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Anahtar Kelimeler 0z: Bu calismada, biiyiik dlcekli cok-amacli kafes yap1 optimizasyonunda Basari
SHAMODE, Ge¢misine Dayali Uyarlamali Cok Amach Diferansiyel Evrim (SHAMODE) ve ikinci
NSGA-II,

Nesil Siralamali Genetik Algoritma (NSGA-II) yontemlerinin performanslari
incelenmistir. Amag, kafes sistemin yapisal agirligini ve maksimum diigiim noktasi
deplasmanlarini minimize ederken, gerilme ve deplasman sinirlayicilarini da
saglamaktir. Bu iki yontem ile yapilan optimizasyon sonucunda elde edilen Pareto
¢oziimlerin kalitesi ve dagilimi, Hiperhacim (HV), Nesilsel Uzaklik (GD), Ters
Nesilsel Uzaklik (IGD) ve Aralik-Uzunluk Orani (STE) performans olciitleri
kullanilarak degerlendirilmistir. Farkl ¢alistirmalar sonucu elde edilen en iyi ve
ortalama degerler incelendiginde, SHAMODE'un, NSGA-II'ye kiyasla daha ytliksek HV
ve daha diisiik GD ve IGD degerleri iirettigi goriilmiistiir. Ayrica, SHAMODE daha
disiik STE degeri ile daha dengeli bir ¢6ziim dagilimi saglamistir. Bu sonuglar,
SHAMODE’un karmasik yapisal optimizasyon problemleri i¢in etkili ve saglam bir
yontem oldugunu ortaya koymaktadir.

Cok-amach optimizasyon
Pareto ¢ozim
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Multi-Objective Optimization of Truss Structures Using NSGA-II and SHAMODE

Algorithms
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Genetic Algorithm II (NSGA-II) methods in solving a large-scale, multi-objective
truss optimization problem. The objective is to minimize both the structural weight
and the maximum nodal displacement, subject to stress and displacement
constraints. Four widely used performance metrics including Hypervolume,
Generational Distance (GD), Inverted Generational Distance (IGD), and Spacing-to-
Extent (STE) are employed to evaluate the quality and distribution of the Pareto
fronts obtained. Results from multiple independent runs show that SHAMODE
consistently produces superior Pareto fronts, as evidenced by higher HV values and
significantly lower GD and IGD scores compared to NSGA-II. Furthermore,
SHAMODE achieves a more uniform distribution of solutions, as indicated by its
lower STE values. These findings demonstrate SHAMODE's effectiveness and
robustness in handling complex structural optimization problems

*{lgili Yazar, email: behramugur@sirnak.edu.tr
1. Introduction

Truss optimization has emerged as a dynamic and extensively studied area within structural engineering research,
characterized by a rich variety of problem formulations and advanced algorithmic developments. Over recent
decades, interest in truss optimization has grown significantly, driven by the dual goals of structural efficiency and
economic feasibility. The types of optimization problems encountered in truss design are commonly classified as
single-objective, multi-objective, and many-objective, with each category representing a progressively higher level
of complexity and closer alignment with real-world engineering requirements. While single-objective
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formulations primarily focus on traditional targets such as minimizing structural mass or compliance, real-world
design often necessitates balancing several conflicting performance criteria.

An extensive range of metaheuristic algorithms has been proposed for solving multi-objective optimization
problems, particularly in structural engineering applications. Among the most established approaches are the
Non-dominated Sorting Genetic Algorithm II (NSGA-II) [1], the Strength Pareto Evolutionary Algorithm 2 (SPEA2)
[2], and the Pareto Archived Evolution Strategy (PAES) [3], all of which have been widely adopted for their ability
to generate diverse and well-converged Pareto fronts. More recent developments have introduced nature-inspired
methods such as the Multi-Objective Dragonfly Algorithm (MODA) [4], the Multi-Objective Grasshopper
Optimization Algorithm (MOGOA) [5], and the Multi-Objective Salp Swarm Algorithm (MSSA) [6], which leverage
biological behaviors to balance exploration and exploitation. Additionally, advanced population-based strategies
such as the Unrestricted Population-Size Evolutionary Multi-Objective Optimization Algorithm (UPS-EMOA) [7],
the Multi-Objective Multi-Verse Optimizer (MOMVO) [8], have shown promising results in handling high-
dimensional and constrained design problems. Recent efforts have also focused on hybrid and adaptive
algorithms, including the Success History-based Adaptive Multi-Objective Differential Evolution (SHAMODE) and
its extension incorporating Whale Optimization (SHAMODE-WO) [9], as well as the Multi-Objective Meta-Heuristic
with Iterative Parameter Distribution Estimation (MMIPDE) [10].

Multi-objective structural optimization of trusses commonly focuses on weight and displacement, but additional
objectives are increasingly examined. Noilublao and Bureerat [11] integrated topology, shape, and sizing,
assessing mass, compliance, frequencies, and transmissibility. Kaveh and Laknejadi [12] introduced a graph-based
representation for truss layouts, incorporating specialized genetic operators. Tejani et al. [13] proposed a Multi-
Objective Adaptive Symbiotic Organisms Search (MOASOS) with a two-archive method to balance exploration and
exploitation. Mokarram and Banan [14] developed Fast Convergent Multi-Objective Particle Swarm Optimization
(FC-MOPSO0), enhancing leader selection for diversity and rapid convergence. Techasen et al. [15] considered
reliability-based design by minimizing structural mass and reliability cost through multiple evolutionary
algorithms. Vargas et al. [16] employed Generalized Differential Evolution 3 (GDE3) with an Adaptive Penalty
Method, outperforming standard GDE3 and Non-dominated Sorting Genetic Algorithm II (NSGA-II). Kaveh and
Mahdavi [17] extended Colliding Bodies Optimization into Multi-Objective Colliding Bodies Optimization
(MOCBO), demonstrating efficient exploration and ranking in multi-objective spaces. Panagant et al. [18]
compared fourteen metaheuristics, including NSGA-II and the Multi-Objective Evolutionary Algorithm based on
Decomposition (MOEA/D), revealing distinct performance strengths. Carvalio et al. [19] tested Differential
Evolution variants on complex objectives like global stability and natural frequencies, incorporating topology and
shape variables. Lemonge et al. [20] modified GDE3 to handle novel combinations of objectives, including critical
load factors. Eid et al. [21] introduced the Multi-Objective Spiral Water Cycle Algorithm (MOSWCA), inspired by
water cycle dynamics, integrating a hyperbolic spiral movement for stronger exploitation. Kumar et al. [22]
developed the Multi-Objective Multi-Verse Optimizer with a Two-Archive Strategy (MOMVO2arc), leveraging dual-
archive maintenance of diversity and convergence, surpassing NSGA-Il and MOEA/D in benchmark truss problem.
In this study, a three-dimensional steel truss structure comprising 264 members, originally proposed for the
ISCS0O-2024 [23] competition, is investigated as a benchmark for multi-objective optimization. The problem
formulation involves two conflicting objectives: minimizing the structural weight and minimizing the maximum
nodal displacement. With 264 design variables, the problem presents a high-dimensional and computationally
challenging optimization task. To address this, two prominent evolutionary algorithms, NSGA-II and SHAMODE,
are employed for generating Pareto-optimal solutions.

The remainder of this paper is structured as follows: Section 2 provides a brief overview of the multi-objective
optimization algorithms employed in this study. Section 3 presents the formulation of the multi-objective truss
optimization problem. Section 4 outlines the details of the numerical experiment. In Section 5, the results are
presented, including Pareto fronts, hypervolume values, and spacing metrics used for performance evaluation.
Finally, Section 6 concludes the study.

2. Optimization algorithms

2.1. Non-dominated Sorting Genetic Algorithm - II (NSGA-II)

NSGA-II is a popular evolutionary algorithm for multi-objective optimization, known for its efficient non-
dominated sorting approach and elitist selection mechanism. NSGA-II operates on a population of candidate
solutions and evolves this population over a number of generations to approximate the Pareto-optimal front. The

algorithm was originally proposed by Deb et al. [1] to address limitations of earlier multi-objective GAs by
introducing three key features: fast non-dominated sorting, crowding-distance diversity preservation, and elitism.
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NSGA-II maintains a population of size np and employs genetic operators (selection, crossover, mutation) similarly
to a standard GA. The novelty lies in how solutions are evaluated and selected. Each individual solution is evaluated
on all objective functions. A non-dominated sorting procedure classifies the population into Pareto fronts Fi, F>...
such that F; is the set of non-dominated solutions, Fz is the set of solutions only dominated by those in F: and so
forth. Solutions in lower-index fronts are better in the Pareto sense (rank 1 is best). Within each front, NSGA-II
uses a crowding distance metric to estimate density: for each solution, the crowding distance is the average
distance to its two nearest neighbors in objective space [1]. This provides a measure of how “isolated” a point is
on that front; a larger crowding distance means the solution lies in a sparsely populated region of the front, which
is desirable for diversity.

NSGA-II's selection is two-fold: an environmental selection that implements elitism, and a mating selection for
reproduction. After each generation’s variation (crossover/mutation), NSGA-II employs elitist survival selection
by combining the parent and offspring populations (of total size 2xnpop) and then filtering back to npop
individuals for the next generation [1]. This is done by sorting the combined 2xnpop pool into Pareto fronts and
accepting front by front until the new population is filled. If the last accepted front Fi does not fit entirely only the
most widely spaced solutions in Fi (those with largest crowding distance) are chosen to fill the remaining slots.
This ensures the population retains a diverse spread of solutions and that no dominated solution survives
(elitism). For mating selection (to create offspring), NSGA-II uses a binary tournament operator where two
candidates are chosen and the one with better rank is selected (or if ranks equal, the one with a larger crowding
distance). This preference ensures that parents with higher Pareto rank (or diversity) are more likely to reproduce.

Algorithm 1. Pseudo-code for NSGA-II
Initialize population P of size npop
Evaluate the objective values for all individuals in P
Set generation counter iter « 0
while iter <itermax do
// Selection: Binary tournament based on rank and crowding distance
fori=1tonpopdo
Select parent; and parent: using tournament selection
Apply crossover and mutation to generate offspringi
end for
Store offspring in Q // offspring population
Evaluate objective values for all individuals in Q
Combine P (parents) and Q (offspring) - R« P UQ
Perform non-dominated sorting on R to get fronts Fi1, F2, ..., Fi
Initialize new population Pnew < @
for each front Fiin F1, F2, .., Fr do
if(/Pnew/ + /FI/SN) then
Prew < Pnew UFI
else
Sort Fi by descending crowding distance
Add top (npop - | Prew [) individuals from Fi to Pnew
break
end if
end for
Update P « Pnew
iter « iter + 1
end while
Return the non-dominated solutions in the final population P

2.2. Success History-based Adaptive Multi-Objective Differential Evolution (SHAMODE)

SHAMODE is a modern hybrid evolutionary approach that extends Differential Evolution with mechanisms for
multi-objective optimization and self-adaptive parameter control. It was firstly proposed by Panagant et al. [9],
originally to solve a reliability-based truss design problem involving simultaneous topology, shape, and sizing
optimization. SHAMODE merges the DE search strategy with the non-dominated sorting and elitism concepts from
algorithms like NSGA-II. Moreover, it introduces a success-history adaptive scheme to tune its mutation
parameters F and crossover rate CR on the fly, thereby enhancing its robustness across different problem
landscapes. In SHAMODE, candidate solutions are represented as vectors of design variables. DE generates new
candidate solutions (offspring) through the mechanism of mutation and crossover applied to parent solutions [24].
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In SHAMODE, the mutation operation is formulated as an extension of the current-to-pbest/1 strategy,
incorporating both population-based and archive-based exploration. For each individual x;gin the current
generation G, the corresponding mutant vector v; ¢ is computed using the following relation:

vig = i+ Fig - (Xpbest — Xig) + + Fig - (%r1.6 — Kizc) (D

where i represents the solution number in the population, xppes: is randomly selected from best performing
solutions, Fj  is a mutation scaling factor typically set within the range [0, 1], x4 g and X, are randomly selected
from the current population and from the union of the current population and external archive.

Following mutation, a trial vector is produced by combining the mutant vector vk and the original parent vector x«
through a crossover process. Each component of the trial vector is selected either from vk or from x, based on a
predefined crossover probability CR. This can be expressed as:

v, ifrand; <CR orj=j .

Wi = { X otherwise (2)

where j indexes the decision variables, randj is a uniformly distributed random number in the interval [0, 1], and
Jrana 1S @a randomly selected index to ensure at least one component is inherited from the mutant vector. In single-
objective DE, selection is typically one-to-one: the trial vector u; ; replaces the parent x; ; if it exhibits superior
fitness. However, in multi-objective optimization, as implemented in SHAMODE, selection is not performed in a
one-to-one manner. Instead, SHAMODE follows a Pareto-based environmental selection strategy similar to that of
NSGA-II. The parent and offspring populations are merged, and the next generation is formed through non-
dominated sorting and crowding distance-based selection. This global competition allows all offspring to be
evaluated relative to all parents and each other.

A distinguishing feature of the SHAMODE algorithm is its ability to adapt the control parameters of Differential
Evolution (DE), specifically the mutation factor F and the crossover rate CR, throughout the optimization process
based on historical success information. This self-adaptive mechanism is inspired by the SHADE algorithm,
originally introduced by Tanabe and Fukunaga [25] and aims to eliminate the need for manual parameter tuning.
To implement this mechanism, SHAMODE maintains an external memory archive commonly denoted as A which
stores the historical memory of scaling factors (Mr) and (Mcr) associated with successful offspring, i.e., individuals
that have either replaced their parents or have been included in the next generation through Pareto-based
selection.

At the end of each generation, SHAMODE identifies which trial solutions have survived (i.e., selected into the next
population). The corresponding control parameters used to generate those individuals are then recorded in the
memory archive. Over time, this success history is used to update the sampling strategy for the control parameters
in the following manner:

F (3)

i = randc;(u,, 0.1)

CR; = randn;(p,, 0.1) (4)

randc; and randn; denote random values generated based on Cauchy and normal distributions with means (ug,
Ucr) and variances (6#, 6&z). The mean values of up and pcg for each individual are randomly selected from the
memories Mrand Mcr respectively [9]

The values of F; and CR; adjusted dynamically using a success-history adaptation method, building on the
approach introduced in SHADE. While SHADE relies on a weighted Lehmer mean, SHAMODE simplifies this by
applying the standard Lehmer mean, better suited for multi-objective settings where all non-dominated solutions
are treated equally. Full implementation details are available in the original study by Panagant et al. [9].

Algorithm 2. Pseudo-code for SHAMODE
Initialize population P of size npop
Initialize memory Mr and Mckr to store successful F and CR values
Set generation counter iter < 0
while iter<itermax
for each individual x; in population P do
Select F; and CR; from memory using success-history adaptation
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Generate mutant vector v;
Generate trial vector u;
end for
Evaluate all trial vectors in Q // offspring population
Combine P (parents) and Q (offspring) - R« P UQ
Perform non-dominated sorting on R into fronts F1, Fz, ..., Fi
Initialize new population P, < @
for each front F; in Fi, F>, ..., Fido
if (IPaew! + IFil < npop) then
Prew Frew UFI
else
Sort Fi by descending crowding distance
Add top (npop - |P,ew /) individuals from Fito By,,,/)
break
end if
end for
Identify successful individuals from Q that entered P,,,,
Store their F; and CR; values in memory by updating Mr and Mcr
Update P < P,
Increment generation counter: iter« iter + 1
end while
Return the non-dominated solutions in final population P

3. Multi-objective Truss Optimization Formulation

Truss optimization problem is formulated as a constrained, multi-objective optimization task in which the goal is
to minimize the total weight of the structure and nodal displacement.

f>(A) = max|d{'? | (6)

Here, nis the number of truss members, 4; is the cross-sectional area, L; is the length, and p is the material density.
djm is the displacement vector of node j under load case Id.
The problem can be expressed as given below:

Find A=[Ay A, ... Ayl to minimize {f;(4), fz(A)} subjectedto g;(A) <0 j=12,...m

Here, g;(A)denotes the constraint functions (e.g., axial stress, buckling, or displacement limits), m is the total
number of constraints. The truss design must comply with the AISC-LRFD (1994) provisions for both strength and
stability. For members under axial tension, the design axial force must not exceed the available tensile strength:

B <S¢ B (7)

P, and P, are the ultimate and nominal tensile force, ¢, is the resistance factor for tension and taken as 0.9. Pnis
calculated as B, = A - F,,, with F, representing the yield stress of the steel.

For members under axial compression, the design axial force must not exceed the critical buckling force (P,.):

B, < ¢ Py (8)

¢, is the resistance factor for compression and taken as 0.85. P.. is calculated as P.. = A-F,. , with F_,
representing the critical buckling stress is found as given equation:

(0.658%2)@ if 1, <15

Fp = [0.877]

E, ifA.>15 9)

2 y

(4
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The critical slenderness ratio denoted as 4. defines the transition point between elastic and inelastic buckling
behavior in compression members.

To evaluate the performance of the proposed optimization algorithms in generating high-quality Pareto fronts,
four established multi-objective performance indicators are implemented: Hypervolume (HV), Generational
Distance (GD), Inverted Generational Distance (IGD), and Spacing-to-Extent ratio (STE). HV is the area (or volume
in many-objective problems) between a reference point and the obtained Pareto front. It visually corresponds to
the space dominated by non-dominated solutions and is influenced by the location of the reference point, typically
set using the worst objective values observed across all algorithms and runs. The HV is calculated as:

|P|
HV = volume U V;

\ (10)
i=1

where V; is the hypercube defined between the ith non-dominated solution and the reference point. A larger HV
value indicates a better approximation of the true Pareto front. GD measures the average Euclidean distance from
each solution in the obtained Pareto front to its nearest point on a true pareto front. IGD is a metric which measures
the average distance from each point in the reference front to its nearest solution in the obtained front. Both GD
and IGD require a reference front, which ideally corresponds to the true Pareto front of the optimization problem.
However, since the true front is typically unknown, a reference front is approximated by aggregating all non-
dominated solutions from multiple runs (M1 ) of all compared algorithms (M2). The combined pool is then filtered
to retain only the non-dominated solutions, which are used as the reference front [18]. Smaller values of GD and
IGD indicate better algorithm performance by reflecting closer convergence to the reference front and improved
coverage of the Pareto-optimal solution space. These metrics are calculated as follows:

,/z':;'l d?
- (11)

GD =
|P|
S ap
IGD = T (12)

STE is a composite metric used to assess both the distribution uniformity and the range of the obtained solutions.
It is computed as the ratio of Spacing (SP) to Extent (ET):

IPI
1 2
SP:7|P|_1;(di—d) (13)
M
ET = Z(fnmax — fnmin)z (14)
_sp
STE= T (15)

where d; is the Euclidean distance between the i-th solution and its nearest neighbor in the obtained front, d is the
mean of all d;, M is the number of objective functions, f,"*and f,™"are the maximum and minimum values of the
n-th objective. A lower STE value indicates that the Pareto front is both uniformly spaced and well-extended, which
is desirable for providing decision-makers with a diverse set of trade-off solutions.

4. Numeric Example: 264-Bar Dome-like Space Truss
In this study, the optimization problem of the International Student Competition in Structural Optimization (ISCSO

2024) [23] is considered as a benchmark example. The structure consists of a dome-like truss composed of 264
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members and 88 nodes, of which 80 are free and 8 are designated as supports. The truss geometry is illustrated in
Fig. 1. The material of the truss is steel with density p = 7.85 ton/m?, Young’s modulus E = 200 GPa, and yield
strength Fy = 248.2 MPa.

14m

() (b)
Figure 1. 268-bar dome-like truss geometry a) 3D view b) Top view [23]

A fixed topology is assumed, meaning that the nodal connectivity and geometry are predefined and remain
unchanged throughout the optimization process. The structure is required to safely withstand multiple load cases,
while two conflicting objectives are to be minimized: the total structural weight and the maximum nodal
displacement [23].

This structure is subjected to three loading scenarios:

Load Case 1: 11 kN applied at each free node in the global +x direction
Load Case 2: 11 kN at each free node in the global +y direction
Load Case 3: 14 kN at each free node in the global -z direction

Since no member grouping is applied, each truss member is sized independently. As a result, there are 264 design
variables, denoted as {S1, S2, ... 5264} each representing the cross-sectional section choice for one truss member.
The cross-section selection is restricted to a predefined catalog of 37 commercially available circular hollow
sections (Table 1) which are characterized by varying outer diameters and wall thicknesses. These are standard
pipe profiles commonly used in steel structures. The variable Si is an integer between 1 and 37 indicating the
section ID chosen for member-i. A value of 1 corresponds to the smallest pipe section and 37 to the largest. The
total number of possible designs is 37264, resulting in a vast and highly complex search space.

Table 1. Available Circular Hollow Sections [23]

ID  Section Name Area (cm?) ID Section Name Area (cm?)
1 PIPE 1/2" STD 1.6129 20 PIPE 3-1/2" XS 23.7419
2 PIPE 1/2" XS 2.0645 21 PIPE 2-1/2" XXS 25.9999
3 PIPE 3/4" STD 2.1484 22 PIPE 5" STD 27.7419
4 PIPE 3/4" XS 2.7935 23 PIPE 4" XS 28.4516
5 PIPE 1" STD 3.1871 24 PIPE 3" XXS 35.2903
6 PIPE 1" XS 4.1226 25 PIPE 6" STD 35.9999
7 PIPE 1-1/4" STD 4.3161 26 PIPE 5" XS 39.4193
8 PIPE 1-1/2" STD 5.1548 27 PIPE 4" XXS 52.2580
9 PIPE 1-1/4" XS 5.6839 28 PIPE 6" XS 54.1934
10 PIPE 1-1/2" XS 6.9032 29 PIPE 8" STD 54.1934
11 PIPE 2" STD 6.9032 30 PIPE 5" XXS 72.9031
12 PIPE 2" XS 9.5484 31 PIPE 10" STD 76.7740
13 PIPE 2-1/2" STD 10.9677 32 PIPE 8" XS 82.5805
14 PIPE 3" STD 14.3871 33 PIPE 12" STD 94.1934
15 PIPE 2-1/2" XS 14.5161 34 PIPE 6" XXS 100.6450
16 PIPE 2" XXS 17.1613 35 PIPE 10" XS 103.8708
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17 PIPE 3-1/2" STD 17.2903 36 PIPE 12" XS 123.8707
18 PIPE 3" XS 19.4838 37 PIPE 8" XXS 137.4191
19 PIPE 4" STD 20.4516

The optimization problem is formulated as a bi-objective design task with two objectives. The first objective is to
minimize the total structural weight, aiming to reduce material usage and construction cost; however, this often
results in a more flexible structure. The second objective is to minimize the maximum nodal displacement,
promoting a stiffer structural response with smaller deflections under loading. These objectives inherently
conflict, as achieving lower displacements typically requires the use of larger or heavier cross-sections, which in
turn increases the total weight of the structure.

The optimization thus aims to find a Pareto front of designs ranging from very lightweight but flexible solutions to
very stiff but heavy solutions. Each solution is evaluated by running the structural analysis provided by a MATLAB
function in ICSCO-2024. Constraint handling is performed using a dominance-based approach, in which any
solution that violates constraints is considered to be dominated by all feasible solutions. Throughout the
optimization process, it is ensured that the final Pareto front comprises only non-dominated, feasible solutions. In
practice, when comparing two solutions, the feasible one is always preferred over the infeasible one. Alternatively,
infeasible solutions may be penalized by assigning artificially high objective function values. Both SHAMODE and
NSGA-II are configured to prioritize feasibility, either by discarding infeasible candidates or by applying a
constraint-domination rule during selection.

Since the true Pareto front of the optimization problem is unknown, a reference front was constructed following
the approach described in Section 3. Specifically, all non-dominated solutions obtained from 30 independent runs
of NSGA-II and SHAMODE were aggregated. Duplicate solutions were removed, and a final non-dominated sorting
was applied to extract the reference front. This approximated front was then used as a common baseline to
compute performance metrics such as GD and IGD.

5. Results and Discussion

The truss optimization problem was solved using both the NSGA-II and SHAMODE algorithms under identical
experimental settings. For each algorithm, a population size of npop=80 was adopted, and the number of
generations was specified to satisfy the evaluation budget of 106 function evaluations as conditioned in the
competition [23]. Each algorithm was independently executed 30 times to ensure statistical reliability of the
results. The initial solutions were constructed by randomly assigning section IDs to each member.

The NSGA-II algorithm was configured with standard settings as described in the original study Ref. [1], including
binary tournament selection, a crossover probability of 0.9, and a mutation rate defined as 1/ndim. SHAMODE was
implemented according to its original formulation. Initial values of Mr and Mcrset to 0.5, and a historical memory
size H=5 was used to guide the adaptive adjustment of control parameters as suggested in SHADE [25]. The
maximum size of the external archive A was set to 1.4xnpop, following the recommendation in L-SHADE [26]. It
should be noted that the reference point used in the Hypervolume (HV) calculation was (F1, F2) = (57319, 10.5),
as specified in Ref. [23]

Both algorithms employed the same constraint-handling strategy, in which any solution violating one or more
constraints was considered inferior to all feasible solutions. This was enforced through either explicit removal of
infeasible solutions or by applying a constraint-domination principle during selection. To assess robustness, each
algorithm was run independently 30 times.

The HV results over 30 independent runs, including the mean, minimum, and standard deviation, are summarized
in Table 2. As shown, SHAMODE achieved both a higher mean HV of 460 068.23 and a best HV of 451 693.92,
outperforming NSGA-II, which yielded a best HV of 427 576.10 and a mean HV of 419 394.50. Given that higher
HV reflects better front extension and quality, SHAMODE yielded approximately 7.6% higher hypervolume values
compared to NSGA-II, indicating its stronger performance in generating well-distributed Pareto-optimal solutions
for the multi-objective truss optimization problem. Additionally, the standard deviation of NSGA-II’ is lower than
that of SHAMODE indicating that NSGA-II produced more consistent results across independent runs, despite
SHAMODE achieving higher average and better HV values.
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Table 2. Hypervolume values from 30 independent runs.

Run no SHAMODE NSGA-II Run no SHAMODE NSGA-II
1 453087.0 419404.9 16 452166.4 418808.5
2 447849.8 417153.0 17 441671.8 422215.2
3 458956.0 415173.6 18 459158.0 413460.7
4 446232.7 418293.5 19 460068.2 420869.1
5 450712.4 422778.8 20 449188.6 426207.9
6 455086.1 419189.7 21 452157.6 417076.3
7 454098.9 420856.1 22 458475.5 4194329
8 454376.8 410742.5 23 448146.5 427576.1
9 452833.3 417231.7 24 443105.7 423951.3
10 443396.7 422455.9 25 453509.3 418885.3
11 451249.8 421705.4 26 449677.8 420469.3
12 446786.2 413480.4 27 459200.2 422722.0
13 450593.6 418117.9 28 444479.2 426849.8
14 4471184 4185454 29 457714.7 4126774
15 454774.0 412798.2 30 454946.2 422707.3
Best HV 460068.2 427576.1

Mean HV  451693.9 419394.5

Std 5094.8 4171.8

Pareto fronts obtained by NSGA-II and SHAMODE on the 264-bar truss design problem. HV plots with reference
point and corresponding Pareto fronts obtained by NSGA-II and SHAMODE are presented in Figures 1 and 2,
respectively. Each point corresponds to a feasible truss design, plotted by its total weight on horizontal axis and
maximum nodal displacement on vertical axis. In the figures, the designs corresponding to the lowest weight with
the highest displacement and the highest weight with the lowest displacement are highlighted within the same
plot, using arrows pointing to the respective solutions on the Pareto front. Lower-left points are preferable, which
denotes light and stiff designs. When comparing figures, it can be clearly seen that SHAMODE is able to extend the
front slightly toward lighter weights and lower deflections, indicating a broader trade-off coverage.
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Figure 2. Hypervolume plot, best Pareto front, and representative structural designs obtained for the 264-bar truss using
NSGA-II
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Figure 3. Hypervolume plot, best Pareto front, and representative structural designs obtained for the 264-bar truss using
SHAMODE

Table 3 presents the performance metrics including GD, IGD, and STE for the SHAMODE and NSGA-II algorithms
evaluated on the 264-bar truss optimization problem. In terms of convergence, SHAMODE outperforms NSGA-II,
as reflected by its lower GD values (best: 2.15 vs. 3.68; mean: 3.53 vs. 6.32), indicating that SHAMODE's solutions
are closer on average to the reference front. The IGD metric, which evaluates both convergence and coverage,
further confirms SHAMODE'’s advantage. SHAMODE reports a significantly lower best IGD (11.80 vs. 478.29) and
mean IGD (87.81 vs. 536.22), demonstrating a more comprehensive approximation of the reference front. Finally,
the STE values which combine spacing and extent to assess uniformity show that SHAMODE provides a more
uniformly distributed front (mean STE: 0.00158) compared to NSGA-II (mean STE: 0.00974). This suggests that
SHAMODE's Pareto solutions are not only better in quality but also more evenly spaced. In summary, across all
performance metrics, SHAMODE outperforms NSGA-II both in terms of solution quality and consistency, making
it a more effective algorithm for the large-scale, multi-objective truss optimization problem considered, as shown
in Figure 4.

Table 3. Performance Metrics for NSGA-II vs SHAMODE on the 264-bar Truss Problem

Algorithm HV GD IGD STE
Best  460068.2  2.154979  11.79982  0.000493
SHAMODE Mean 4516939  3.529307 87.80671  0.001583

Std 5094.797  0.862568  43.77879  0.000824
Best  427576.1  3.675992  478.2892  0.006407
NSGA-II Mean 4193945 6.317392  536.2202  0.009739
Std 4171.81 1.62877 32.1734 0.002277

To statistically assess the significance of the observed performance differences in HV values, a Wilcoxon signed-
rank test was conducted using the results from 30 independent runs. The test yielded a p-value of 3.20 x 10-11,
indicating that the differences between SHAMODE and NSGA-II are statistically significant at the 0.05 level. These
results confirm that SHAMODE consistently outperforms NSGA-II in terms of HV metric across repeated trials.
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Figure 4. Comparison of NSGA-II and SHAMODE Using Best Performance Metric Values

Hypervolume (Mean) Generational Distance (Mean)
470000 7
460000 6
450000 8
4
440000
3
430000
2
420000
. 1
410000 0
SHAMODE NGSA-II SHAMODE NGSA-II
Inverted Generational Distance (Mean) Space to extent (Mean)
600 0.012
500 0.01
400 0.008
300 0.006
200 0.004
100 0.002
, 0
SHAMODE NGSA-IT SHAMODE NGSA-II

Figure 5. Comparison of NSGA-II and SHAMODE Using Mean Performance Metric Values

Figure 6 presents the HV convergence curves for SHAMODE and NSGA-II. Both algorithms exhibit a rapid initial
increase in HV during the early iterations, which is typical as they quickly approximate the Pareto front. However,
SHAMODE continues to improve steadily throughout the optimization, while NSGA-II's progress begins to plateau
after approximately 4,000 iterations. This suggests that SHAMODE maintains a more effective balance between
exploration and exploitation over time, enabling it to find better-distributed and more convergent solutions.
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Figure 6. Hypervolume convergence trends of SHAMODE and NSGA-II

In addition to evaluating solution quality, the computational effort required by each algorithm was assessed. The average
computation time over 30 independent runs was 6521.81 seconds for SHAMODE and 5507.12 seconds for NSGA-II. As expected,
SHAMODE required more time due to its more complex structure, which includes adaptive control parameters and historical
memory mechanisms. While this increases the computational burden, it contributes to the algorithm’s improved search
performance and robustness in generating high-quality Pareto fronts. A boxplot comparing the computation times of both
algorithms is presented in Figure 7 to visually support this observation.
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Figure 7. Comparison of computation times for SHAMODE and NSGA-II over 30 independent runs.

6. Conclusion

This study presented a comparative performance analysis of two evolutionary algorithms, SHAMODE and NSGA-
II, for solving large-scale multi-objective truss optimization problems. Performance was evaluated using widely
accepted metrics. Based on the 264-bar truss benchmark, SHAMODE consistently outperformed NSGA-II in terms
of convergence, diversity, and distribution of Pareto-optimal solutions. SHAMODE achieved higher HV values,
indicating better front extension, and demonstrated superior convergence behavior with lower GD and IGD scores.
Furthermore, the algorithm provided more uniformly distributed solutions, as reflected by its favorable STE
values. These findings were further supported by convergence trends and visualizations of Pareto fronts. Overall,
the results highlight SHAMODE as a more effective and robust approach for addressing complex structural

443



Multi-Objective Optimization of Truss Structures Using NSGA-II and SHAMODE Algorithms

optimization problems involving multiple conflicting objectives. As future work, upgraded versions of the present
algorithms could be developed and evaluated on more complex multi-objective truss optimization tasks.
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