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ABSTRACT

Rising energy consumption and inefficiencies in large-scale facilities, such as university campuses,
present critical financial and environmental challenges. Traditional energy management systems
rely on static strategies, failing to adapt to real-time variations in demand, which leads to
unnecessary energy waste and increased operational costs. This study introduces an Al-driven
integrated energy management framework that utilizes real-time data from loT sensors to optimize
energy consumption across key campus systems, such as lighting, ventilation, heating, air
conditioning, renewable energy sources, information and communication technology infrastructure,
and building energy management systems. By using artificial intelligence methods, the proposed
system improves energy use across key campus operations such as heating, cooling, lighting, and
communication systems. It analyzes real-time data from sensors to make smart decisions and adjust
energy usage without affecting user comfort. Simulation results show that this approach can reduce
total energy consumption by up to 59.125% on a mid-sized campus. This highlights the system’s
strong potential to lower energy costs and support sustainability goals through smarter, data-driven
energy management. However, the system's effectiveness depends on high-quality sensor data,
adaptive Al algorithms, and robust cybersecurity measures to protect the 10T -based infrastructure.
The novelty of this work lies in its unified framework that integrates multiple Al models and
optimization methods across all major campus subsystems, rather than addressing a single
application domain as seen in most prior studies. The results highlight the transformative potential
of Artificial Intelligence in sustainable energy management, demonstrating that smart campus
implementations can significantly reduce costs, enhance efficiency, and set a benchmark for
autonomous Al-driven energy optimization in facilities.
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1. Introduction

Recent technological advancements, particularly in sustainability and efficiency, have significantly
increased the importance of smart campus (SC) applications. Educational institutions are seeking eco-
friendlier, cost-effective, and user-centric solutions to address the rising energy consumption within
their campuses. In this context, energy management in campuses goes beyond mere cost reduction and
necessitates a comprehensive approach that integrates user comfort, security, aesthetics, and operational
efficiency. Systems supported by smart sensors and data collection technologies have become essential
components in creating efficient, dynamic, and sustainable campus environments.

Energy management in large-scale campuses present a complex and multidimensional challenge,
making manual control highly impractical. A lack of dynamic and intelligent oversight of energy-
intensive systems such as building energy management systems (BEMS), Heating, Ventilation, and Air
Conditioning (HVAC) systems, renewable energy systems (RES), Information and Communication
Technology (ICT), lighting system (LS) and water management often results in unnecessary energy
waste and elevated operational costs. At the same time, maintaining user comfort while optimizing
energy use is essential for achieving a balanced and sustainable system. However, many existing
solutions rely on static management strategies that fail to adapt to real-time changes, leading to
significant inefficiencies. Traditional energy management approaches primarily focus on reducing
energy consumption through single-dimensional solutions while overlooking critical factors such as user
comfort, security, and system adaptability. The increasing energy costs and environmental concerns
further emphasize the need for a more integrated and holistic approach. The absence of real-time data
processing and quick decision-making capabilities further limits the responsiveness of current systems,
highlighting the necessity for advanced, Al-driven energy management approaches.

This study aims to develop an Al-based integrated energy management system to optimize energy
consumption and enhance sustainability in SCs Bajwa et al. (2024). Real-time data collected from
various sensors, including temperature, humidity, light, and motion, are analyzed using advanced Al
algorithms such as Artificial Neural Network (ANN), Reinforcement Learning (RL), and Convolutional
Neural Network (CNN). These Al models dynamically optimize key energy-consuming systems
including HVAC, lighting, and water management, ensuring a more efficient and sustainable campus
environment. The model is simulated for a mid-sized campus and the potential energy savings are
guantified. The main contribution of this study lies in the development of a unified Al-driven energy
management framework that integrates multiple machine learning architectures (Multi-Layer Perceptron
(MLP), CNN, RNN, RL) and optimization techniques (Genetic Algorithm (GA), Particle Swarm
Optimization (PSQO)) to control and optimize different energy-consuming systems within a smart
campus. Unlike prior works that typically focus on individual components such as HVAC or lighting,
this study proposes a holistic, real-time, sensor-integrated system capable of dynamic learning and
control. The framework is validated through simulation on a mid-sized campus model, with quantified
results in terms of energy savings and financial impact.

This study seeks to answer the following research question: Can a unified Al-driven energy management
framework integrating multiple machine learning architectures and optimization techniques effectively
optimize energy consumption across diverse campus systems in real-time while maintaining user
comfort and operational efficiency? The hypothesis guiding this research is that such an integrated Al-
based system will significantly reduce overall campus energy consumption and operational costs
compared to traditional, single-system-focused methods, without compromising user comfort or system
security.
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2. Literature Review

The integration of SCs with sustainable management models represents a critical area of research,
emphasizing energy efficiency, digital transformation, and data-driven decision-making. Chen (2024)
examined optimization strategies for shared energy storage operators in multi-microgrid systems,
exploring collaborative energy management approaches. Similarly, Bayramov et al. (2021) assessed
household electricity generation from the perspective of energy independence, highlighting the social
significance of alternative energy sources. Ma, G (2023) focused on the integration of digital
technologies on smart campuses, analysing the impact of big data and Al-driven methodologies on
campus management.

Building on these perspectives, Li (2023) explored the design and optimization of Al-based SC
frameworks, emphasizing their potential to enhance campus experiences, improve efficiency, and
promote sustainable practices. This research supports evidence-based decision-making in shaping future
SC initiatives. In a related study, Nobrega et al. (2022) examined the challenges and opportunities in
education within the framework of sustainable development goals, demonstrating how SC models can
be customized to meet the diverse needs of stakeholders and foster new educational paradigms.

Valks et al. (2021) highlighted the role of SC tools in optimizing space utilization and enhancing energy
efficiency for students and staff. Their study underscores the impact of these tools on organizational
decision-making processes and their broader implications for campus sustainability.

Al-driven management systems in SCs have demonstrated significant contributions across various
domains, including energy efficiency, security, user experience, and infrastructure management.
Existing studies in the literature primarily focus on reducing energy consumption, enabling dynamic
system management, and implementing data-driven optimization processes. For instance, Wang and
Zhang (2018) developed strategies to optimize energy management in real-time markets by employing
RL techniques for energy storage arbitrage. Similarly, Kim and Lim (2018) investigated RL based
energy management algorithms in smart energy buildings, emphasizing energy consumption reduction
and supply-demand balance.

The application of Al and ML algorithms in energy management is becoming increasingly widespread.
For example, Islam (2024) explored P2P energy trading models and analyzed their potential impact on
energy optimization. In another study, Kili¢ (2024) proposed an LSTM-based intraday electricity price
forecasting model for the West Denmark power grid, addressing the optimization of energy trading
strategies. Additionally, Hu et al. (2023) introduced an innovative pricing-game strategy for community
grids driven by virtual prosumers, enhancing economic efficiency in P2P energy markets.

Building upon this foundation, several recent studies have offered comprehensive overviews of how
artificial intelligence supports energy sustainability and optimization. (Hou & Wang, 2023) conducted
a large-scale bibliometric analysis of Al and big data applications in the energy sector, identifying key
research trends, influential institutions, and prevalent technologies such as deep learning (DL) and RL
in smart grids and forecasting systems. Szczepaniuk (2022) expanded on this by reviewing the technical
deployment of Al algorithms—including machine learning, metaheuristic optimization, and fuzzy
logic—in real-world energy scenarios such as load forecasting, fault detection, and grid cybersecurity.
In parallel, Adewoyin et al. (2025) examined the broader role of Al in driving sustainable energy
development, focusing on its contributions to renewable energy forecasting, peer-to-peer energy trading,
and carbon mitigation. These studies collectively underscore the growing relevance of Al in enhancing
energy system intelligence, reliability, and sustainability—further validating the strategic integration of
Al-driven tools in SC environments.
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While the reviewed literature demonstrates the effective application of various Al techniques to
individual components within smart campuses, such as HVAC or RES, there is a notable lack of
comprehensive frameworks that integrate multiple Al architectures for coordinated, campus-wide
energy management. Most prior works focus on isolated subsystems and rely on static or offline
optimization methods, limiting adaptability to real-time campus dynamics. Furthermore, many studies
do not fully address the multidimensional nature of energy management, often overlooking critical
factors like user comfort, security, and operational sustainability in their models. Financial impact
assessments are also inconsistently reported, creating a gap between theoretical development and
practical applicability.

This study aims to bridge these gaps by proposing a unified Al-driven energy management framework
that integrates diverse machine learning models (MLP, CNN, RNN, RL) and optimization techniques
(GA, PSO) to dynamically control multiple energy-consuming systems within a smart campus. The
approach emphasizes real-time sensor integration and adaptive control to enhance both efficiency and
user comfort. By simulating the framework on a mid-sized campus and quantifying energy savings
alongside financial benefits, this work advances beyond previous studies by providing a holistic,
practical, and validated solution for sustainable campus energy management.

Recent advancements in Al have introduced transformer-based models as powerful alternatives for
energy forecasting and management. For example, Sreekumar et al. (2024) proposed a transformer-
based framework for sustainable energy consumption forecasting, demonstrating its potential in
capturing complex consumption patterns and supporting socioeconomic decision-making. Similarly,
L’Heureux et al. (2022) applied a transformer-based model for electrical load forecasting, achieving
higher accuracy compared to traditional neural networks by leveraging the transformer’s ability to model
long-range temporal dependencies. While these models show promising results, their high
computational requirements and complexity may pose challenges for real-time deployment in embedded
smart campus environments. Therefore, in this study, simpler yet efficient models such as MLP, CNN,
and RNN are adopted, with future work planned to explore the integration of transformer-based
approaches as hardware and data availability improve.

In summary, research on SC management encompasses various aspects, including energy efficiency,
data security, user experience, and sustainable management strategies. However, existing solutions often
prioritize energy consumption reduction while neglecting other critical factors in a holistic manner. As
a result, this study aims to fulfil this gap by developing an Al-based energy management system that
ensures multidimensional optimization, integrating energy efficiency with user comfort, security, and
operational sustainability in SCs. A variety of artificial intelligence techniques have been applied across
different domains of SC energy management, as summarized in Table 1, which provides an overview
of commonly used Al methods, their respective applications, and reported energy savings in relevant
studies.
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Table 1. Overview of Al methods preferred in SC energy management

System Used Al Technique Yielded Saving Reference Studies

. (Klauco et al., 2014),
HVAC RNN, MFPC, Genetic 3%-60% (Lee & Tsai,2020),

Algorithm, MPC (Purdon et al.,2013)

(Mayer et al.,2016),
(Yao & Steemers,2005)

(Salakij et al.,2016),
BEMS RL, MLP, DNN 5.7%-42.6% (Yuce & Rezgui,2017),
(Li atal.,2021)

(Kolokotsa,2003),
(Byun et al.,2013)

(Trinh et al.,2018),
(Abbas & Arif, 2006)

RES FNN, SVM, DON 25%-50%

LS RNN, CNN, MACS 20%-70%

ICT CNN, SON, LSTM 50%-65%

3. Research Methodology

This section outlines the methodological framework employed in developing the Al-driven energy
management system for SCs. The approach integrates various ML techniques, optimization algorithms,
and real-time data processing to enhance energy efficiency, user comfort, and system adaptability.

3.1 Data Collection and Preprocessing

The proposed system relies on real-time data collected from multiple loT sensors, including temperature,
humidity, light, motion, and CO- sensors as shown in Figure 1. These sensors provide continuous data
streams that are used to dynamically monitor and optimize energy consumption.

To ensure the accuracy and reliability of the data collected, the following preprocessing steps are
applied:

¢ Noise Removal: Data filtering techniques are used to eliminate sensor noise and outliers.

o Normalization: Data values are scaled using Z-score standardization or min-max
normalization.

e Feature Extraction: PCA is employed to reduce dimensionality and extract relevant features

for model training.
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Figure 1: Al-driven smart campus energy management system (Baduge et al.,2022)
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ML architectures are utilized to model and predict energy consumption, optimize system control, and
adapt dynamically to changing campus conditions. Consequently, the case study prioritizes the Al
technology most commonly used in each specific application area, rather than the one with the greatest
theoretical energy-saving potential. The findings of the analysis are presented in Figure 2.
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Figure 2: Artificial intelligence techniques used for learning, optimization, and control (Lee et al., 2022)
3.2 Machine Learning Methods

MLP and FNN are the most frequently used deep learning technologies in of time-series data. The neural
structure is depicted in Figure 3. The neural structure of MLP/FNN can be expressed as in Eq. (1) (Lee
et al., 2022; Jiang et al., 2020):

y=(W-x)+b @

where y represents the output data of the MLP/FNN, x is the input data, and b denotes the bias and W
is the weighing function that is pre-trained using Eq. (2) (Jiang et al., 2020, Lee et al., 2022):

Wi 4 Wi + AWL (2)

where AWi = n(ti — yi)xi, Wi is the current weight, AWi is the change (or update) that will be added
to the current weight during learning, t is the target value, and ) is the learning rate.
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Figure 3: Neural structure of multilayer perceptron (Lee et al., 2022)

MSE sometimes referred to as the cost function, is what MLP/FNN training aims to minimize, as
explained in Eqg. (3):

1 n
MSE = 2 Y O = t)? )
where vy is the predicted output and ¢, is the true target value for the k™ output node.

Additionally, the cost function can be defined using performance metrics such as the R? score, mean
squared error (MSE) or mean absolute percentage error (MAPE). The forecast generated serves as the
final output for control purposes. Supervised learning, combined with a MLP or feedforward neural
network (FNN), can be used to develop operational models for energy conservation in stable and well-
defined application domains such as factories, HVAC systems, RES, or BEMS.

RNNs, whose neural structure is described in Figure 4, can improve prediction accuracy when used in
dynamic or unstable environments. The hyperbolic tangent activation function (tanh), which is defined
in Eq. (4), plays a key role in enhancing the performance of RNNs (Lee et al., 2022).

heyp = (Wy-ht) + (Wy-x) + b 4)
where h;,: The hidden state at the next time step t+1, which stores memory of past inputs.
ht: The hidden state at the current time step t, representing the network's memory.
x: The input vector at the current time step.
W;: Weight matrix executed to the previous hidden state.
W,: Weight matrix executed to the current input.
b: Bias term (adds flexibility to the transformation).

Both the current x value and the x value from the previous time step affect the RNN neural output y. Eqg.
(5) can be used to describe this (Lee et al., 2022):

y=(W-x-hy)+b ®)

y: The output of the RNN at the current time step.
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x - h;: Represents a combined interaction between the current input xxx and the memory h ;
W: Weight matrix for producing the output from input and memory.

b: Bias term.

Figure 4: Recurrent neural activations (Analytics Vidhya, 2022)

Recurrent neural networks (RNNSs) utilize both the chronological order and temporal dependencies
within data to make accurate predictions, as shown in Equations (4) and (5). These models are especially
effective for handling complex and fluctuating time-series data, such as weather patterns or ICT network
performance. To further enhance prediction accuracy, advanced variants of RNNs—such as gated
recurrent units (GRU) and long short-term memory (LSTM) networks—have been introduced. GRUs
offer a more streamlined architecture than LSTMs, enabling faster computation. Although GRUs are
more sophisticated than standard RNNSs, the original RNN architecture has proven sufficient for
managing energy consumption tasks.

In energy efficiency applications, the goal is not necessarily to achieve the highest prediction accuracy,
but to develop models that can generalize across diverse operational scenarios. For this reason, RNNs
were selected to model energy-saving systems.

Additionally, occupancy detection is a critical component in optimizing energy usage. Alongside time-
series data from infrared sensors, occupancy systems may utilize thermal imagery or video streams—
such as those used in LS control. CNNs are well-suited for processing this type of image or video data.
The operating principle of a CNN is illustrated in Figure 5.

Deep Convolutional Neural Network

:: EEE m I:t::l:{':'::: ”‘\‘/

Input Image \ ) [ Predicted
Classes

Softmax l True

Feature extraction through Global Pooling,

convolutional layers and pooling Flattening. and l
filters cascade Fully connected

layer Loss

w Back Propagation: Weight Update for /

Convolutional layers and dense layers |

Figure 5: Convolutional neural network in image capture (Hu et al., 2019)

As depicted in Figure 5, the CNN begins with an initial layer composed of multiple feature extraction
paths operating in parallel. Through convolution operations, it identifies critical patterns from the input
data, which are then passed to a down sampling stage. Although the resulting feature maps are reduced
in dimension, they retain essential characteristics due to shared weights and biases across the network.
At this stage, the Rectified Linear Unit (ReLU) activation function is executed to initiate non-linearity,
thereby enhancing the model’s ability to learn complex patterns without compromising the integrity of
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the convolution process. Following ReLU, the data is fed into the pooling layer, which contributes to
dimensionality reduction and directly supports the model’s final decision-making process.

MLP, RNN, and CNN are three supervised learning methods, each suited for different types of data.
MLP is ideal for analysing stable time-series data, while RNN excels in handling dynamic weather
patterns or unpredictable communication signals. CNN, on the other hand, is particularly effective for
processing visual data and content related to human perception, such as image signal analysis.

When working with outputs from a predefined numerical model, MLP or FNN proves to be the most
efficient. However, in energy systems lacking a defined structure—where control is achieved through
trial and error— RL techniques like DQN and Q-networking are the most appropriate. The operational
framework of an agent performing trial-and-error-based control is depicted in Figure 6.

Figure 6 illustrates the operational framework of an agent-based trial-and-error control mechanism using
Deep Q-Networks (DQN). Unlike supervised learning models such as MLP or FNN, which focus on
predicting system states based on historical data, DQN is designed to learn optimal control policies via
interaction with the environment. The agent observes the current system state, takes an action (e.qg.,
adjusting HVAC settings), and receives feedback in the terms of rewards (such as energy savings or
comfort improvements). Over time, this RL approach enables the agent to develop control strategies that
adapt to dynamic and uncertain conditions without requiring explicit labeled datasets. This contrasts
with supervised models that rely on pre-collected data for prediction but do not inherently make control
decisions.

Reward r

Agent

state Take action a Environment

parameter 8

Observe state s |

Figure 6: Mechanism of agent-based trial and error control (Jayakody, 2022)

Self-Organizing Networks (SON) represent a form of machine learning primarily designed to enable
autonomous adaptation in communication infrastructures. This intelligent framework aims to streamline
the rollout, fine-tuning, and fault recovery of mobile radio access systems. In this study, the focus is on
enhancing the energy efficiency of ICT systems utilizing SON principles. As illustrated in Figure 7,
SON extends beyond basic learning capabilities to support proactive maintenance and performance
optimization.

Fuzzy logic is often integrated into SON to improve processes such as signal handover, coverage
reliability, and overall network service quality. In this research, SON is classified as an artificial
intelligence methodology. Due to its ability to self-adapt without requiring labeled datasets, SON aligns
with unsupervised learning approaches, similar to deep neural networks (DNNSs). These systems operate
without explicit output labels and are capable of autonomously identifying patterns and generating
operational insights. As shown in Figure 7, SON’s neural structure allows it to dynamically interact with
system components, thereby enhancing the learning process and enabling deeper adaptive capabilities..

Figure 7 depicts the neural structure and adaptive mechanism of a Self-Organizing Network (SON)
applied to energy efficiency optimization in ICT systems. Unlike supervised learning models that
require labeled data for training, SON functions as an unsupervised learning approach that
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autonomously detects patterns and adapts system parameters without explicit supervision. By
continuously interacting with network components, SON dynamically adjusts configurations such as
signal handover and coverage settings, improving overall service quality and energy efficiency. This
proactive and self-adaptive capability enables SON to maintain optimal performance in complex,
evolving environments, distinguishing it from traditional Al models that rely on static datasets.

SON

\_ Self Self Self
configuration optimization healing
Self learning Monitoring Optimization Predictive
Network *  Mobility *  Qual*y maintenance
Subscribers +  Signal +« Coverage *  Failure
Location quality + Capacity * Outage
Traffic *  Bandwidth *  Power

* Interface

Handover

Figure 7: Self-organizing network energy efficiency optimization (Lee et al., 2022)

The choice of machine learning models in this study was guided by a combination of domain-specific
requirements, data characteristics, and computational constraints. MLP and FNN were selected for
HVAC and RES subsystems due to their proven efficiency in modelling stable, well-structured time-
series data with relatively low noise and high periodicity—common traits in HVAC scheduling and solar
energy prediction. These models also ensure fast inference times and lower training complexity, which
are critical for real-time applications. RNNs, on the other hand, were used in subsystems such as BEMS
and ICT where temporal dependencies are more complex, and inputs are subject to fluctuation or non-
stationarity (e.g., occupancy, weather data, network traffic). Although more sophisticated models like
transformers or GRU/LSTM could be used, RNN was preferred due to its lower computational burden
and sufficient accuracy for the problem scale. CNNs were used for LS systems where image and motion
data are primary inputs, leveraging their superior performance in spatial pattern recognition. The model-
subsystem matching was thus informed by the type and behaviour of the input data, desired response
time, and the need for system interpretability and generalizability.

For short-term forecasts, GA or PSO can be used to increase accuracy. Prediction performance is much
enhanced when an ANN is used alone. A larger training dataset helps ANN achieve even higher
accuracy for long-term forecasts longer than a year. These results imply that prediction accuracy
increases with the length of the data gathering period. Thus, long-term data collecting should be a part
of the most successful Al optimization strategy.

However, when extensive datasets are not available, GA or PSO can serve as viable alternatives. A
comprehensive analysis indicates that PSO is more effective for optimizing multiple devices, whereas
GA is better suited for controlling a single device. Additionally, for complex optimization problems, a
hybrid multi-objective GA may also be considered.

4. Theory and Calculation

This study presents a comprehensive approach to developing Al-driven energy management systems in
SCs. The proposed model integrates decision-making, anaylsis, and real-time data collection processes
to optimize energy consumption and contribute to sustainability goals. While existing literature
primarily focuses on energy efficiency or specific system components, this study provides a holistic
framework that incorporates user comfort, security, and operational efficiency. A notable strength of the
proposed system is its capacity to autonomously manage energy through the processing of data from
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IoT sensors using advanced Al algorithms. This enables dynamic adaptation to changing campus
conditions. Figure 8 illustrates the distribution of energy consumption and savings following the
implementation of the Al-based optimization model. It includes detailed calculations across different
energy-consuming systems, corresponding savings percentages, and the overall cost reduction achieved.

5,000,000

Total Savings
%459.125

4,000,000
3,000,000
2,000,000

1,000,000

[nitial Consumption (kWh) After Al Optimization (kWh)

mHVAC =LS mBEMS ®ICT ®mRES

Figure 8: Theoretical energy savings in a mid-sized smart campus after Al-based optimization
4.1 Energy Consumption and Savings Per System

Smart campuses exhibit varying energy consumption across different systems. This section examines
the key components of campus energy consumption and the impact of Al-based optimizations on energy
savings in each system.

The campus energy consumption is divided into five major systems which collectively account for 100%
of the campus's total energy use (Advanced Energy Management Company, 2024), (Australian
Government Department of the Environment and Energy, 2024):

HVAC: 40% of total energy consumption.
RES: 10%.

BEMS: 15%.

LS: 20%.

ICT: 15%.

gk wbdeE

After implementing Al-based optimizations, the energy savings for each system are as follows:

HVAC: 60% savings.
RES: 50% savings.
BEMS: 42.5% savings.
LS: 70% savings.

ICT: 65% savings.

o rwbdE

Table 2 presents a comprehensive overview of various Al technologies implemented in different smart
campus systems, detailing the types of data utilized, learning models applied, optimization techniques
employed, control strategies used, and their overall impact on energy savings. The table categorizes all
applications such as HVAC, RES, BEMS, LS, and ICT, illustrating how Al-driven approaches enhance
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efficiency. To ensure clarity, the abbreviations used in the table are defined as follows: MPFC is a
control strategy that dynamically adjusts system performance based on predictive modelling and
occupant feedback; FNN is a type of ANN where data flows in one direction without cycles; MLP is a
class of feedforward neural networks with multiple layers for DL. A summary figure highlighting some
of the most successful cases of Al applications for energy saving has been included in Appendix A
(Figure 10).

Table 2. Artificial intelligence technologies in smart campus systems

Al Technology Effect

Reference . o Energy .
System Study Data Type Learning Optimization Control Saving Other Benefit
Occupant
Hvac (Purdonetal, ot bata feedback, : MFPC 60% :
2013) -
Classifier
Time series White box .
RES (Ma;'g; g)t al. data, model, MLP MPC 50% Coség;"'”g
Text data FNN °
. Time series N Prediction
BEMS (Salgg'i g; al., data, B“"d:\r/'l?_;,mde" MPC 42.60% MAPE
Text data up to 6.3%
LS (Kc;lggg)tsa, Time series data RNN - Adaptive MPC 70% -
(Sinclair et . Handover 0
ICT al., 2013) Map/image data CNN management 65%

Figure 9 illustrates the architecture of the Al-driven smart campus energy management system,
highlighting its multi-layered structure and key components. The system integrates diverse energy
sources—including power generation, RES, and thermal storage—to enhance overall energy efficiency.
It manages equipment and facilities such as HVAC, lighting, and auxiliary infrastructure through
sensors, actuators, and smart control devices.

The framework consists of three primary layers:
e The control layer, comprising the energy management system, cloud computing, and building
automation.
e The communication layer, employing Bluetooth, ZigBee, Wi-Fi, and 5G technologies.
e The sensing layer, which collects real-time data via smart meters, environmental sensors, RFID,
cameras, and GPS.

By leveraging Al and loT technologies, the system enables demand-side energy management,
maximizes power generation, and minimizes energy costs, all while maintaining user comfort, safety,
design efficiency, and optimized maintenance. The integration of these components supports a thorough
and adaptive energy-saving strategy, contributing to a more sustainable and intelligent campus
environment (Farzaneh et al., 2021).

Journal of Smart Systems Research (JOINSSR) 6(2), 74-92, 2025 85



Abdalhadi Manassra, Giirkan Isik
A Model for Artificial Intelligence Supported Energy Management in Smart Campuses

Integrated Equipment and
Multi Energies facilities Netwo rk
T=ooT Sensors Smart Networking
HAVACIBEIN and control and
RES ctc..... P oz
actuators device communications o ’, . ~
Efficient energics Auxiliary facilities: - o O e
elevator, door i g
—
water storage
Campus @ -
Systems
and Control Layer Communication Layer Sensing Layer S '
- =
Devices -
Encrgy mancgment system Bluctooth Smart meters -
Cloud computing ZigBee ! Iurmd1ty{~"'[§]|'(r;pcl'atLlrc:
Building management WI-FI RS
system
Equipment control system 4G, 5G Camcras, GPS
+ Demand side management
Energy Saving + Maximum power generation
Final + Minimize energy cost
Goals
Comfort Safety Design Maintance Campus
3

Figure 9: Technology infrastructure required for energy management in smart campus

5. Results and Discussion

The calculations were conducted in a smart campus environment, with an estimated area ranging
between 33,000 and 100,000 square meters, depending on its energy efficiency. Benchmarks for smart
campuses with advanced energy management systems suggest that energy consumption per square
meter typically falls within 50 — 150 kWh/m? per year (Almasri et al., 2024), where higher efficiency
systems—such HVAC, BEMS, RES, LS, and ICT infrastructure contribute to lower energy intensity.
Given the total energy consumption of 5,000,000 kWh/year, the estimated campus area is calculated as
in Eq. (6) (Ruliyanta et al. 2022):

Total Energy Consumption (kWh/year) (6)

Campus Area =
p Energy Intensity (kWh/m?/year)Total

A high-efficiency campus (consuming approximately 50 kWh/m?/year) corresponds to a larger area of
100,000 m?, as it utilizes advanced energy management systems such as HVAC, BEMS, RES, LS, and
ICT, which reduce energy consumption per unit area. Conversely, a lower-efficiency campus (with an
energy intensity of 150 kWh/m?/year) is estimated to be 33,333 m?, indicating higher energy use per
square meter due to less optimized infrastructure and control mechanisms:

. High efficiency (~50 kWh/m*year): 100,000 m?
. Lower efficiency (~150 kWh/m?/year): 33,333 m?

As presented in Table 3, Al-based optimization significantly improved energy efficiency across various
systems, leading to a 59.125% overall reduction in total energy consumption. In absolute terms, energy
consumption dropped from 5,000,000 kWh to 2,043,750 kWh per year, resulting in a significant
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decrease in operational costs. The financial impact is also notable, with total energy costs decreasing
from $341,623 to $139,639, leading to annual savings of $201,985 as shown in Table 3 with Unit Energy
Cost (2.5 H/kWh) (Energy Exchange Istanbul (EXIST), 2025).

These results highlight the transformative potential of Al-driven energy optimization in smart campuses.
By integrating loT-based monitoring, real-time data analytics, and adaptive control strategies, the
system not only reduces energy waste but also enhances sustainability, cost-efficiency, and operational

resilience.
Table 3. Simulation results for annual energy consumption of a mid-size campus.
System Euns(:g?g Initial zfvrclsﬁ)mpﬂon After Al MaXimggzliiC;tsential Savings
Ratio optimization (kWh) (kwh) (Percentage)
HVAC 40% 2,000,000 800,000 1,200,000 60%
RES 10% 500,000 250,000 250,000 50%
BEMS 15% 750,000 431,250 318,750 42.5%
LS 20% 1,000,000 300,000 700,000 70%
ICT 15% 750,000 262,500 487,500 65%
Total 100% 5,000,000 2,043,750 2,956,250 59.125%
Unit Energy Cost (i/kWh) 25 25 2.5
Total Cost (b) 12,500,000 5,109,375 7,390,625
Total Cost ($) 341,623 139,639 201,985

After implementing Al-based optimizations, the campus achieved a total energy savings of 59.125%,
translating into an annual financial saving of £7,390,625. The most significant reductions came from
HVAC and lighting system optimizations, which substantially decreased energy consumption while
maintaining comfort and functionality.

Optimizing major energy-consuming systems—HVAC, lighting, ICT, RES, and BEMS—demonstrated
remarkable energy savings. The findings show that Al-driven strategies led to a 60% reduction in HVAC
energy usage, making it the most impactful optimization area since HVAC accounts for 40% of total
energy consumption. Similarly, lighting systems, which make up 20% of total consumption, achieved
70% savings, underscoring the effectiveness of Al in dynamically managing illumination. ICT and RES
also showed notable reductions of 65% and 50%, respectively, while BEMS achieved 42.5% savings,
highlighting the system's efficiency in optimizing building-wide energy usage.

From a financial standpoint, Al-driven energy management resulted in substantial cost reductions.
Before optimization, the total annual energy expenditure of the campus was £12,500,000. After
implementing the AI model, this figure dropped to $5,109,375, yielding an annual savings of
17,390,625. These results reinforce the economic viability of Al-based energy management solutions,
demonstrating their potential for both financial and environmental sustainability.

The total energy savings were calculated based on known savings percentages from the literature for
each subsystem. These percentages were applied to actual energy usage data from your campus to
estimate the final savings. The approach represents a best-case scenario. So, the 59.125% total energy
saving was derived by aggregating estimated savings from individual systems (HVAC, LS, ICT, etc.)
based on prior published Al implementations, then scaled to the energy profile of our university campus.
These estimates assume ideal performance of Al models and infrastructure.
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However, the system’s success heavily depends on sensor data accuracy and the adaptive learning
capabilities of Al algorithms. Noise or missing values in sensor data could negatively impact model
performance, leading to suboptimal energy optimization. To mitigate these risks, robust data
preprocessing and cleaning techniques must be applied to ensure the reliability of real-time energy data.
Additionally, evaluating the system’s adaptability across different campus environments is crucial for
scalability and long-term efficiency.

Security and data privacy are also critical concerns in the widespread adoption of Al-driven energy
management. The integration of 0T devices introduces potential vulnerabilities to cyberattacks,
necessitating strong encryption methods and authentication mechanisms to protect sensitive energy
consumption data. Moreover, the impact of Al-driven adjustments on user experience must be carefully
assessed. A user-friendly and intuitive system interface is essential to ensure seamless adaptation to
energy-saving measures without compromising comfort.

The simulation results highlight the transformative potential of Al-based energy management in
optimizing energy consumption, reducing costs, and advancing sustainability initiatives within SCs. By
addressing the limitations of previous research, the proposed system introduces a multidimensional
management model that balances energy efficiency, user comfort, security, and operational
sustainability.

The study also has some limitations. The calculated savings represent the maximum potential of the
proposed model based on results reported in the literature. However, real-world implementation may
yield lower performance than this theoretical maximum. To minimize the gap between ideal and
practical outcomes, further research should focus on enhancing the robustness of Al algorithms,
developing fault-tolerant mechanisms for handling incomplete data, and strengthening cybersecurity
measures to improve system resilience. Additionally, broader evaluations across diverse campus
environments are necessary to validate the system’s adaptability and effectiveness on a larger scale.

Al-based energy management systems rely heavily on real-time sensor data, making data quality and
cybersecurity critical. Poor data quality due to faulty or spoofed sensors can lead to incorrect model
predictions and energy waste. To mitigate this, future implementations should include sensor validation
mechanisms, redundant sensing, and data fusion technigques to enhance reliability. On the cybersecurity
side, threats such as data tampering, unauthorized access, and denial-of-service attacks must be
addressed using secure communication protocols, device authentication, and Al-driven anomaly
detection systems. The integration of blockchain or edge-based security modules could further protect
decentralized I0T environments

6. Conclusions

Energy management on smart campuses has become a crucial challenge due to rising energy demands,
sustainability targets, and the increasing complexity of modern infrastructure. Conventional energy
management approaches often struggle to adapt to dynamic environmental conditions, resulting in
inefficiencies and excessive energy consumption.

This study proposes an Al-driven energy management system designed to optimize major energy-
consuming components such as HVAC, lighting, BEMS, RES, and ICT. The system effectively
manages energy distribution by dynamically manage resources depending on real-time demand,
optimizes consumption patterns by identifying inefficiencies and adjusting operational schedules, and
enhances overall efficiency by integrating renewable energy sources into the grid. The model
successfully predicts energy consumption trends, automates decision-making processes, and ensures
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optimal utilization of available resources. Comprehensive performance analyses were conducted to
evaluate the impact of Al-based optimization on energy savings, cost reduction, and carbon footprint
mitigation. The results demonstrate that the proposed system achieves a total energy savings of
59.125%, translating into an annual cost reduction of $7,390,625 significantly lowering the SC’s carbon
footprint. The results highlight the critical role of Al-driven solutions in improving energy efficiency
and operational sustainability in SCs. By offering a comprehensive framework, it serves as a valuable
reference for future research in this domain.

Future research can focus on evaluating the adaptability of the proposed system to various campus
structures and building types while integrating larger datasets and advanced algorithms to enhance
model accuracy. Additionally, robust encryption techniques should be implemented to strengthen 10T
security and mitigate cybersecurity risks. To improve user experience, personalized energy management
scenarios can be developed, ensuring seamless adaptation to user behaviour. To systematically address
the challenges of Al-driven energy management on smart campuses, future research will follow a phased
roadmap. In the short term (1-2 years), pilot studies will be conducted on varied campus types to validate
system performance and collect real-world data. Mid-term goals (3-5 years) include scaling the system
to larger and more complex infrastructures, improving model robustness, and advancing Technology
Readiness Levels (TRL) from laboratory validation (TRL 4) toward real environment demonstration
(TRL 6). Long-term efforts (5+ years) aim for full-scale deployment, including integration with
advanced cybersecurity measures and the development of personalized energy management tailored to
occupant behaviour. Scalability metrics will guide optimization for diverse campus contexts. However,
some limitations remain. The system’s effectiveness depends on the quality and availability of sensor
data, which may vary across campuses. Computational and integration challenges could affect real-time
deployment.
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Appendices
List of Abbreviations

Al Artificial Intelligence MFPC
ANN Artificial Neural Network ML
b Correction Coefficient MLP
BEMS  Building Energy Management System MSE
CNN Convolutional Neural Network P2P
COz Carbon Dioxide PCA
DL Deep Learning PSO
DNN Deep Neural Network R?
DON Deep Q-learning Network RelLU
FNN Feedforward Neural Network RES
GRU Gated Recurrent Unit RL
GA Genetic Algorithm RNN
h, Recurrent neuron activation function SC
HVAC  Heating, Ventilation and Air Conditioning SON
ICT Information & Communication Technology SVM
loT Internet of Things t
kWh Kilowatt Hour w
LS Lighting System X
LSTM  Long Short-Term Memory y
MACS  Multi-Agent Control System n
MAPE  Mean Average Percentage Error

Model Free Predictive Control
Machine Learning
Multi-Layer Perceptron

Mean Square Error

Peer to Peer

Principal Component Analysis
Particle Swarm Optimization
R-squared Value

Rectified Linear Unit
Renewable Energy System
Reinforcement Learning
Recurrent Neural Network
Smart Campus
Self-Organizing Network
Support Vector Machine
Target Value

Weighting Function

Neuron Input

Neuron Output

Learning Rate

Appendix A: Some of The Most Cases of Successful Application of Al For Energy Saving
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Figure 10: Some cases of successful application of ai for energy saving
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