreting the collected data
and turning it into meaningful results has an important place in
the field of health, as in many other fields. In addition, the data
obtained can be transferred to a central server or mobile device
using wireless technologies and stored and processed there.
After the stored data is pre-processed, various predictions are
made using artificial intelligence technologies [14-16]. The
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predictions made are reported and forwarded to experts in a way
that supports the diagnosis process, making it easier to evaluate
people's health status.

There are many studies in the literature on the use of IoT devices
in the field of healthcare. Using IoT devices, basic health
parameters such as people's pulse values, body temperature,
electrocardiography (ECG) signals, and oxygen saturation are
collected and transmitted wirelessly to mobile devices via
Bluetooth [17-20]. Data obtained with [oT technologies used in
the field of healthcare can be analyzed with machine learning and
deep learning techniques [21-23]. A secure health information
model has been proposed for the confidentiality of patient
information in health information systems, including IoT
technologies [24]. In the field of healthcare, loT-based decision
support systems are used to facilitate the diagnosis and
treatment process [25]. With the use of loT-based wireless body
area networks and radio frequency identification (RFID)
technology integrated into this system, a system that includes
collecting physiological data of the patient with sensors that can
be worn on the patient, remote monitoring of the patient and,
data analysis has been presented [26].

In the study conducted by Raza et al., an [oT-based system that
allows remote monitoring of patients in a closed environment
was proposed [27]. They stated that the proposed system detects
the progression of Parkinson's disease using auditory inputs with
machine learning techniques. AlZubi et al. have proposed an [oT-
based wearable device [28]. In the proposed system, [oT sensors
are placed in the patient's brain to collect brain features. The
collected data is continuously analyzed to predict changes in the
brain. Zhao et al. proposed a wearable anklet that can measure
and grade the gait characteristics of Parkinson's patients [29]. In
their proposed system, they detected and classified the abnormal
gait patterns of patients using the K-nearest neighbor algorithm.
Saleh et al. proposed a system based on artificial intelligence of
things that can detect Parkinson's patients through voice
disorders [30]. They used four different machine learning
algorithms in their proposed system. In the study conducted by
Belyaev et al, they proposed a system that allows the diagnosis
and monitoring of Parkinson's disease in an IoT environment
using resting EEG signals [31]. They used a machine learning
algorithm in their proposed system.

In this study, after tremor data was obtained through IoT devices,
it was processed, and level detection estimation was made with
machine learning methods. In addition, it is aimed to transfer the
data to the server in real-time and wirelessly and to obtain results
by evaluating them in a short time. The proposed prototype helps
the diagnosis process by estimating the numerical measurement
and severity of tremor, which cannot be perceived by humans in
a short time. However, it is thought to play an important role in
treatment planning.

The next section contains the materials and methods, the
hardware used in the study, the data collected through the
hardware, data processing and machine learning models used in
tremor prediction are explained. The third section contains the
experiments and their results. The last chapter contains the
results of the study and the discussion section.

2. Materials and Methods

The proposed system consists of two parts: hardware and
software. The first partincludes embedded system hardware that
contains sensors to detect tremor in the fingers. In the second
part, there is software developed for the application of tremor
level detection estimation and machine learning models. After
collecting the data, the designed hardware transmits it to the
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server in real-time and wirelessly. Then, with the software
developed, the data are interpreted in this unit and presented to
expert opinion. In this section, hardware details, how the data is
obtained and processed, and finally the application of tremor
level detection estimation and the machine learning models used
will be discussed.

2.1. Circuit design

The following hardware components are used in the proposed
circuit design.

e Arduino UNO microcontroller board,
e MPU-6050 sensor,
* HC-05 Bluetooth module.

Arduino UNO microcontroller was used to process the data
received from the sensor and make it ready to be sent to a mobile
device, computer, or a server. Arduino UNO can be powered from
the USB port, power socket input or Vin input. In the created
design, power was provided via the USB port. Arduino UNO is a
microcontroller that is quite suitable in terms of capacity for
processing sensor data and is low-cost compared to other
embedded systems. To detect tremor, an MPU-6050 sensor card
with a 3-axis angular accelerometer and 3-axis gyroscope was
used. MPU-6050 converts analog signals to digital with its 16-bit
analog-to-digital  converter. MPU-6050 sensor board
communicates with Arduino UNO via I2C protocol. SDA and SCL
pins of the MPU-6050 sensor are connected to the A4 and A5
analog input pins on the Arduino UNO for 12C communication. 5
Volt and Gnd pins on Arduino were used for voltage supply of the
MPU-6050 sensor. Additionally, the Int pin on the MPU-6050 is
connected to the Digital 2 pin on the Arduino. HC-05 Bluetooth
module was used to transfer the data processed with Arduino
UNO to the mobile device or server. Wireless serial
communication was achieved by connecting the HC-05 module to
the TX and RX pins of the Arduino UNO microcontroller card. 3.3
Volt and ground pins of the Arduino UNO board were used for the
voltage supply of the HC-05 module. The HC-05 module is paired
with the server where the data is collected via Bluetooth
connection. The serial communication information flow rate
(baud-rate) of the HC-05 module is defined as 38400. The circuit
diagram of the proposed hardware design is shown in Figure 1.

Accelerometer and gyroscope
5 ®

Figure 1. Circuit diagram of the proposed design.
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Figure 2. The gyroscope and acceleration data.
2.2. Collection of data

With the designed system, a mechanism was created to collect
tremor data. Gyroscope and accelerometer data of X, y and z axes
were obtained with the values transferred from the MPU-6050
sensor to the Arduino UNO board. Gyroscope and accelerometer
data are vectors that each contain three axes information. The
device is connected to the server wirelessly using the COM8 port.
Afterwards, the six-axis data produced in real-time were colored
and visualized as in Figure 2.

Each color represents different axis information regarding
gyroscope and acceleration. After all the data were visualized and
examined, the vector data containing the axis information was
transferred wirelessly to the server via the Bluetooth module.
The operating frequency of the MPU-6050 sensor is determined
as 100 Hz. In the created mechanism, the MPU-6050 sensor was
positioned on the participants' fingers. Data collection was
conducted with three different participants, whose identities and
demographic information were kept confidential to ensure blind
data conditions. Each participant was tested for approximately
fifteen seconds, during which uninterrupted real-time data was
recorded and transmitted to the server. Tremor measurements
were taken and recorded while the participants were in a resting
and sitting position. The data was generated at varying
intensities within the experimental environment, allowing the
models to be trained and evaluated for estimating different
tremor levels.

Processing of data

Data obtained from sensors are often subject to varying amounts
of noise or the presence of outliers, which can interfere with
accurate analysis. This issue is particularly pronounced when
working with high-sensitivity sensors, as their increased
precision often comes at the cost of heightened susceptibility to
noise. While high-sensitivity sensors are advantageous for
capturing detailed and subtle variations in signal data, the
presence of unwanted noise can complicate the data analysis
process, potentially leading to incorrect interpretations and
erroneous decisions. Numerous noise removal techniques have
been proposed in the literature [32-34] to address these
challenges. These methods aim to enhance the quality of the
signal data by minimizing noise and outliers, thereby improving
the reliability and accuracy of subsequent analyses.

In the present study, a high-sensitivity sensor was employed to
collect time series data. Consequently, the need to eliminate noise
from the raw data emerged as an essential step in the
preprocessing pipeline. A moving average filter (MAF), a widely
used noise removal technique in signal processing, was applied
to achieve this. It operates by smoothing the signal data, reducing
the effects of random noise while preserving the essential trends
and patterns within the signal.

1449 1549 1649

The calculation of the MAF is mathematically expressed in
Equation (1). In this equation, the ith filter output is denoted by
MAFTi], the i+jth filter input is denoted by x[i], the frame value or
number of points is denoted by WS.

During the computation process, the filter assigns the arithmetic
mean of the preceding data points, determined by the specified
frame size, to the current filter output (ith). By calculating the
average over a defined window of data points, this method
effectively reduces the impact of noise and outliers in the signal,
producing a smoother and cleaner representation of the original
data. In this study, a real-time filter with a frame value of three
(WS=3) was applied to each of the time series signals obtained
from the sensors. The application of this filter successfully
smoothed the signals, ensuring that unwanted noise and discrete
irregularities were eliminated.

To illustrate the effectiveness of the study, the process was
applied to the z-axis gyroscope data generated by the sensor. The
results are presented in Figure 3, where the red signal represents
the unfiltered z-axis data, clearly demonstrating the presence of
significant noise. After applying the filter, the processed signal is
displayed in blue, showing a much smoother profile. It is evident
from the figure that the blue signal is constrained within a smaller
range compared to the noisy red signal, indicating that the noise
has been effectively removed. This preprocessing step
significantly enhances the quality of the time series data, making
it more suitable for downstream machine learning tasks.

In addition to noise reduction, further preprocessing steps were
applied to the time series data to prepare it for multivariate
machine learning models. Since the collected data consists of
variables with varying numerical value ranges, these differences
could potentially introduce biases during the training of machine
learning algorithms. To address this, the minimum-maximum
normalization method was employed to scale all variables to a
common range between zero and one. This normalization
technique ensures that features with larger numerical ranges do
not disproportionately influence the learning process of the
model, thereby improving the performance and stability of the
machine learning algorithms. By standardizing the numerical
ranges of the variables, the time series data was effectively
transformed into a format that is both uniform and compatible
with the requirements of the applied machine learning models.

1 ws-1
MAF[i] = Z x[i +J]

j=0

(1)
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Figure 3. Filtering gyroscope data on the Z-axis.

The preprocessing steps of noise removal and normalization
through the minimum-maximum method played a critical role in
ensuring the quality and usability of the sensor data. These steps
not only improved the clarity of the signals by removing
unwanted noise but also standardized the data for optimal
performance in multivariate machine learning applications.
Together, these methods provide a robust framework for
preparing high-sensitivity sensor data for predictive modeling
and analysis.

2.3. Time series forecasting model

In this study, machine learning models were employed to predict
tremor levels from multivariate time series data, which represent
complex temporal patterns of tremor dynamics. By conducting
experiments with a variety of models, the most effective
approach for achieving accurate predictions was identified.
Considering that the system is intended to operate in real-time
environments, an artificial neural network (ANN) architecture
with a minimal number of parameters and layers was selected to
optimize computational efficiency while maintaining high
prediction accuracy.

As depicted in Figure 4, the selected ANN model consists of two
hidden layers, each designed to capture the underlying
relationships in the input data efficiently. Specifically, the first
hidden layer comprises 64 neurons, while the second hidden
layer contains 32 neurons. These layers are in addition to the
input and output layers, which facilitate the mapping of the input
features to the predicted tremor levels. To ensure computational
efficiency and robust training, the Rectified Linear Unit (ReLU)
activation function was utilized in the hidden layers. This choice
of activation function not only accelerates the convergence of the
model but also helps to mitigate the vanishing gradient problem
that can occur during backpropagation. The error calculation for
model training was performed using the mean squared error,
which is a standard metric for evaluating the deviation between
predicted and actual values in regression-based tasks.

The training process of the ANN model was further optimized
using the Adam optimizer, a state-of-the-art optimization
algorithm known for its adaptability and efficiency in handling
sparse gradients. Adam combines the advantages of both
momentum-based and adaptive learning rate optimization
techniques, making it well-suited for complex and high-
dimensional datasets like the multivariate time series data used
in this study. Since the task involves multi-class classification
predicting discrete tremor levels the output layer employs a
softmax activation function, which converts the raw model
outputs into probability distributions across the classes. The

predicted class is determined by selecting the class with the
highest probability.

For comparative analysis, two additional models were developed
using Support Vector Machines (SVMs). These models were
designed with different kernel functions to evaluate their
performance on the tremor prediction task. The first SVM
employed a linear kernel, which assumes that the data can be
separated using a hyperplane in the input feature space. In
contrast, the second SVM used a non-linear kernel, specifically
the radial basis function (RBF) kernel, which can capture more
complex relationships by mapping the input data to a higher-
dimensional space. The use of the RBF kernel enables the non-
linear SVM to effectively handle data that are not linearly
separable, providing a more flexible model for the classification
task.

The comparison between these models highlights the strengths
and weaknesses of each approach in terms of accuracy,
computational efficiency, and real-time applicability. The ANN
model, with its lightweight architecture and efficient training
process, demonstrated superior performance for real-time
applications, making it the preferred choice for this study. The
inclusion of SVM models, however, provides a valuable
benchmark and demonstrates the potential of alternative
machine learning methods in tremor prediction.

First hidden layer 64 neurons  Second hidden layer 32 neurons

Input

W

Output

Figure 4. Applied artificial neural network model.
3. Experiments and Results

In the experiments, multivariate time series data containing
gyroscope and acceleration information obtained after pre-
processing were created and level estimation was made with
artificial neural networks and support vector machines. Data on
all axes (%, y, z) generated from the gyroscope and acceleration
sensors were evaluated. To determine the tremor level, training
and testing were performed with time series data recorded at
different intensities. In each session, tremor data obtained from
the participants over a certain period of time were evaluated.
Tremor data obtained in the resting position in the experimental
environment were evaluated with different models and
compared. A total of 225 tremor data of equal numbers belonging
to three levels: normal, mild tremor and severe tremor were
used. Instead of testing on a randomly selected data set, k-fold
cross validation was applied with a k value of five.

In the ANN model, 800 epochs of training were performed for
each layer. Comparison of linear (L) and non-linear (NL) support
vector machines (SVM) and ANN models according to accuracy
metric is given in Table 1.
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Table 1. Performance comparison of the models.

Model

SVM (L) SVM (NL) ANN
1st Layer 93.3 97.78 97.78
2nd Layer 95.56 95.56 97.78
3rd Layer 82.22 91.11 95.56
4th Layer 80.0 95.56 95.56
5th Layer 82.22 88.89 93.33
Avg. Accuracy 86.67 93.78 96.0

Linear SVM with radial basis function showed approximately 7%
lower performance in terms of accuracy than non-linear SVM.
Additionally, the created ANN model performed better than both
SVM models.
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Figure 5. Training and validation loss curve of the ANN model.
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Figure 6. Training and validation accuracy curve of the ANN
model.

The training and validation loss curves are presented in Figure 5
and Figure 6 that exhibit a consistent downward trend over the
course of 800 epochs, indicating effective convergence of the ANN
model. The relatively small gap between training and validation
losses throughout the training process suggests a well-
generalized model with minimal overfitting. This observation is
consistent with the high average validation accuracy of 96%
obtained across the five folds.

Fluctuations observed in the validation loss are attributed to the
inherent difficulty in distinguishing between adjacent tremor
classes, particularly the mild tremor class. This is corroborated
by the confusion matrix results, which indicate that most
classification errors occurred in differentiating mild tremor from

the normal and severe tremor classes. The asymptotic behavior
near 1.0 indicates that the model achieved a high level of
classification performance over time. The stability of both loss
and accuracy curves across epochs supports the robustness of the
training process under the five-fold cross-validation protocol.
This further reinforces the reliability of the ANN model in the
context of multivariate time series classification involving
gyroscope and accelerometer signals for tremor level estimation.

The confusion matrix of the 5th layer of the ANN model with the
worst accuracy value is given in Figure 7. While there is no error
in the tremor class, it is seen that one sample from the normal
class and two samples from the mild tremor class were classified
incorrectly. In all the experiments, it was observed that machine
learning models made mistakes mostly in detecting mild tremor.

Table 2. Performance metrics by classes.

Metric
Precision Recall F1
Tremor 0.80 1.00 0.89
Mild Tremor 1.00 0.88 0.94
Normal 1.00 0.94 0.97
Macro Average 0.93 0.94 0.93

Table 2 shows the performance of the classification model across
the three groups: Tremor, Mild Tremor, and Normal. It breaks
down Precision, Recall, and F1-score for each class, giving us a
clearer picture of how well the model distinguishes between
them. For the Tremor class, the model achieved a Precision of
0.80. This means that when the model predicted Tremor, it was
correct 80% of the time. Even more impressively, the Recall was
perfect at 1.00, the model identified every actual Tremor case
without missing any. This strong combination leads to an F1-
score of 0.89, which nicely balances these two metrics. The Mild
Tremor category showed the highest Precision at 1.00, indicating
that all predicted Mild Tremor cases were indeed correct.
However, the Recall was a bit lower at 0.88, suggesting the model
missed some Mild Tremor cases and labeled them as something
else. The Fl-score of 0.94 still reflects very strong overall
performance here. For the Normal group, the model performed
excellently as well, with both Precision and Recall above 0.94.
This resulted in an F1-score of 0.97, showing the model’s ability
to classify normal subjects nearly perfectly. These results suggest
that the model is reliable across all three categories. It's
particularly good at precisely identifying Mild Tremor and
Normal subjects, and it’s highly sensitive in detecting Tremor
cases. This balance between metrics makes it well-suited for real-
world use where correctly distinguishing between these motor
conditions is crucial.

The proposed system has the advantage of real-time decision-
making, unlike most of the studies carried out for level
determination. In a study similar to this study, prediction was
made using linear regression to determine the tremor level [35].
The value obtained as a result of the regression is expressed as a
numerical value between one and seven. In this study, classes
representing certain levels were used instead of expressing the
output with a numerical value. In addition, since this study is a
real-time [oT system, it is aimed to work with high performance
in all experiments.
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Figure 7. Confusion Matrix of the ANN for Tremor Levels.

Unlike the related study, the data was expressed and evaluated as
a multivariate time series after pre-processing, without going
through the feature extraction process. In another study [36],
employed a mobile phone accelerometer to measure the
acceleration of tremors in Parkinson’s disease patients. In
contrast, our implementation has its own designed [oT device
specifically designed for tremor measurement. They achieved
95% accuracy. Building on recent advances, similar real-time
monitoring approaches have been demonstrated by [37], who
developed a wrist-worn wearable system leveraging deep
learning for continuous tremor detection in naturalistic settings.
In another study [38], they proposed a magnetic sensor-based
system for real-time tremor tracking aimed at enabling
immediate clinical feedback. These studies highlight the critical
role of real-time, wearable technologies in Parkinson’s disease
management. Our proposed system aligns with and advances this
trend by offering a highly customizable, clinical-grade IoT
solution capable of accurate and immediate tremor classification,
thus enhancing the potential for practical application in
healthcare and patient monitoring.

4. Result and discussion

In this study, tremor data was collected using loT devices
specifically designed to measure and monitor hand tremors in
patients with Parkinson’s disease. These devices enabled the
wireless transmission of data to a central server, where the data
was processed in real time using advanced computational
methods. A prototype system was developed to predict tremor
severity levels by employing machine learning algorithms. The
proposed system aims to provide specialists with analyzed and
interpretable data to assist in the diagnosis and treatment
processes.

In order to create the dataset for this study, multivariate time
series data was generated by simulating various tremor levels
with differing intensity values. Tremor data was recorded under
controlled conditions, specifically in resting and sitting positions,
to ensure consistency and accuracy in the measurements. Using
these data, multiple machine learning models were developed
and evaluated for their performance in detecting tremor severity
levels. Among the models evaluated, artificial neural networks
(ANNs) achieved the highest accuracy rate of 96%, making them
the most effective approach for this task.

The results of this study highlight the potential of IoT-based
systems in healthcare applications, particularly for monitoring
and managing neurodegenerative diseases such as Parkinson’s
disease. The integration of machine learning methods with IoT
technology provides a powerful tool for analyzing tremor
patterns and predicting severity levels in real time. By offering
specialists a detailed interpretation of tremor data, this system
has the potential to serve as a valuable aid in clinical decision-
making, improving both diagnosis and treatment outcomes.

Looking ahead, the study proposes the development of deep
learning models as a natural progression to the machine
learning-supported signal processing model currently in use.
Deep learning approaches are expected to provide more robust
and reliable predictions due to their ability to automatically
extract complex features from raw data. By identifying patterns
and nuances in tremor signals, these models could significantly
enhance the understanding of tremor dynamics in Parkinson’s
patients, providing the medical community with more
comprehensive insights.

Future research directions include expanding the dataset by
increasing the number of participants and obtaining the
necessary ethical permissions to test the system in clinical
settings. A larger and more diverse dataset will enable more
extensive validation of the system, leading to improved
performance and reliability in real-world scenarios. With an
increase in data volume, the predictive capabilities of the system
are expected to improve, paving the way for its integration into
clinical practice. Ultimately, the goal is to establish a reliable,
scalable, and clinically validated tool that can be widely used to
support the medical community in diagnosing and managing
Parkinson’s disease.
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