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A BST R AC T  

Rising energy consumption and inefficiencies in large-scale facilities, such as university campuses, 

present critical financial and environmental challenges. Traditional energy management systems 

rely on static strategies, failing to adapt to real-time variations in demand, which leads to 

unnecessary energy waste and increased operational costs. This study introduces an AI-driven 

integrated energy management framework that utilizes real-time data from IoT sensors to optimize 

energy consumption across key campus systems, such as lighting, ventilation, heating, air 

conditioning, renewable energy sources, information and communication technology infrastructure, 

and building energy management systems. By using artificial intelligence methods, the proposed 

system improves energy use across key campus operations such as heating, cooling, lighting, and 

communication systems. It analyzes real-time data from sensors to make smart decisions and adjust 

energy usage without affecting user comfort. Simulation results show that this approach can reduce 

total energy consumption by up to 59.125% on a mid-sized campus. This highlights the system’s 

strong potential to lower energy costs and support sustainability goals through smarter, data-driven 

energy management. However, the system's effectiveness depends on high-quality sensor data, 

adaptive AI algorithms, and robust cybersecurity measures to protect the IoT-based infrastructure. 

The novelty of this work lies in its unified framework that integrates multiple AI models and 

optimization methods across all major campus subsystems, rather than addressing a single 

application domain as seen in most prior studies. The results highlight the transformative potential 

of Artificial Intelligence in sustainable energy management, demonstrating that smart campus 

implementations can significantly reduce costs, enhance efficiency, and set a benchmark for 

autonomous AI-driven energy optimization in facilities. 
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1. Introduction 

Recent technological advancements, particularly in sustainability and efficiency, have significantly 

increased the importance of smart campus (SC) applications. Educational institutions are seeking eco-

friendlier, cost-effective, and user-centric solutions to address the rising energy consumption within 

their campuses. In this context, energy management in campuses goes beyond mere cost reduction and 

necessitates a comprehensive approach that integrates user comfort, security, aesthetics, and operational 

efficiency. Systems supported by smart sensors and data collection technologies have become essential 

components in creating efficient, dynamic, and sustainable campus environments. 

Energy management in large-scale campuses present a complex and multidimensional challenge, 

making manual control highly impractical. A lack of dynamic and intelligent oversight of energy-

intensive systems such as building energy management systems (BEMS), Heating, Ventilation, and Air 

Conditioning (HVAC) systems, renewable energy systems (RES), Information and Communication 

Technology (ICT), lighting system (LS) and water management often results in unnecessary energy 

waste and elevated operational costs. At the same time, maintaining user comfort while optimizing 

energy use is essential for achieving a balanced and sustainable system. However, many existing 

solutions rely on static management strategies that fail to adapt to real-time changes, leading to 

significant inefficiencies. Traditional energy management approaches primarily focus on reducing 

energy consumption through single-dimensional solutions while overlooking critical factors such as user 

comfort, security, and system adaptability. The increasing energy costs and environmental concerns 

further emphasize the need for a more integrated and holistic approach. The absence of real-time data 

processing and quick decision-making capabilities further limits the responsiveness of current systems, 

highlighting the necessity for advanced, AI-driven energy management approaches. 

This study aims to develop an AI-based integrated energy management system to optimize energy 

consumption and enhance sustainability in SCs Bajwa et al. (2024). Real-time data collected from 

various sensors, including temperature, humidity, light, and motion, are analyzed using advanced AI 

algorithms such as Artificial Neural Network (ANN), Reinforcement Learning (RL), and Convolutional 

Neural Network (CNN). These AI models dynamically optimize key energy-consuming systems 

including HVAC, lighting, and water management, ensuring a more efficient and sustainable campus 

environment. The model is simulated for a mid-sized campus and the potential energy savings are 

quantified. The main contribution of this study lies in the development of a unified AI-driven energy 

management framework that integrates multiple machine learning architectures (Multi-Layer Perceptron 

(MLP), CNN, RNN, RL) and optimization techniques (Genetic Algorithm (GA), Particle Swarm 

Optimization (PSO)) to control and optimize different energy-consuming systems within a smart 

campus. Unlike prior works that typically focus on individual components such as HVAC or lighting, 

this study proposes a holistic, real-time, sensor-integrated system capable of dynamic learning and 

control. The framework is validated through simulation on a mid-sized campus model, with quantified 

results in terms of energy savings and financial impact. 

This study seeks to answer the following research question: Can a unified AI-driven energy management 

framework integrating multiple machine learning architectures and optimization techniques effectively 

optimize energy consumption across diverse campus systems in real-time while maintaining user 

comfort and operational efficiency? The hypothesis guiding this research is that such an integrated AI-

based system will significantly reduce overall campus energy consumption and operational costs 

compared to traditional, single-system-focused methods, without compromising user comfort or system 

security. 
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2. Literature Review 

The integration of SCs with sustainable management models represents a critical area of research, 

emphasizing energy efficiency, digital transformation, and data-driven decision-making. Chen (2024) 

examined optimization strategies for shared energy storage operators in multi-microgrid systems, 

exploring collaborative energy management approaches. Similarly, Bayramov et al. (2021) assessed 

household electricity generation from the perspective of energy independence, highlighting the social 

significance of alternative energy sources. Ma, G (2023) focused on the integration of digital 

technologies on smart campuses, analysing the impact of big data and AI-driven methodologies on 

campus management. 

Building on these perspectives, Li (2023) explored the design and optimization of AI-based SC 

frameworks, emphasizing their potential to enhance campus experiences, improve efficiency, and 

promote sustainable practices. This research supports evidence-based decision-making in shaping future 

SC initiatives. In a related study, Nóbrega et al. (2022) examined the challenges and opportunities in 

education within the framework of sustainable development goals, demonstrating how SC models can 

be customized to meet the diverse needs of stakeholders and foster new educational paradigms. 

Valks et al. (2021) highlighted the role of SC tools in optimizing space utilization and enhancing energy 

efficiency for students and staff. Their study underscores the impact of these tools on organizational 

decision-making processes and their broader implications for campus sustainability. 

AI-driven management systems in SCs have demonstrated significant contributions across various 

domains, including energy efficiency, security, user experience, and infrastructure management. 

Existing studies in the literature primarily focus on reducing energy consumption, enabling dynamic 

system management, and implementing data-driven optimization processes. For instance, Wang and 

Zhang (2018) developed strategies to optimize energy management in real-time markets by employing 

RL techniques for energy storage arbitrage. Similarly, Kim and Lim (2018) investigated RL based 

energy management algorithms in smart energy buildings, emphasizing energy consumption reduction 

and supply-demand balance. 

The application of AI and ML algorithms in energy management is becoming increasingly widespread. 

For example, Islam (2024) explored P2P energy trading models and analyzed their potential impact on 

energy optimization. In another study, Kılıç (2024) proposed an LSTM-based intraday electricity price 

forecasting model for the West Denmark power grid, addressing the optimization of energy trading 

strategies. Additionally, Hu et al. (2023) introduced an innovative pricing-game strategy for community 

grids driven by virtual prosumers, enhancing economic efficiency in P2P energy markets. 

Building upon this foundation, several recent studies have offered comprehensive overviews of how 

artificial intelligence supports energy sustainability and optimization. (Hou & Wang, 2023) conducted 

a large-scale bibliometric analysis of AI and big data applications in the energy sector, identifying key 

research trends, influential institutions, and prevalent technologies such as deep learning (DL) and RL 

in smart grids and forecasting systems. Szczepaniuk (2022) expanded on this by reviewing the technical 

deployment of AI algorithms—including machine learning, metaheuristic optimization, and fuzzy 

logic—in real-world energy scenarios such as load forecasting, fault detection, and grid cybersecurity. 

In parallel, Adewoyin et al. (2025) examined the broader role of AI in driving sustainable energy 

development, focusing on its contributions to renewable energy forecasting, peer-to-peer energy trading, 

and carbon mitigation. These studies collectively underscore the growing relevance of AI in enhancing 

energy system intelligence, reliability, and sustainability—further validating the strategic integration of 

AI-driven tools in SC environments. 
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While the reviewed literature demonstrates the effective application of various AI techniques to 

individual components within smart campuses, such as HVAC or RES, there is a notable lack of 

comprehensive frameworks that integrate multiple AI architectures for coordinated, campus-wide 

energy management. Most prior works focus on isolated subsystems and rely on static or offline 

optimization methods, limiting adaptability to real-time campus dynamics. Furthermore, many studies 

do not fully address the multidimensional nature of energy management, often overlooking critical 

factors like user comfort, security, and operational sustainability in their models. Financial impact 

assessments are also inconsistently reported, creating a gap between theoretical development and 

practical applicability. 

This study aims to bridge these gaps by proposing a unified AI-driven energy management framework 

that integrates diverse machine learning models (MLP, CNN, RNN, RL) and optimization techniques 

(GA, PSO) to dynamically control multiple energy-consuming systems within a smart campus. The 

approach emphasizes real-time sensor integration and adaptive control to enhance both efficiency and 

user comfort. By simulating the framework on a mid-sized campus and quantifying energy savings 

alongside financial benefits, this work advances beyond previous studies by providing a holistic, 

practical, and validated solution for sustainable campus energy management. 

Recent advancements in AI have introduced transformer-based models as powerful alternatives for 

energy forecasting and management. For example, Sreekumar et al. (2024) proposed a transformer-

based framework for sustainable energy consumption forecasting, demonstrating its potential in 

capturing complex consumption patterns and supporting socioeconomic decision-making. Similarly, 

L’Heureux et al. (2022) applied a transformer-based model for electrical load forecasting, achieving 

higher accuracy compared to traditional neural networks by leveraging the transformer’s ability to model 

long-range temporal dependencies. While these models show promising results, their high 

computational requirements and complexity may pose challenges for real-time deployment in embedded 

smart campus environments. Therefore, in this study, simpler yet efficient models such as MLP, CNN, 

and RNN are adopted, with future work planned to explore the integration of transformer-based 

approaches as hardware and data availability improve. 

In summary, research on SC management encompasses various aspects, including energy efficiency, 

data security, user experience, and sustainable management strategies. However, existing solutions often 

prioritize energy consumption reduction while neglecting other critical factors in a holistic manner. As 

a result, this study aims to fulfil this gap by developing an AI-based energy management system that 

ensures multidimensional optimization, integrating energy efficiency with user comfort, security, and 

operational sustainability in SCs. A variety of artificial intelligence techniques have been applied across 

different domains of SC energy management, as summarized in Table 1, which provides an overview 

of commonly used AI methods, their respective applications, and reported energy savings in relevant 

studies. 
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Table 1. Overview of AI methods preferred in SC energy management 

System Used AI Technique Yielded Saving Reference Studies 

HVAC 
RNN, MFPC, Genetic 

Algorithm, MPC 
3%-60% 

(Klaučo et al., 2014), 

 (Lee & Tsai,2020),  

(Purdon et al.,2013) 

RES FNN, SVM, DQN 25%-50% 
(Mayer et al.,2016),  

(Yao & Steemers,2005) 

BEMS RL, MLP, DNN 5.7%-42.6% 

(Salakij et al.,2016),  

(Yuce & Rezgui,2017),  

(Li at al.,2021) 

LS RNN, CNN, MACS 20%-70% 
(Kolokotsa,2003),  

(Byun et al.,2013) 

ICT CNN, SON, LSTM 50%-65% 
(Trinh et al.,2018), 

(Abbas & Arif, 2006) 

3. Research Methodology 

This section outlines the methodological framework employed in developing the AI-driven energy 

management system for SCs. The approach integrates various ML techniques, optimization algorithms, 

and real-time data processing to enhance energy efficiency, user comfort, and system adaptability. 

3.1 Data Collection and Preprocessing 

The proposed system relies on real-time data collected from multiple IoT sensors, including temperature, 

humidity, light, motion, and CO₂ sensors as shown in Figure 1. These sensors provide continuous data 

streams that are used to dynamically monitor and optimize energy consumption. 

To ensure the accuracy and reliability of the data collected, the following preprocessing steps are 

applied: 

• Noise Removal: Data filtering techniques are used to eliminate sensor noise and outliers. 

• Normalization: Data values are scaled using Z-score standardization or min-max 

normalization. 

• Feature Extraction: PCA is employed to reduce dimensionality and extract relevant features 

for model training. 

 

Figure 1: AI-driven smart campus energy management system (Baduge et al.,2022) 
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ML architectures are utilized to model and predict energy consumption, optimize system control, and 

adapt dynamically to changing campus conditions. Consequently, the case study prioritizes the AI 

technology most commonly used in each specific application area, rather than the one with the greatest 

theoretical energy-saving potential. The findings of the analysis are presented in Figure 2. 

 

Figure 2: Artificial intelligence techniques used for learning, optimization, and control (Lee et al., 2022) 

3.2 Machine Learning Methods 

MLP and FNN are the most frequently used deep learning technologies in of time-series data. The neural 

structure is depicted in Figure 3. The neural structure of MLP/FNN can be expressed as in Eq. (1) (Lee 

et al., 2022; Jiang et al., 2020): 

𝑦 = ( 𝑊 ∙  𝑥)  +  𝑏  (1) 

where 𝑦 represents the output data of the MLP/FNN, 𝑥 is the input data, and 𝑏 denotes the bias and 𝑊 

is the weighing function that is pre-trained using Eq. (2) (Jiang et al., 2020, Lee et al., 2022): 

𝑊𝑖  →  𝑊𝑖  +  ∆𝑊𝑖 (2) 

where ∆𝑊𝑖 =  𝜂(𝑡𝑖 − 𝑦𝑖)𝑥𝑖, 𝑊𝑖 is the current weight, ∆𝑊𝑖 is the change (or update) that will be added 

to the current weight during learning, 𝑡 is the target value, and η is the learning rate. 
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Figure 3: Neural structure of multilayer perceptron (Lee et al., 2022) 

MSE sometimes referred to as the cost function, is what MLP/FNN training aims to minimize, as 

explained in Eq. (3): 

𝑀𝑆𝐸 =  
1

2
 ∑ (𝑦𝑘  − 𝑡𝑘)2𝑛

𝑘=1
 (3)  

where 𝑦𝑘 is the predicted output and 𝑡𝑘 is the true target value for the kth output node. 

Additionally, the cost function can be defined using performance metrics such as the R2 score, mean 

squared error (MSE) or mean absolute percentage error (MAPE). The forecast generated serves as the 

final output for control purposes. Supervised learning, combined with a MLP or feedforward neural 

network (FNN), can be used to develop operational models for energy conservation in stable and well-

defined application domains such as factories, HVAC systems, RES, or BEMS.  

RNNs, whose neural structure is described in Figure 4, can improve prediction accuracy when used in 

dynamic or unstable environments. The hyperbolic tangent activation function (tanh), which is defined 

in Eq. (4), plays a key role in enhancing the performance of RNNs (Lee et al., 2022). 

ℎ𝑡+1  = (𝑊1 ∙ ℎ𝑡)  + (𝑊2 ∙ 𝑥)  +  𝑏 (4) 

where ℎ𝑡+1: The hidden state at the next time step t+1, which stores memory of past inputs. 

ℎ𝑡: The hidden state at the current time step t, representing the network's memory. 

𝑥: The input vector at the current time step. 

𝑊1: Weight matrix executed to the previous hidden state. 

𝑊2: Weight matrix executed to the current input. 

𝑏: Bias term (adds flexibility to the transformation). 

Both the current x value and the x value from the previous time step affect the RNN neural output y. Eq. 

(5) can be used to describe this (Lee et al., 2022): 

𝑦 = (𝑊 ∙  𝑥 ∙  ℎ 𝑡)  +  𝑏 (5) 

𝑦: The output of the RNN at the current time step. 
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𝑥 ∙  ℎ 𝑡: Represents a combined interaction between the current input xxx and the memory ℎ 𝑡 

𝑊: Weight matrix for producing the output from input and memory. 

𝑏: Bias term. 

 

Figure 4: Recurrent neural activations (Analytics Vidhya, 2022) 

Recurrent neural networks (RNNs) utilize both the chronological order and temporal dependencies 

within data to make accurate predictions, as shown in Equations (4) and (5). These models are especially 

effective for handling complex and fluctuating time-series data, such as weather patterns or ICT network 

performance. To further enhance prediction accuracy, advanced variants of RNNs—such as gated 

recurrent units (GRU) and long short-term memory (LSTM) networks—have been introduced. GRUs 

offer a more streamlined architecture than LSTMs, enabling faster computation. Although GRUs are 

more sophisticated than standard RNNs, the original RNN architecture has proven sufficient for 

managing energy consumption tasks. 

In energy efficiency applications, the goal is not necessarily to achieve the highest prediction accuracy, 

but to develop models that can generalize across diverse operational scenarios. For this reason, RNNs 

were selected to model energy-saving systems. 

Additionally, occupancy detection is a critical component in optimizing energy usage. Alongside time-

series data from infrared sensors, occupancy systems may utilize thermal imagery or video streams—

such as those used in LS control. CNNs are well-suited for processing this type of image or video data. 

The operating principle of a CNN is illustrated in Figure 5.   

  

Figure 5: Convolutional neural network in image capture (Hu et al., 2019) 

As depicted in Figure 5, the CNN begins with an initial layer composed of multiple feature extraction 

paths operating in parallel. Through convolution operations, it identifies critical patterns from the input 

data, which are then passed to a down sampling stage. Although the resulting feature maps are reduced 

in dimension, they retain essential characteristics due to shared weights and biases across the network. 

At this stage, the Rectified Linear Unit (ReLU) activation function is executed to initiate non-linearity, 

thereby enhancing the model’s ability to learn complex patterns without compromising the integrity of 
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the convolution process. Following ReLU, the data is fed into the pooling layer, which contributes to 

dimensionality reduction and directly supports the model’s final decision-making process. 

MLP, RNN, and CNN are three supervised learning methods, each suited for different types of data. 

MLP is ideal for analysing stable time-series data, while RNN excels in handling dynamic weather 

patterns or unpredictable communication signals. CNN, on the other hand, is particularly effective for 

processing visual data and content related to human perception, such as image signal analysis. 

When working with outputs from a predefined numerical model, MLP or FNN proves to be the most 

efficient. However, in energy systems lacking a defined structure—where control is achieved through 

trial and error— RL techniques like DQN and Q-networking are the most appropriate. The operational 

framework of an agent performing trial-and-error-based control is depicted in Figure 6.  

Figure 6 illustrates the operational framework of an agent-based trial-and-error control mechanism using 

Deep Q-Networks (DQN). Unlike supervised learning models such as MLP or FNN, which focus on 

predicting system states based on historical data, DQN is designed to learn optimal control policies via 

interaction with the environment. The agent observes the current system state, takes an action (e.g., 

adjusting HVAC settings), and receives feedback in the terms of rewards (such as energy savings or 

comfort improvements). Over time, this RL approach enables the agent to develop control strategies that 

adapt to dynamic and uncertain conditions without requiring explicit labeled datasets. This contrasts 

with supervised models that rely on pre-collected data for prediction but do not inherently make control 

decisions. 

 

Figure 6: Mechanism of agent-based trial and error control (Jayakody, 2022) 

Self-Organizing Networks (SON) represent a form of machine learning primarily designed to enable 

autonomous adaptation in communication infrastructures. This intelligent framework aims to streamline 

the rollout, fine-tuning, and fault recovery of mobile radio access systems. In this study, the focus is on 

enhancing the energy efficiency of ICT systems utilizing SON principles. As illustrated in Figure 7, 

SON extends beyond basic learning capabilities to support proactive maintenance and performance 

optimization. 

Fuzzy logic is often integrated into SON to improve processes such as signal handover, coverage 

reliability, and overall network service quality. In this research, SON is classified as an artificial 

intelligence methodology. Due to its ability to self-adapt without requiring labeled datasets, SON aligns 

with unsupervised learning approaches, similar to deep neural networks (DNNs). These systems operate 

without explicit output labels and are capable of autonomously identifying patterns and generating 

operational insights. As shown in Figure 7, SON’s neural structure allows it to dynamically interact with 

system components, thereby enhancing the learning process and enabling deeper adaptive capabilities.. 

Figure 7 depicts the neural structure and adaptive mechanism of a Self-Organizing Network (SON) 

applied to energy efficiency optimization in ICT systems. Unlike supervised learning models that 

require labeled data for training, SON functions as an unsupervised learning approach that 
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autonomously detects patterns and adapts system parameters without explicit supervision. By 

continuously interacting with network components, SON dynamically adjusts configurations such as 

signal handover and coverage settings, improving overall service quality and energy efficiency. This 

proactive and self-adaptive capability enables SON to maintain optimal performance in complex, 

evolving environments, distinguishing it from traditional AI models that rely on static datasets. 

 

Figure 7: Self-organizing network energy efficiency optimization (Lee et al., 2022) 

The choice of machine learning models in this study was guided by a combination of domain-specific 

requirements, data characteristics, and computational constraints. MLP and FNN were selected for 

HVAC and RES subsystems due to their proven efficiency in modelling stable, well-structured time-

series data with relatively low noise and high periodicity—common traits in HVAC scheduling and solar 

energy prediction. These models also ensure fast inference times and lower training complexity, which 

are critical for real-time applications. RNNs, on the other hand, were used in subsystems such as BEMS 

and ICT where temporal dependencies are more complex, and inputs are subject to fluctuation or non-

stationarity (e.g., occupancy, weather data, network traffic). Although more sophisticated models like 

transformers or GRU/LSTM could be used, RNN was preferred due to its lower computational burden 

and sufficient accuracy for the problem scale. CNNs were used for LS systems where image and motion 

data are primary inputs, leveraging their superior performance in spatial pattern recognition. The model-

subsystem matching was thus informed by the type and behaviour of the input data, desired response 

time, and the need for system interpretability and generalizability. 

For short-term forecasts, GA or PSO can be used to increase accuracy.  Prediction performance is much 

enhanced when an ANN is used alone.  A larger training dataset helps ANN achieve even higher 

accuracy for long-term forecasts longer than a year.  These results imply that prediction accuracy 

increases with the length of the data gathering period.  Thus, long-term data collecting should be a part 

of the most successful AI optimization strategy. 

However, when extensive datasets are not available, GA or PSO can serve as viable alternatives. A 

comprehensive analysis indicates that PSO is more effective for optimizing multiple devices, whereas 

GA is better suited for controlling a single device. Additionally, for complex optimization problems, a 

hybrid multi-objective GA may also be considered. 

4. Theory and Calculation 

This study presents a comprehensive approach to developing AI-driven energy management systems in 

SCs. The proposed model integrates decision-making, anaylsis, and real-time data collection processes 

to optimize energy consumption and contribute to sustainability goals. While existing literature 

primarily focuses on energy efficiency or specific system components, this study provides a holistic 

framework that incorporates user comfort, security, and operational efficiency. A notable strength of the 

proposed system is its capacity to autonomously manage energy through the processing of data from 
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IoT sensors using advanced AI algorithms. This enables dynamic adaptation to changing campus 

conditions. Figure 8 illustrates the distribution of energy consumption and savings following the 

implementation of the AI-based optimization model. It includes detailed calculations across different 

energy-consuming systems, corresponding savings percentages, and the overall cost reduction achieved. 

 

Figure 8: Theoretical energy savings in a mid-sized smart campus after AI-based optimization 

4.1 Energy Consumption and Savings Per System 

Smart campuses exhibit varying energy consumption across different systems. This section examines 

the key components of campus energy consumption and the impact of AI-based optimizations on energy 

savings in each system. 

The campus energy consumption is divided into five major systems which collectively account for 100% 

of the campus's total energy use (Advanced Energy Management Company, 2024), (Australian 

Government Department of the Environment and Energy, 2024): 

1. HVAC: 40% of total energy consumption. 

2. RES: 10%. 

3. BEMS: 15%. 

4. LS: 20%. 

5. ICT: 15%. 

After implementing AI-based optimizations, the energy savings for each system are as follows: 

1. HVAC: 60% savings. 

2. RES: 50% savings. 

3. BEMS: 42.5% savings. 

4. LS: 70% savings. 

5. ICT: 65% savings. 

Table 2 presents a comprehensive overview of various AI technologies implemented in different smart 

campus systems, detailing the types of data utilized, learning models applied, optimization techniques 

employed, control strategies used, and their overall impact on energy savings. The table categorizes all 

applications such as HVAC, RES, BEMS, LS, and ICT, illustrating how AI-driven approaches enhance 
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efficiency. To ensure clarity, the abbreviations used in the table are defined as follows: MPFC is a 

control strategy that dynamically adjusts system performance based on predictive modelling and 

occupant feedback; FNN is a type of ANN where data flows in one direction without cycles; MLP is a 

class of feedforward neural networks with multiple layers for DL. A summary figure highlighting some 

of the most successful cases of AI applications for energy saving has been included in Appendix A 

(Figure 10). 

Table 2.  Artificial intelligence technologies in smart campus systems 

   AI Technology Effect 

System 
Reference 

Study 
Data Type Learning Optimization Control 

Energy 

Saving 
Other Benefit 

HVAC 
(Purdon et al., 

2013) 
Text Data 

Occupant 

feedback,  

Classifier 

- MFPC 60% - 

RES 
(Mayer et al., 

2016) 

Time series 

data,  

Text data 

White box 

model,  

FNN 

MLP MPC 50% 
Cost saving 

50% 

BEMS 
(Salakij et al., 

2016) 

Time series 

data,  

Text data 

Building model,  

MLP 
 MPC 42.60% 

Prediction 

MAPE  

up to 6.3% 

LS 
(Kolokotsa, 

2003) 
Time series data RNN - Adaptive MPC 70% - 

ICT 
(Sinclair et 

al., 2013) 
Map/image data CNN - 

Handover  

management 
65% - 

 

Figure 9 illustrates the architecture of the AI-driven smart campus energy management system, 

highlighting its multi-layered structure and key components. The system integrates diverse energy 

sources—including power generation, RES, and thermal storage—to enhance overall energy efficiency. 

It manages equipment and facilities such as HVAC, lighting, and auxiliary infrastructure through 

sensors, actuators, and smart control devices. 

 

The framework consists of three primary layers: 

• The control layer, comprising the energy management system, cloud computing, and building 

automation. 

• The communication layer, employing Bluetooth, ZigBee, Wi-Fi, and 5G technologies. 

• The sensing layer, which collects real-time data via smart meters, environmental sensors, RFID, 

cameras, and GPS. 

By leveraging AI and IoT technologies, the system enables demand-side energy management, 

maximizes power generation, and minimizes energy costs, all while maintaining user comfort, safety, 

design efficiency, and optimized maintenance. The integration of these components supports a thorough 

and adaptive energy-saving strategy, contributing to a more sustainable and intelligent campus 

environment (Farzaneh et al., 2021). 
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Figure 9: Technology infrastructure required for energy management in smart campus  

 

5. Results and Discussion 

The calculations were conducted in a smart campus environment, with an estimated area ranging 

between 33,000 and 100,000 square meters, depending on its energy efficiency. Benchmarks for smart 

campuses with advanced energy management systems suggest that energy consumption per square 

meter typically falls within 50 – 150 kWh/m² per year (Almasri et al., 2024), where higher efficiency 

systems—such HVAC, BEMS, RES, LS, and ICT infrastructure contribute to lower energy intensity. 

Given the total energy consumption of 5,000,000 kWh/year, the estimated campus area is calculated as 

in Eq. (6) (Ruliyanta et al. 2022): 

𝐶𝑎𝑚𝑝𝑢𝑠 𝐴𝑟𝑒𝑎 =
𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝑘𝑊ℎ/𝑦𝑒𝑎𝑟) 

𝐸𝑛𝑒𝑟𝑔𝑦 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 (𝑘𝑊ℎ/𝑚²/𝑦𝑒𝑎𝑟)𝑇𝑜𝑡𝑎𝑙 
 (6) 

A high-efficiency campus (consuming approximately 50 kWh/m²/year) corresponds to a larger area of 

100,000 m², as it utilizes advanced energy management systems such as HVAC, BEMS, RES, LS, and 

ICT, which reduce energy consumption per unit area. Conversely, a lower-efficiency campus (with an 

energy intensity of 150 kWh/m²/year) is estimated to be 33,333 m², indicating higher energy use per 

square meter due to less optimized infrastructure and control mechanisms: 

• High efficiency (~50 kWh/m²/year): 100,000 m² 

• Lower efficiency (~150 kWh/m²/year): 33,333 m² 

As presented in Table 3, AI-based optimization significantly improved energy efficiency across various 

systems, leading to a 59.125% overall reduction in total energy consumption. In absolute terms, energy 

consumption dropped from 5,000,000 kWh to 2,043,750 kWh per year, resulting in a significant 
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decrease in operational costs. The financial impact is also notable, with total energy costs decreasing 

from $341,623 to $139,639, leading to annual savings of $201,985 as shown in Table 3 with Unit Energy 

Cost (2.5 ₺/kWh) (Energy Exchange Istanbul (EXIST), 2025). 

These results highlight the transformative potential of AI-driven energy optimization in smart campuses. 

By integrating IoT-based monitoring, real-time data analytics, and adaptive control strategies, the 

system not only reduces energy waste but also enhances sustainability, cost-efficiency, and operational 

resilience. 

Table 3. Simulation results for annual energy consumption of a mid-size campus. 

System 

Energy 

Usage 

Ratio 

Initial Consumption 

(kWh) 

Maximum Potential 

After AI 

optimization (kWh) 

Savings 

(kWh) 

Savings 

(Percentage) 

HVAC 40% 2,000,000 800,000 1,200,000 60% 

RES 10% 500,000 250,000 250,000 50% 

BEMS 15% 750,000 431,250 318,750 42.5% 

LS 20% 1,000,000 300,000 700,000 70% 

ICT 15% 750,000 262,500 487,500 65% 

Total 100% 5,000,000 2,043,750 2,956,250 59.125% 

Unit Energy Cost (₺/kWh) 2.5 2.5 2.5 - 

Total Cost (₺) 12,500,000 5,109,375 7,390,625 - 

Total Cost ($) 341,623 139,639 201,985 - 

After implementing AI-based optimizations, the campus achieved a total energy savings of 59.125%, 

translating into an annual financial saving of ₺7,390,625. The most significant reductions came from 

HVAC and lighting system optimizations, which substantially decreased energy consumption while 

maintaining comfort and functionality. 

Optimizing major energy-consuming systems—HVAC, lighting, ICT, RES, and BEMS—demonstrated 

remarkable energy savings. The findings show that AI-driven strategies led to a 60% reduction in HVAC 

energy usage, making it the most impactful optimization area since HVAC accounts for 40% of total 

energy consumption. Similarly, lighting systems, which make up 20% of total consumption, achieved 

70% savings, underscoring the effectiveness of AI in dynamically managing illumination. ICT and RES 

also showed notable reductions of 65% and 50%, respectively, while BEMS achieved 42.5% savings, 

highlighting the system's efficiency in optimizing building-wide energy usage. 

From a financial standpoint, AI-driven energy management resulted in substantial cost reductions. 

Before optimization, the total annual energy expenditure of the campus was ₺12,500,000. After 

implementing the AI model, this figure dropped to ₺5,109,375, yielding an annual savings of 

₺7,390,625. These results reinforce the economic viability of AI-based energy management solutions, 

demonstrating their potential for both financial and environmental sustainability. 

The total energy savings were calculated based on known savings percentages from the literature for 

each subsystem. These percentages were applied to actual energy usage data from your campus to 

estimate the final savings. The approach represents a best-case scenario. So, the 59.125% total energy 

saving was derived by aggregating estimated savings from individual systems (HVAC, LS, ICT, etc.) 

based on prior published AI implementations, then scaled to the energy profile of our university campus. 

These estimates assume ideal performance of AI models and infrastructure. 
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However, the system’s success heavily depends on sensor data accuracy and the adaptive learning 

capabilities of AI algorithms. Noise or missing values in sensor data could negatively impact model 

performance, leading to suboptimal energy optimization. To mitigate these risks, robust data 

preprocessing and cleaning techniques must be applied to ensure the reliability of real-time energy data. 

Additionally, evaluating the system’s adaptability across different campus environments is crucial for 

scalability and long-term efficiency. 

Security and data privacy are also critical concerns in the widespread adoption of AI-driven energy 

management. The integration of IoT devices introduces potential vulnerabilities to cyberattacks, 

necessitating strong encryption methods and authentication mechanisms to protect sensitive energy 

consumption data. Moreover, the impact of AI-driven adjustments on user experience must be carefully 

assessed. A user-friendly and intuitive system interface is essential to ensure seamless adaptation to 

energy-saving measures without compromising comfort. 

The simulation results highlight the transformative potential of AI-based energy management in 

optimizing energy consumption, reducing costs, and advancing sustainability initiatives within SCs. By 

addressing the limitations of previous research, the proposed system introduces a multidimensional 

management model that balances energy efficiency, user comfort, security, and operational 

sustainability. 

The study also has some limitations. The calculated savings represent the maximum potential of the 

proposed model based on results reported in the literature. However, real-world implementation may 

yield lower performance than this theoretical maximum. To minimize the gap between ideal and 

practical outcomes, further research should focus on enhancing the robustness of AI algorithms, 

developing fault-tolerant mechanisms for handling incomplete data, and strengthening cybersecurity 

measures to improve system resilience. Additionally, broader evaluations across diverse campus 

environments are necessary to validate the system’s adaptability and effectiveness on a larger scale. 

AI-based energy management systems rely heavily on real-time sensor data, making data quality and 

cybersecurity critical. Poor data quality due to faulty or spoofed sensors can lead to incorrect model 

predictions and energy waste. To mitigate this, future implementations should include sensor validation 

mechanisms, redundant sensing, and data fusion techniques to enhance reliability. On the cybersecurity 

side, threats such as data tampering, unauthorized access, and denial-of-service attacks must be 

addressed using secure communication protocols, device authentication, and AI-driven anomaly 

detection systems. The integration of blockchain or edge-based security modules could further protect 

decentralized IoT environments 

6. Conclusions  

Energy management on smart campuses has become a crucial challenge due to rising energy demands, 

sustainability targets, and the increasing complexity of modern infrastructure. Conventional energy 

management approaches often struggle to adapt to dynamic environmental conditions, resulting in 

inefficiencies and excessive energy consumption.  

This study proposes an AI-driven energy management system designed to optimize major energy-

consuming components such as HVAC, lighting, BEMS, RES, and ICT. The system effectively 

manages energy distribution by dynamically manage resources depending on real-time demand, 

optimizes consumption patterns by identifying inefficiencies and adjusting operational schedules, and 

enhances overall efficiency by integrating renewable energy sources into the grid. The model 

successfully predicts energy consumption trends, automates decision-making processes, and ensures 
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optimal utilization of available resources. Comprehensive performance analyses were conducted to 

evaluate the impact of AI-based optimization on energy savings, cost reduction, and carbon footprint 

mitigation. The results demonstrate that the proposed system achieves a total energy savings of 

59.125%, translating into an annual cost reduction of ₺7,390,625 significantly lowering the SC’s carbon 

footprint. The results highlight the critical role of AI-driven solutions in improving energy efficiency 

and operational sustainability in SCs. By offering a comprehensive framework, it serves as a valuable 

reference for future research in this domain. 

Future research can focus on evaluating the adaptability of the proposed system to various campus 

structures and building types while integrating larger datasets and advanced algorithms to enhance 

model accuracy. Additionally, robust encryption techniques should be implemented to strengthen IoT 

security and mitigate cybersecurity risks. To improve user experience, personalized energy management 

scenarios can be developed, ensuring seamless adaptation to user behaviour. To systematically address 

the challenges of AI-driven energy management on smart campuses, future research will follow a phased 

roadmap. In the short term (1–2 years), pilot studies will be conducted on varied campus types to validate 

system performance and collect real-world data. Mid-term goals (3–5 years) include scaling the system 

to larger and more complex infrastructures, improving model robustness, and advancing Technology 

Readiness Levels (TRL) from laboratory validation (TRL 4) toward real environment demonstration 

(TRL 6). Long-term efforts (5+ years) aim for full-scale deployment, including integration with 

advanced cybersecurity measures and the development of personalized energy management tailored to 

occupant behaviour. Scalability metrics will guide optimization for diverse campus contexts. However, 

some limitations remain. The system’s effectiveness depends on the quality and availability of sensor 

data, which may vary across campuses. Computational and integration challenges could affect real-time 

deployment. 
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Appendices 

L i s t  o f  Abb rev ia t io ns  

 
   

AI Artificial Intelligence MFPC Model Free Predictive Control 

ANN Artificial Neural Network ML Machine Learning 

𝒃 Correction Coefficient MLP Multi-Layer Perceptron 

BEMS Building Energy Management System MSE Mean Square Error 

CNN Convolutional Neural Network P2P Peer to Peer 

CO2 Carbon Dioxide PCA Principal Component Analysis 

DL Deep Learning PSO Particle Swarm Optimization 

DNN Deep Neural Network R2 R-squared Value 

DQN Deep Q-learning Network ReLU Rectified Linear Unit 

FNN Feedforward Neural Network RES Renewable Energy System 

GRU Gated Recurrent Unit RL Reinforcement Learning 

GA Genetic Algorithm   RNN Recurrent Neural Network 

𝒉𝒕 Recurrent neuron activation function SC Smart Campus 

HVAC Heating, Ventilation and Air Conditioning SON Self-Organizing Network 

ICT Information & Communication Technology SVM Support Vector Machine 

IoT Internet of Things t Target Value 

kWh Kilowatt Hour 𝑾 Weighting Function 

LS Lighting System 𝒙 Neuron Input 

LSTM Long Short-Term Memory 𝒚 Neuron Output 

MACS Multi-Agent Control System 𝜼 Learning Rate 

MAPE Mean Average Percentage Error   

 

Appendix A: Some of The Most Cases of Successful Application of AI For Energy Saving 

 

 Figure 10: Some cases of successful application of ai for energy saving 


