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Abstract 

Parkinson's disease is one of the neurodegenerative diseases that affects neurons in the brain and causes motor functions to 
deteriorate. The most common symptom of this disease is involuntary tremor, especially in the hands and fingers, when the patient 
is in a resting position. In this study, a machine learning-based embedded system is proposed that can detect tremor and determine 
its level according to sensor data obtained from fingers. Subsequently, tremor data was obtained using Arduino UNO and MPU-6050 
sensor, machine learning models were trained, and autonomous decision making have been performed. The study aims to evaluate 
tremor autonomously in real time, report it to the specialist, and assist in diagnosis and treatment. Unlike the studies in the literature, 
in this study, tremor signals were processed in real time with machine learning techniques instead of rule-based decision making. 
Tremor signals are digitally generated using sensors via the Internet of Things. Since mobility is crucial in the healthcare industry, the 
data was transferred wirelessly to the local server and evaluated for ease of use. As a result of this study, 96% accuracy was achieved 
using artificial neural networks in tremor level detection. By increasing the amount of data and the number of participants, the 
potential for the system to be developed and used in clinics is quite high. 
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Öz 

Parkinson hastalığı beyindeki nöronları etkileyerek motor fonksiyonlarının bozulmasına neden olan nörodejeneratif hastalıklardan 
biridir. Bu hastalığın bilinen en yaygın belirtisi hastanın dinlenir pozisyondayken özellikle el ve parmaklardaki istemsiz tremordur. 
Bu çalışmada el parmaklarından elde edilen sensör verilerine göre tremoru tespit ederek, seviyesini saptayabilen makine öğrenmesi 
tabanlı bir gömülü sistem önerilmektedir. Arduino UNO ve MPU-6050 sensörü kullanılarak tremor verileri elde edildikten sonra 
makine öğrenmesi modelleri eğitilerek otonom karar verme işlemi yapılmıştır. Çalışmanın amacı tremoru gerçek zamanlı, otonom 
olarak değerlendirebilmek, uzmana raporlama yapmak, teşhis ve tedavi işlemine yardımcı olmaktır. Literatürde bulunan 
çalışmalardan farklı olarak bu çalışmada kural tabanlı karar vermek yerine tremor sinyalleri gerçek zamanlı olarak makine öğrenmesi 
teknikleri ile işlenmiştir. Tremor sinyalleri nesnelerin interneti aracılığıyla sensör kullanılarak sayısal olarak üretilmiştir. Sağlık 
sektöründe mobiliteye önem verildiği için kullanım kolaylığı sağlaması amacıyla veriler kablosuz olarak yerel sunucuya aktarılarak 
değerlendirme yapılmıştır.  Çalışma sonucunda yapılan deneyler ile tremor seviye tespitinde yapay sinir ağları kullanılarak %96 
başarı elde edilmiştir. Veri miktarı ve katılımcı sayısının arttırılmasıyla birlikte sistemin geliştirilme ve kliniklerde kullanılma 
potansiyeli oldukça yüksektir. 
Anahtar Kelimeler: Makine Öğrenmesi, Nesnelerin İnterneti, Parkinson Hastalığı, Gerçek Zamanlı Teşhis, Tremor Tespiti 

1. Introduction 

Parkinson's disease is a neurodegenerative disease that can 
occur with age-related risks of both environmental and genetic 
factors [1]. Although some risk factors have been identified, the 
cause of this disease in many patients is not fully known, except 
for genetic factors. It causes dopamine deficiency due to neuron 
losses in the brain region called substantia nigra, causing 
impairment of motor functions, affecting mobility and 
involuntary tremors [2]. Tremor is clinically defined as 
involuntary, rhythmic, and variable movements of one or more 
limbs of the body [3]. In Parkinson's disease, tremor is seen in 
different parts of the body at different frequencies. Involuntary 
tremor movements, especially those that occur while at rest, are 
common in Parkinson's disease [4]. Despite this, movement 
tremor is also observed in patients [5]. The use of devices with 
sensitive measurement capabilities in the diagnosis of the disease 

allows the specialist to determine the tremor frequency. Using 
Internet of Things (IoT) devices as an alternative to the existing 
devices is very suitable for solving this problem. 

IoT devices have been widely preferred in wearable technologies 
in recent years [6-11]. Reducing the size of sensors and 
microcontroller cards and designing them to consume less 
energy allows their use with wearable technologies. Through 
smart watches and wearable smart textiles, the sensors people 
carry can collect health-related data such as the number of steps 
and heart rate [12-13]. In this way, interpreting the collected data 
and turning it into meaningful results has an important place in 
the field of health, as in many other fields. In addition, the data 
obtained can be transferred to a central server or mobile device 
using wireless technologies and stored and processed there. 
After the stored data is pre-processed, various predictions are 
made using artificial intelligence technologies [14-16]. The 
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predictions made are reported and forwarded to experts in a way 
that supports the diagnosis process, making it easier to evaluate 
people's health status. 

There are many studies in the literature on the use of IoT devices 
in the field of healthcare. Using IoT devices, basic health 
parameters such as people's pulse values, body temperature, 
electrocardiography (ECG) signals, and oxygen saturation are 
collected and transmitted wirelessly to mobile devices via 
Bluetooth [17-20]. Data obtained with IoT technologies used in 
the field of healthcare can be analyzed with machine learning and 
deep learning techniques [21-23]. A secure health information 
model has been proposed for the confidentiality of patient 
information in health information systems, including IoT 
technologies [24]. In the field of healthcare, IoT-based decision 
support systems are used to facilitate the diagnosis and 
treatment process [25]. With the use of IoT-based wireless body 
area networks and radio frequency identification (RFID) 
technology integrated into this system, a system that includes 
collecting physiological data of the patient with sensors that can 
be worn on the patient, remote monitoring of the patient and, 
data analysis has been presented [26]. 

In the study conducted by Raza et al., an IoT-based system that 
allows remote monitoring of patients in a closed environment 
was proposed [27]. They stated that the proposed system detects 
the progression of Parkinson's disease using auditory inputs with 
machine learning techniques. AlZubi et al. have proposed an IoT-
based wearable device [28]. In the proposed system, IoT sensors 
are placed in the patient's brain to collect brain features. The 
collected data is continuously analyzed to predict changes in the 
brain. Zhao et al. proposed a wearable anklet that can measure 
and grade the gait characteristics of Parkinson's patients [29]. In 
their proposed system, they detected and classified the abnormal 
gait patterns of patients using the K-nearest neighbor algorithm. 
Saleh et al. proposed a system based on artificial intelligence of 
things that can detect Parkinson's patients through voice 
disorders [30]. They used four different machine learning 
algorithms in their proposed system. In the study conducted by 
Belyaev et al., they proposed a system that allows the diagnosis 
and monitoring of Parkinson's disease in an IoT environment 
using resting EEG signals [31]. They used a machine learning 
algorithm in their proposed system. 

In this study, after tremor data was obtained through IoT devices, 
it was processed, and level detection estimation was made with 
machine learning methods. In addition, it is aimed to transfer the 
data to the server in real-time and wirelessly and to obtain results 
by evaluating them in a short time. The proposed prototype helps 
the diagnosis process by estimating the numerical measurement 
and severity of tremor, which cannot be perceived by humans in 
a short time. However, it is thought to play an important role in 
treatment planning. 

The next section contains the materials and methods, the 
hardware used in the study, the data collected through the 
hardware, data processing and machine learning models used in 
tremor prediction are explained. The third section contains the 
experiments and their results. The last chapter contains the 
results of the study and the discussion section. 

2. Materials and Methods 

The proposed system consists of two parts: hardware and 
software. The first part includes embedded system hardware that 
contains sensors to detect tremor in the fingers. In the second 
part, there is software developed for the application of tremor 
level detection estimation and machine learning models. After 
collecting the data, the designed hardware transmits it to the 

server in real-time and wirelessly. Then, with the software 
developed, the data are interpreted in this unit and presented to 
expert opinion. In this section, hardware details, how the data is 
obtained and processed, and finally the application of tremor 
level detection estimation and the machine learning models used 
will be discussed. 

2.1. Circuit design 

The following hardware components are used in the proposed 
circuit design. 

• Arduino UNO microcontroller board, 

• MPU-6050 sensor, 

• HC-05 Bluetooth module. 

Arduino UNO microcontroller was used to process the data 
received from the sensor and make it ready to be sent to a mobile 
device, computer, or a server. Arduino UNO can be powered from 
the USB port, power socket input or Vin input. In the created 
design, power was provided via the USB port. Arduino UNO is a 
microcontroller that is quite suitable in terms of capacity for 
processing sensor data and is low-cost compared to other 
embedded systems. To detect tremor, an MPU-6050 sensor card 
with a 3-axis angular accelerometer and 3-axis gyroscope was 
used. MPU-6050 converts analog signals to digital with its 16-bit 
analog-to-digital converter. MPU-6050 sensor board 
communicates with Arduino UNO via I2C protocol. SDA and SCL 
pins of the MPU-6050 sensor are connected to the A4 and A5 
analog input pins on the Arduino UNO for I2C communication. 5 
Volt and Gnd pins on Arduino were used for voltage supply of the 
MPU-6050 sensor. Additionally, the Int pin on the MPU-6050 is 
connected to the Digital 2 pin on the Arduino. HC-05 Bluetooth 
module was used to transfer the data processed with Arduino 
UNO to the mobile device or server. Wireless serial 
communication was achieved by connecting the HC-05 module to 
the TX and RX pins of the Arduino UNO microcontroller card. 3.3 
Volt and ground pins of the Arduino UNO board were used for the 
voltage supply of the HC-05 module. The HC-05 module is paired 
with the server where the data is collected via Bluetooth 
connection. The serial communication information flow rate 
(baud-rate) of the HC-05 module is defined as 38400. The circuit 
diagram of the proposed hardware design is shown in Figure 1.  

 

Figure 1. Circuit diagram of the proposed design. 



DEU FMD 28(82) (2026) 128-134 

 130 

 Figure 2. The gyroscope and acceleration data. 

2.2. Collection of data 

With the designed system, a mechanism was created to collect 
tremor data. Gyroscope and accelerometer data of x, y and z axes 
were obtained with the values transferred from the MPU-6050 
sensor to the Arduino UNO board. Gyroscope and accelerometer 
data are vectors that each contain three axes information. The 
device is connected to the server wirelessly using the COM8 port. 
Afterwards, the six-axis data produced in real-time were colored 
and visualized as in Figure 2. 

Each color represents different axis information regarding 
gyroscope and acceleration. After all the data were visualized and 
examined, the vector data containing the axis information was 
transferred wirelessly to the server via the Bluetooth module. 
The operating frequency of the MPU-6050 sensor is determined 
as 100 Hz. In the created mechanism, the MPU-6050 sensor was 
positioned on the participants' fingers. Data collection was 
conducted with three different participants, whose identities and 
demographic information were kept confidential to ensure blind 
data conditions. Each participant was tested for approximately 
fifteen seconds, during which uninterrupted real-time data was 
recorded and transmitted to the server. Tremor measurements 
were taken and recorded while the participants were in a resting 
and sitting position. The data was generated at varying 
intensities within the experimental environment, allowing the 
models to be trained and evaluated for estimating different 
tremor levels. 

Processing of data 

Data obtained from sensors are often subject to varying amounts 
of noise or the presence of outliers, which can interfere with 
accurate analysis. This issue is particularly pronounced when 
working with high-sensitivity sensors, as their increased 
precision often comes at the cost of heightened susceptibility to 
noise. While high-sensitivity sensors are advantageous for 
capturing detailed and subtle variations in signal data, the 
presence of unwanted noise can complicate the data analysis 
process, potentially leading to incorrect interpretations and 
erroneous decisions. Numerous noise removal techniques have 
been proposed in the literature [32-34] to address these 
challenges. These methods aim to enhance the quality of the 
signal data by minimizing noise and outliers, thereby improving 
the reliability and accuracy of subsequent analyses. 

In the present study, a high-sensitivity sensor was employed to 
collect time series data. Consequently, the need to eliminate noise 
from the raw data emerged as an essential step in the 
preprocessing pipeline. A moving average filter (MAF), a widely 
used noise removal technique in signal processing, was applied 
to achieve this. It operates by smoothing the signal data, reducing 
the effects of random noise while preserving the essential trends 
and patterns within the signal.  

 

 

The calculation of the MAF is mathematically expressed in 
Equation (1). In this equation, the ith filter output is denoted by 
MAF[i], the i+jth filter input is denoted by x[i], the frame value or 
number of points is denoted by WS. 

During the computation process, the filter assigns the arithmetic 
mean of the preceding data points, determined by the specified 
frame size, to the current filter output (ith). By calculating the 
average over a defined window of data points, this method 
effectively reduces the impact of noise and outliers in the signal, 
producing a smoother and cleaner representation of the original 
data. In this study, a real-time filter with a frame value of three 
(WS=3) was applied to each of the time series signals obtained 
from the sensors. The application of this filter successfully 
smoothed the signals, ensuring that unwanted noise and discrete 
irregularities were eliminated. 

To illustrate the effectiveness of the study, the process was 
applied to the z-axis gyroscope data generated by the sensor. The 
results are presented in Figure 3, where the red signal represents 
the unfiltered z-axis data, clearly demonstrating the presence of 
significant noise. After applying the filter, the processed signal is 
displayed in blue, showing a much smoother profile. It is evident 
from the figure that the blue signal is constrained within a smaller 
range compared to the noisy red signal, indicating that the noise 
has been effectively removed. This preprocessing step 
significantly enhances the quality of the time series data, making 
it more suitable for downstream machine learning tasks. 

In addition to noise reduction, further preprocessing steps were 
applied to the time series data to prepare it for multivariate 
machine learning models. Since the collected data consists of 
variables with varying numerical value ranges, these differences 
could potentially introduce biases during the training of machine 
learning algorithms. To address this, the minimum-maximum 
normalization method was employed to scale all variables to a 
common range between zero and one. This normalization 
technique ensures that features with larger numerical ranges do 
not disproportionately influence the learning process of the 
model, thereby improving the performance and stability of the 
machine learning algorithms. By standardizing the numerical 
ranges of the variables, the time series data was effectively 
transformed into a format that is both uniform and compatible 
with the requirements of the applied machine learning models. 

𝑀𝐴𝐹[𝑖] =
1

𝑊𝑆
∑ 𝑥[𝑖 + 𝑗]

𝑊𝑆−1

𝑗=0

 
(1) 
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Figure 3. Filtering gyroscope data on the Z-axis. 

The preprocessing steps of noise removal and normalization 
through the minimum-maximum method played a critical role in 
ensuring the quality and usability of the sensor data. These steps 
not only improved the clarity of the signals by removing 
unwanted noise but also standardized the data for optimal 
performance in multivariate machine learning applications. 
Together, these methods provide a robust framework for 
preparing high-sensitivity sensor data for predictive modeling 
and analysis. 

2.3. Time series forecasting model 

In this study, machine learning models were employed to predict 
tremor levels from multivariate time series data, which represent 
complex temporal patterns of tremor dynamics. By conducting 
experiments with a variety of models, the most effective 
approach for achieving accurate predictions was identified. 
Considering that the system is intended to operate in real-time 
environments, an artificial neural network (ANN) architecture 
with a minimal number of parameters and layers was selected to 
optimize computational efficiency while maintaining high 
prediction accuracy. 

As depicted in Figure 4, the selected ANN model consists of two 
hidden layers, each designed to capture the underlying 
relationships in the input data efficiently. Specifically, the first 
hidden layer comprises 64 neurons, while the second hidden 
layer contains 32 neurons. These layers are in addition to the 
input and output layers, which facilitate the mapping of the input 
features to the predicted tremor levels. To ensure computational 
efficiency and robust training, the Rectified Linear Unit (ReLU) 
activation function was utilized in the hidden layers. This choice 
of activation function not only accelerates the convergence of the 
model but also helps to mitigate the vanishing gradient problem 
that can occur during backpropagation. The error calculation for 
model training was performed using the mean squared error, 
which is a standard metric for evaluating the deviation between 
predicted and actual values in regression-based tasks. 

The training process of the ANN model was further optimized 
using the Adam optimizer, a state-of-the-art optimization 
algorithm known for its adaptability and efficiency in handling 
sparse gradients. Adam combines the advantages of both 
momentum-based and adaptive learning rate optimization 
techniques, making it well-suited for complex and high-
dimensional datasets like the multivariate time series data used 
in this study. Since the task involves multi-class classification 
predicting discrete tremor levels the output layer employs a 
softmax activation function, which converts the raw model 
outputs into probability distributions across the classes. The 

predicted class is determined by selecting the class with the 
highest probability. 

For comparative analysis, two additional models were developed 
using Support Vector Machines (SVMs). These models were 
designed with different kernel functions to evaluate their 
performance on the tremor prediction task. The first SVM 
employed a linear kernel, which assumes that the data can be 
separated using a hyperplane in the input feature space. In 
contrast, the second SVM used a non-linear kernel, specifically 
the radial basis function (RBF) kernel, which can capture more 
complex relationships by mapping the input data to a higher-
dimensional space. The use of the RBF kernel enables the non-
linear SVM to effectively handle data that are not linearly 
separable, providing a more flexible model for the classification 
task. 

The comparison between these models highlights the strengths 
and weaknesses of each approach in terms of accuracy, 
computational efficiency, and real-time applicability. The ANN 
model, with its lightweight architecture and efficient training 
process, demonstrated superior performance for real-time 
applications, making it the preferred choice for this study. The 
inclusion of SVM models, however, provides a valuable 
benchmark and demonstrates the potential of alternative 
machine learning methods in tremor prediction. 

 

Figure 4. Applied artificial neural network model. 

3. Experiments and Results 

In the experiments, multivariate time series data containing 
gyroscope and acceleration information obtained after pre-
processing were created and level estimation was made with 
artificial neural networks and support vector machines. Data on 
all axes (x, y, z) generated from the gyroscope and acceleration 
sensors were evaluated. To determine the tremor level, training 
and testing were performed with time series data recorded at 
different intensities. In each session, tremor data obtained from 
the participants over a certain period of time were evaluated. 
Tremor data obtained in the resting position in the experimental 
environment were evaluated with different models and 
compared. A total of 225 tremor data of equal numbers belonging 
to three levels: normal, mild tremor and severe tremor were 
used. Instead of testing on a randomly selected data set, k-fold 
cross validation was applied with a k value of five. 

In the ANN model, 800 epochs of training were performed for 
each layer. Comparison of linear (L) and non-linear (NL) support 
vector machines (SVM) and ANN models according to accuracy 
metric is given in Table 1.  
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Table 1. Performance comparison of the models. 
 Model 

 SVM (L) SVM (NL) ANN 
1st Layer 93.3 97.78 97.78 
2nd Layer 95.56 95.56 97.78 
3rd Layer 82.22 91.11 95.56 
4th Layer 80.0 95.56 95.56 
5th Layer 82.22 88.89 93.33 
Avg. Accuracy 86.67 93.78 96.0 

Linear SVM with radial basis function showed approximately 7% 
lower performance in terms of accuracy than non-linear SVM. 
Additionally, the created ANN model performed better than both 
SVM models. 

 

Figure 5. Training and validation loss curve of the ANN model. 

 

Figure 6. Training and validation accuracy curve of the ANN 
model. 

The training and validation loss curves are presented in Figure 5 
and Figure 6 that exhibit a consistent downward trend over the 
course of 800 epochs, indicating effective convergence of the ANN 
model. The relatively small gap between training and validation 
losses throughout the training process suggests a well-
generalized model with minimal overfitting. This observation is 
consistent with the high average validation accuracy of 96% 
obtained across the five folds. 

Fluctuations observed in the validation loss are attributed to the 
inherent difficulty in distinguishing between adjacent tremor 
classes, particularly the mild tremor class. This is corroborated 
by the confusion matrix results, which indicate that most 
classification errors occurred in differentiating mild tremor from 

the normal and severe tremor classes. The asymptotic behavior 
near 1.0 indicates that the model achieved a high level of 
classification performance over time. The stability of both loss 
and accuracy curves across epochs supports the robustness of the 
training process under the five-fold cross-validation protocol. 
This further reinforces the reliability of the ANN model in the 
context of multivariate time series classification involving 
gyroscope and accelerometer signals for tremor level estimation. 

The confusion matrix of the 5th layer of the ANN model with the 
worst accuracy value is given in Figure 7. While there is no error 
in the tremor class, it is seen that one sample from the normal 
class and two samples from the mild tremor class were classified 
incorrectly. In all the experiments, it was observed that machine 
learning models made mistakes mostly in detecting mild tremor.   

Table 2. Performance metrics by classes. 

 Metric 

 Precision Recall F1  

Tremor 0.80 1.00 0.89 

Mild Tremor 1.00 0.88 0.94 

Normal 1.00 0.94 0.97 

Macro Average 0.93 0.94 0.93 

Table 2 shows the performance of the classification model across 
the three groups: Tremor, Mild Tremor, and Normal. It breaks 
down Precision, Recall, and F1-score for each class, giving us a 
clearer picture of how well the model distinguishes between 
them. For the Tremor class, the model achieved a Precision of 
0.80. This means that when the model predicted Tremor, it was 
correct 80% of the time. Even more impressively, the Recall was 
perfect at 1.00, the model identified every actual Tremor case 
without missing any. This strong combination leads to an F1-
score of 0.89, which nicely balances these two metrics. The Mild 
Tremor category showed the highest Precision at 1.00, indicating 
that all predicted Mild Tremor cases were indeed correct. 
However, the Recall was a bit lower at 0.88, suggesting the model 
missed some Mild Tremor cases and labeled them as something 
else. The F1-score of 0.94 still reflects very strong overall 
performance here. For the Normal group, the model performed 
excellently as well, with both Precision and Recall above 0.94. 
This resulted in an F1-score of 0.97, showing the model’s ability 
to classify normal subjects nearly perfectly. These results suggest 
that the model is reliable across all three categories. It’s 
particularly good at precisely identifying Mild Tremor and 
Normal subjects, and it’s highly sensitive in detecting Tremor 
cases. This balance between metrics makes it well-suited for real-
world use where correctly distinguishing between these motor 
conditions is crucial.  

The proposed system has the advantage of real-time decision-
making, unlike most of the studies carried out for level 
determination. In a study similar to this study, prediction was 
made using linear regression to determine the tremor level [35]. 
The value obtained as a result of the regression is expressed as a 
numerical value between one and seven. In this study, classes 
representing certain levels were used instead of expressing the 
output with a numerical value. In addition, since this study is a 
real-time IoT system, it is aimed to work with high performance 
in all experiments. 
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Figure 7. Confusion Matrix of the ANN for Tremor Levels. 

Unlike the related study, the data was expressed and evaluated as 
a multivariate time series after pre-processing, without going 
through the feature extraction process. In another study [36], 
employed a mobile phone accelerometer to measure the 
acceleration of tremors in Parkinson’s disease patients. In 
contrast, our implementation has its own designed IoT device 
specifically designed for tremor measurement. They achieved 
95% accuracy. Building on recent advances, similar real-time 
monitoring approaches have been demonstrated by [37], who 
developed a wrist-worn wearable system leveraging deep 
learning for continuous tremor detection in naturalistic settings. 
In another study [38], they proposed a magnetic sensor-based 
system for real-time tremor tracking aimed at enabling 
immediate clinical feedback. These studies highlight the critical 
role of real-time, wearable technologies in Parkinson’s disease 
management. Our proposed system aligns with and advances this 
trend by offering a highly customizable, clinical-grade IoT 
solution capable of accurate and immediate tremor classification, 
thus enhancing the potential for practical application in 
healthcare and patient monitoring. 

4. Result and discussion 

In this study, tremor data was collected using IoT devices 
specifically designed to measure and monitor hand tremors in 
patients with Parkinson’s disease. These devices enabled the 
wireless transmission of data to a central server, where the data 
was processed in real time using advanced computational 
methods. A prototype system was developed to predict tremor 
severity levels by employing machine learning algorithms. The 
proposed system aims to provide specialists with analyzed and 
interpretable data to assist in the diagnosis and treatment 
processes. 

In order to create the dataset for this study, multivariate time 
series data was generated by simulating various tremor levels 
with differing intensity values. Tremor data was recorded under 
controlled conditions, specifically in resting and sitting positions, 
to ensure consistency and accuracy in the measurements. Using 
these data, multiple machine learning models were developed 
and evaluated for their performance in detecting tremor severity 
levels. Among the models evaluated, artificial neural networks 
(ANNs) achieved the highest accuracy rate of 96%, making them 
the most effective approach for this task. 

The results of this study highlight the potential of IoT-based 
systems in healthcare applications, particularly for monitoring 
and managing neurodegenerative diseases such as Parkinson’s 
disease. The integration of machine learning methods with IoT 
technology provides a powerful tool for analyzing tremor 
patterns and predicting severity levels in real time. By offering 
specialists a detailed interpretation of tremor data, this system 
has the potential to serve as a valuable aid in clinical decision-
making, improving both diagnosis and treatment outcomes. 

Looking ahead, the study proposes the development of deep 
learning models as a natural progression to the machine 
learning-supported signal processing model currently in use. 
Deep learning approaches are expected to provide more robust 
and reliable predictions due to their ability to automatically 
extract complex features from raw data. By identifying patterns 
and nuances in tremor signals, these models could significantly 
enhance the understanding of tremor dynamics in Parkinson’s 
patients, providing the medical community with more 
comprehensive insights. 

Future research directions include expanding the dataset by 
increasing the number of participants and obtaining the 
necessary ethical permissions to test the system in clinical 
settings. A larger and more diverse dataset will enable more 
extensive validation of the system, leading to improved 
performance and reliability in real-world scenarios. With an 
increase in data volume, the predictive capabilities of the system 
are expected to improve, paving the way for its integration into 
clinical practice. Ultimately, the goal is to establish a reliable, 
scalable, and clinically validated tool that can be widely used to 
support the medical community in diagnosing and managing 
Parkinson’s disease. 
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