
 

432

  
 

Kafes Yapıların NSGA-II ve SHAMODE Algoritmaları ile Çok-amaçlı Optimizasyonu  
 

Ibrahim Behram UGUR*1       

 
 

*1  Şırnak Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği, ŞIRNAK  
  
 

(Alınış / Received: 20.04.2025, Kabul / Accepted: 02.06.2025, Online Yayınlanma / Published Online: 30.08.2025) 
 

  
Anahtar Kelimeler 
SHAMODE, 
NSGA-II, 
Çok-amaçlı optimizasyon 
Pareto çözüm 
Kafes yapı 

 

Öz: Bu çalışmada, büyük ölçekli çok-amaçlı kafes yapı optimizasyonunda Başarı 
Geçmişine Dayalı Uyarlamalı Çok Amaçlı Diferansiyel Evrim (SHAMODE) ve İkinci 
Nesil Sıralamalı Genetik Algoritma (NSGA-II) yöntemlerinin performansları 
incelenmiştir. Amaç, kafes sistemin yapısal ağırlığını ve maksimum düğüm noktası 
deplasmanlarını minimize ederken, gerilme ve deplasman sınırlayıcılarını da 
sağlamaktır. Bu iki yöntem ile yapılan optimizasyon sonucunda elde edilen Pareto 
çözümlerin kalitesi ve dağılımı, Hiperhacim (HV), Nesilsel Uzaklık (GD), Ters 
Nesilsel Uzaklık (IGD) ve Aralık-Uzunluk Oranı (STE) performans ölçütleri 
kullanılarak değerlendirilmiştir. Farklı çalıştırmalar sonucu elde edilen en iyi ve 
ortalama değerler incelendiğinde, SHAMODE’un, NSGA-II’ye kıyasla daha yüksek HV 
ve daha düşük GD ve IGD değerleri ürettiği görülmüştür. Ayrıca, SHAMODE daha 
düşük STE değeri ile daha dengeli bir çözüm dağılımı sağlamıştır. Bu sonuçlar, 
SHAMODE’un karmaşık yapısal optimizasyon problemleri için etkili ve sağlam bir 
yöntem olduğunu ortaya koymaktadır. 
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Abstract: This study investigates the performance of Success-History Adaptive 
Multi-Objective Differential Evolution (SHAMODE) and Non-dominated Sorting 
Genetic Algorithm II (NSGA-II) methods in solving a large-scale, multi-objective 
truss optimization problem. The objective is to minimize both the structural weight 
and the maximum nodal displacement, subject to stress and displacement 
constraints. Four widely used performance metrics including Hypervolume, 
Generational Distance (GD), Inverted Generational Distance (IGD), and Spacing-to-
Extent (STE) are employed to evaluate the quality and distribution of the Pareto 
fronts obtained. Results from multiple independent runs show that SHAMODE 
consistently produces superior Pareto fronts, as evidenced by higher HV values and 
significantly lower GD and IGD scores compared to NSGA-II. Furthermore, 
SHAMODE achieves a more uniform distribution of solutions, as indicated by its 
lower STE values. These findings demonstrate SHAMODE's effectiveness and 
robustness in handling complex structural optimization problems 
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1. Introduction
 
Truss optimization has emerged as a dynamic and extensively studied area within structural engineering research, 
characterized by a rich variety of problem formulations and advanced algorithmic developments. Over recent 
decades, interest in truss optimization has grown significantly, driven by the dual goals of structural efficiency and 
economic feasibility. The types of optimization problems encountered in truss design are commonly classified as 
single‑objective, multi‑objective, and many‑objective, with each category representing a progressively higher level 
of complexity and closer alignment with real‑world engineering requirements. While single-objective 
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formulations primarily focus on traditional targets such as minimizing structural mass or compliance, real-world 
design often necessitates balancing several conflicting performance criteria. 
 
An extensive range of metaheuristic algorithms has been proposed for solving multi-objective optimization 
problems, particularly in structural engineering applications. Among the most established approaches are the 
Non-dominated Sorting Genetic Algorithm II (NSGA-II) [1], the Strength Pareto Evolutionary Algorithm 2 (SPEA2) 
[2], and the Pareto Archived Evolution Strategy (PAES) [3], all of which have been widely adopted for their ability 
to generate diverse and well-converged Pareto fronts. More recent developments have introduced nature-inspired 
methods such as the Multi-Objective Dragonfly Algorithm (MODA) [4], the Multi-Objective Grasshopper 
Optimization Algorithm (MOGOA) [5], and the Multi-Objective Salp Swarm Algorithm (MSSA) [6], which leverage 
biological behaviors to balance exploration and exploitation. Additionally, advanced population-based strategies 
such as the Unrestricted Population-Size Evolutionary Multi-Objective Optimization Algorithm (UPS-EMOA) [7], 
the Multi-Objective Multi-Verse Optimizer (MOMVO) [8], have shown promising results in handling high-
dimensional and constrained design problems. Recent efforts have also focused on hybrid and adaptive 
algorithms, including the Success History-based Adaptive Multi-Objective Differential Evolution (SHAMODE) and 
its extension incorporating Whale Optimization (SHAMODE-WO) [9], as well as the Multi-Objective Meta-Heuristic 
with Iterative Parameter Distribution Estimation (MMIPDE) [10].  
 
Multi-objective structural optimization of trusses commonly focuses on weight and displacement, but additional 
objectives are increasingly examined. Noilublao and Bureerat [11] integrated topology, shape, and sizing, 
assessing mass, compliance, frequencies, and transmissibility. Kaveh and Laknejadi [12] introduced a graph-based 
representation for truss layouts, incorporating specialized genetic operators. Tejani et al. [13] proposed a Multi-
Objective Adaptive Symbiotic Organisms Search (MOASOS) with a two-archive method to balance exploration and 
exploitation. Mokarram and Banan [14] developed Fast Convergent Multi-Objective Particle Swarm Optimization 
(FC-MOPSO), enhancing leader selection for diversity and rapid convergence. Techasen et al. [15] considered 
reliability-based design by minimizing structural mass and reliability cost through multiple evolutionary 
algorithms. Vargas et al. [16] employed Generalized Differential Evolution 3 (GDE3) with an Adaptive Penalty 
Method, outperforming standard GDE3 and Non-dominated Sorting Genetic Algorithm II (NSGA-II). Kaveh and 
Mahdavi [17] extended Colliding Bodies Optimization into Multi-Objective Colliding Bodies Optimization 
(MOCBO), demonstrating efficient exploration and ranking in multi-objective spaces. Panagant et al. [18] 
compared fourteen metaheuristics, including NSGA-II and the Multi-Objective Evolutionary Algorithm based on 
Decomposition (MOEA/D), revealing distinct performance strengths. Carvalio et al. [19] tested Differential 
Evolution variants on complex objectives like global stability and natural frequencies, incorporating topology and 
shape variables. Lemonge et al. [20] modified GDE3 to handle novel combinations of objectives, including critical 
load factors. Eid et al. [21] introduced the Multi-Objective Spiral Water Cycle Algorithm (MOSWCA), inspired by 
water cycle dynamics, integrating a hyperbolic spiral movement for stronger exploitation. Kumar et al. [22] 
developed the Multi-Objective Multi-Verse Optimizer with a Two-Archive Strategy (MOMVO2arc), leveraging dual-
archive maintenance of diversity and convergence, surpassing NSGA-II and MOEA/D in benchmark truss problem.  
In this study, a three-dimensional steel truss structure comprising 264 members, originally proposed for the 
ISCSO-2024 [23] competition, is investigated as a benchmark for multi-objective optimization. The problem 
formulation involves two conflicting objectives: minimizing the structural weight and minimizing the maximum 
nodal displacement. With 264 design variables, the problem presents a high-dimensional and computationally 
challenging optimization task. To address this, two prominent evolutionary algorithms, NSGA-II and SHAMODE, 
are employed for generating Pareto-optimal solutions. 
 
The remainder of this paper is structured as follows: Section 2 provides a brief overview of the multi-objective 
optimization algorithms employed in this study. Section 3 presents the formulation of the multi-objective truss 
optimization problem. Section 4 outlines the details of the numerical experiment. In Section 5, the results are 
presented, including Pareto fronts, hypervolume values, and spacing metrics used for performance evaluation. 
Finally, Section 6 concludes the study. 
 
2. Optimization algorithms 
 
2.1. Non-dominated Sorting Genetic Algorithm – II (NSGA-II) 
 
NSGA-II is a popular evolutionary algorithm for multi-objective optimization, known for its efficient non-
dominated sorting approach and elitist selection mechanism. NSGA-II operates on a population of candidate 
solutions and evolves this population over a number of generations to approximate the Pareto-optimal front. The 
algorithm was originally proposed by Deb et al. [1]   to address limitations of earlier multi-objective GAs by 
introducing three key features: fast non-dominated sorting, crowding-distance diversity preservation, and elitism. 
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NSGA-II maintains a population of size np and employs genetic operators (selection, crossover, mutation) similarly 
to a standard GA. The novelty lies in how solutions are evaluated and selected. Each individual solution is evaluated 
on all objective functions. A non-dominated sorting procedure classifies the population into Pareto fronts F1, F2... 
such that F1 is the set of non-dominated solutions, F2 is the set of solutions only dominated by those in F1 and so 
forth. Solutions in lower-index fronts are better in the Pareto sense (rank 1 is best). Within each front, NSGA-II 
uses a crowding distance metric to estimate density: for each solution, the crowding distance is the average 
distance to its two nearest neighbors in objective space [1]. This provides a measure of how “isolated” a point is 
on that front; a larger crowding distance means the solution lies in a sparsely populated region of the front, which 
is desirable for diversity. 
NSGA-II’s selection is two-fold: an environmental selection that implements elitism, and a mating selection for 
reproduction. After each generation’s variation (crossover/mutation), NSGA-II employs elitist survival selection 
by combining the parent and offspring populations (of total size 2×npop) and then filtering back to npop 
individuals for the next generation [1]. This is done by sorting the combined 2×npop pool into Pareto fronts and 
accepting front by front until the new population is filled. If the last accepted front Fi does not fit entirely only the 
most widely spaced solutions in Fi (those with largest crowding distance) are chosen to fill the remaining slots. 
This ensures the population retains a diverse spread of solutions and that no dominated solution survives 
(elitism). For mating selection (to create offspring), NSGA-II uses a binary tournament operator where two 
candidates are chosen and the one with better rank is selected (or if ranks equal, the one with a larger crowding 
distance). This preference ensures that parents with higher Pareto rank (or diversity) are more likely to reproduce. 
 
Algorithm 1. Pseudo-code for NSGA-II  
Initialize population P of size npop 
Evaluate the objective values for all individuals in P 
Set generation counter iter ← 0 
while iter <itermax do 
    // Selection: Binary tournament based on rank and crowding distance 
    for i = 1 to npop do 
        Select parent1 and parent2 using tournament selection 
        Apply crossover and mutation to generate offspringi 
    end for 
    Store offspring in Q     // offspring population 
    Evaluate objective values for all individuals in Q 
    Combine P (parents) and Q (offspring) → R ← P ∪ Q 
    Perform non-dominated sorting on R to get fronts F1, F2, ..., Fi 
    Initialize new population Pnew ← ∅ 
    for each front Fi in F1, F2, ..., Fk do 
        if (|Pnew| + |Fi| ≤ N) then 
            Pnew ← Pnew ∪ Fi 
        else 
            Sort Fi by descending crowding distance 
            Add top (npop - | Pnew |) individuals from Fi to Pnew 
            break 
        end if 
    end for 
    Update P ← Pnew 
    iter ← iter + 1 
end while 
Return the non-dominated solutions in the final population P 
 
2.2. Success History–based Adaptive Multi-Objective Differential Evolution (SHAMODE) 
 
SHAMODE is a modern hybrid evolutionary approach that extends Differential Evolution with mechanisms for 
multi-objective optimization and self-adaptive parameter control. It was firstly proposed by Panagant et al. [9], 
originally to solve a reliability-based truss design problem involving simultaneous topology, shape, and sizing 
optimization. SHAMODE merges the DE search strategy with the non-dominated sorting and elitism concepts from 
algorithms like NSGA-II. Moreover, it introduces a success-history adaptive scheme to tune its mutation 
parameters F and crossover rate CR on the fly, thereby enhancing its robustness across different problem 
landscapes. In SHAMODE, candidate solutions are represented as vectors of design variables. DE generates new 
candidate solutions (offspring) through the mechanism of mutation and crossover applied to parent solutions [24]. 
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In SHAMODE, the mutation operation is formulated as an extension of the current-to-pbest/1 strategy, 
incorporating both population-based and archive-based exploration. For each individual 𝑥i,Gin the current 

generation G, the corresponding mutant vector 𝑣𝑖,G is computed using the following relation: 

 

𝑣𝑖,G =  𝑥i,G +  𝐹i,G  ⋅ (𝑥pbest −  𝑥i,G) + + 𝐹i,G  ⋅ (𝑥r1,G − x̃r2,G)  (1) 

 
where i represents the solution number in the population, 𝑥pbest is randomly selected from best performing 

solutions, 𝐹i,G is a mutation scaling factor typically set within the range [0, 1], 𝑥r1,G 𝑎𝑛𝑑  x̃r2,G are randomly selected 

from the current population and from the union of the current population and external archive.  
Following mutation, a trial vector is produced by combining the mutant vector vk and the original parent vector xk 
through a crossover process. Each component of the trial vector is selected either from vk or from xk, based on a 
predefined crossover probability CR. This can be expressed as: 
 

𝑢𝑖,𝑗 = {
𝑣𝑖,𝑗     𝑖𝑓 𝑟𝑎𝑛𝑑𝑗 ≤ 𝐶𝑅      𝑜𝑟 𝑗 = 𝑗

𝑟𝑎𝑛𝑑

𝑥𝑖,𝑗                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

 

(2) 

where j indexes the decision variables, 𝑟𝑎𝑛𝑑𝑗   is a uniformly distributed random number in the interval [0, 1], and 

𝑗𝑟𝑎𝑛𝑑  is a randomly selected index to ensure at least one component is inherited from the mutant vector. In single-
objective DE, selection is typically one-to-one: the trial vector 𝑢𝑖,𝑗  replaces the parent 𝑥𝑖,𝑗  if it exhibits superior 

fitness. However, in multi-objective optimization, as implemented in SHAMODE, selection is not performed in a 
one-to-one manner. Instead, SHAMODE follows a Pareto-based environmental selection strategy similar to that of 
NSGA-II. The parent and offspring populations are merged, and the next generation is formed through non-
dominated sorting and crowding distance-based selection. This global competition allows all offspring to be 
evaluated relative to all parents and each other.  
 
A distinguishing feature of the SHAMODE algorithm is its ability to adapt the control parameters of Differential 
Evolution (DE), specifically the mutation factor F and the crossover rate CR, throughout the optimization process 
based on historical success information. This self-adaptive mechanism is inspired by the SHADE algorithm, 
originally introduced by Tanabe and Fukunaga  [25] and aims to eliminate the need for manual parameter tuning. 
To implement this mechanism, SHAMODE maintains an external memory archive commonly denoted as A which 
stores the historical memory of scaling factors (MF) and (MCR) associated with successful offspring, i.e., individuals 
that have either replaced their parents or have been included in the next generation through Pareto-based 
selection. 
 
At the end of each generation, SHAMODE identifies which trial solutions have survived (i.e., selected into the next 
population). The corresponding control parameters used to generate those individuals are then recorded in the 
memory archive. Over time, this success history is used to update the sampling strategy for the control parameters 
in the following manner: 
 

𝐹𝑖 = 𝑟𝑎𝑛𝑑𝑐𝑖(𝜇
𝐹

, 0.1) 
(3) 
 

𝐶𝑅𝑖 = 𝑟𝑎𝑛𝑑𝑛𝑖(𝜇
𝐶𝑅

, 0.1) 

 

(4) 

𝑟𝑎𝑛𝑑𝑐i 𝑎𝑛𝑑 𝑟𝑎𝑛𝑑ni denote random values generated based on Cauchy and normal distributions with means (𝜇F, 
𝜇CR) and variances (𝜎F

2, 𝜎CR
2 ). The mean values of 𝜇F and  𝜇CR for each individual are randomly selected from the 

memories MF and MCR respectively [9]  
 
The values of 𝐹𝑖  𝑎𝑛𝑑 𝐶𝑅𝑖 adjusted dynamically using a success-history adaptation method, building on the 
approach introduced in SHADE. While SHADE relies on a weighted Lehmer mean, SHAMODE simplifies this by 
applying the standard Lehmer mean, better suited for multi-objective settings where all non-dominated solutions 
are treated equally. Full implementation details are available in the original study by Panagant et al. [9]. 
 
Algorithm 2. Pseudo-code for SHAMODE  
Initialize population P of size npop 
Initialize memory MF and MCR to store successful F and CR values  
Set generation counter iter ← 0 
while iter<itermax  
    for each individual 𝑥𝑖  in population P do 
        Select 𝐹𝑖 and 𝐶𝑅𝑖 from memory using success-history adaptation 
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        Generate mutant vector 𝑣𝑖   
        Generate trial vector 𝑢𝑖  
    end for 
    Evaluate all trial vectors in Q     // offspring population 
    Combine P (parents) and Q (offspring) → R ← P ∪ Q 
    Perform non-dominated sorting on R into fronts F1, F2, ..., Fi 
    Initialize new population 𝑃𝑛𝑒𝑤  ← ∅ 
    for each front 𝐹𝑖   in F1, F2, ..., Fi do 
        if   (|𝑃𝑛𝑒𝑤| + |Fi| ≤ npop) then 
              𝑃𝑛𝑒𝑤←  𝑃𝑛𝑒𝑤∪ Fi 
        else 
            Sort Fi by descending crowding distance 
            Add top (npop - |𝑃𝑛𝑒𝑤|) individuals from Fi to 𝑃𝑛𝑒𝑤|) 
            break 
        end if 
    end for 
    Identify successful individuals from Q that entered  𝑃𝑛𝑒𝑤  
    Store their 𝐹𝑖  and 𝐶𝑅𝑖 values in memory by updating MF and MCR 
    Update P ←  𝑃𝑛𝑒𝑤  
    Increment generation counter: iter← iter + 1 
end while 
Return the non-dominated solutions in final population P   
 
3. Multi-objective Truss Optimization Formulation 
 
Truss optimization problem is formulated as a constrained, multi-objective optimization task in which the goal is 
to minimize the total weight of the structure and nodal displacement. 

𝑓1(𝐴) = 𝑊 = ∑ 𝜌

𝑛

𝑖=1

 𝐴𝑖  𝐿𝑖  

 

(5) 

𝑓2(𝐴) = max|𝑑𝑗
(𝑙𝑑)

| (6) 

 
Here, n is the number of truss members, 𝐴𝑖 is the cross-sectional area, 𝐿𝑖  is the length, and 𝜌 is the material density. 

𝑑𝑗
(𝑙)

 is the displacement vector of node j under load case ld.  

The problem can be expressed as given below: 
 
𝐹𝑖𝑛𝑑       𝐴 = [𝐴1, 𝐴2, … 𝐴𝑛]  to minimize  {𝑓1(𝐴), 𝑓2(𝐴)}     subjected to  𝑔𝑗(𝐴) ≤ 0    j=1,2,…,m 

 
Here, 𝑔𝑗(𝐴)denotes the constraint functions (e.g., axial stress, buckling, or displacement limits), m is the total 

number of constraints. The truss design must comply with the AISC-LRFD (1994) provisions for both strength and 
stability. For members under axial tension, the design axial force must not exceed the available tensile strength: 
 

𝑃𝑢   ≤ 𝜙𝑡 ∙ 𝑃𝑛    (7) 

 
𝑃𝑢  𝑎𝑛𝑑 𝑃𝑛 are the ultimate and nominal tensile force, 𝜙𝑡  𝑖𝑠 the resistance factor for tension and taken as 0.9.  Pn is 
calculated as 𝑃𝑛 = 𝐴 ∙ 𝐹𝑦 , with 𝐹𝑦 representing the yield stress of the steel. 

 
For members under axial compression, the design axial force must not exceed the critical buckling force (𝑃𝑐𝑟): 
 

𝑃𝑢   ≤ 𝜙𝑐 ∙ 𝑃𝑐𝑟  (8) 

 
  𝜙𝑐 𝑖𝑠 the resistance factor for compression and taken as 0.85. 𝑃𝑐𝑟  is calculated as 𝑃𝑐𝑟 = 𝐴 ∙ 𝐹𝑐𝑟 , with 𝐹𝑐𝑟 
representing the critical buckling stress is found as given equation: 
 

𝐹𝑐𝑟 = {

(0.658𝜆𝑐
2
) 𝐹𝑦    𝑖𝑓 𝜆𝑐 ≤ 1.5 

[
0.877

𝜆𝑐
2 ] 𝐹𝑦       𝑖𝑓 𝜆𝑐 > 1.5

} 

 

(9) 
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The critical slenderness ratio denoted 𝑎𝑠 𝜆𝑐   defines the transition point between elastic and inelastic buckling 
behavior in compression members. 
 
To evaluate the performance of the proposed optimization algorithms in generating high-quality Pareto fronts, 
four established multi-objective performance indicators are implemented: Hypervolume (HV), Generational 
Distance (GD), Inverted Generational Distance (IGD), and Spacing-to-Extent ratio (STE). HV is the area (or volume 
in many-objective problems) between a reference point and the obtained Pareto front. It visually corresponds to 
the space dominated by non-dominated solutions and is influenced by the location of the reference point, typically 
set using the worst objective values observed across all algorithms and runs. The HV is calculated as: 
 

𝐻𝑉 = volume (⋃ 𝑉𝑖

|𝑃|

𝑖=1

) 

 

(10) 

where 𝑉𝑖  is the hypercube defined between the ith non-dominated solution and the reference point. A larger HV 
value indicates a better approximation of the true Pareto front. GD measures the average Euclidean distance from 
each solution in the obtained Pareto front to its nearest point on a true pareto front. IGD is a metric which measures 
the average distance from each point in the reference front to its nearest solution in the obtained front. Both GD 
and IGD require a reference front, which ideally corresponds to the true Pareto front of the optimization problem. 
However, since the true front is typically unknown, a reference front is approximated by aggregating all non-
dominated solutions from multiple runs (M1 ) of all compared algorithms (M2). The combined pool is then filtered 
to retain only the non-dominated solutions, which are used as the reference front [18]. Smaller values of GD and 
IGD indicate better algorithm performance by reflecting closer convergence to the reference front and improved 
coverage of the Pareto-optimal solution space. These metrics are calculated as follows:  
 

𝐺𝐷 =
√∑ 𝑑𝑖

2|𝑃|
𝑖=1

|𝑃|
 

 

(11) 

 

𝐼𝐺𝐷 =
√∑ 𝑑𝑖

′2|𝑃′|
𝑖=1

|𝑃′|
 

 

(12) 

STE is a composite metric used to assess both the distribution uniformity and the range of the obtained solutions. 
It is computed as the ratio of Spacing (SP) to Extent (ET): 
 

𝑆𝑃 =
1

|𝑃| − 1
∑(𝑑𝑖 − 𝑑̅)

2

|𝑃|

𝑖=1

 

 

(13) 

 
 

𝐸𝑇 = √∑(𝑓𝑛
max − 𝑓𝑛

min)2

𝑀

𝑛=1

 

 

(14) 

 

𝑆𝑇𝐸 =
𝑆𝑃

𝐸𝑇
 

 
(15) 

where 𝑑𝑖  is the Euclidean distance between the i-th solution and its nearest neighbor in the obtained front, 𝑑̅ is the 
mean of all 𝑑𝑖 , M is the number of objective functions, 𝑓𝑛

max𝑎𝑛𝑑 𝑓𝑛
minare the maximum and minimum values of the 

n-th objective. A lower STE value indicates that the Pareto front is both uniformly spaced and well-extended, which 
is desirable for providing decision-makers with a diverse set of trade-off solutions. 
 
4. Numeric Example: 264-Bar Dome-like Space Truss 
 
In this study, the  optimization problem of the International Student Competition in Structural Optimization (ISCSO 
2024) [23] is considered as a benchmark example. The structure consists of a dome-like truss composed of 264 
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members and 88 nodes, of which 80 are free and 8 are designated as supports. The truss geometry is illustrated in 
Fig. 1. The material of the truss is steel with density ρ = 7.85 ton/m³, Young’s modulus E = 200 GPa, and yield 
strength Fy = 248.2 MPa.  
 

 
 

(a)         (b) 
Figure 1. 268-bar dome-like truss geometry a) 3D view b) Top view [23] 

 

A fixed topology is assumed, meaning that the nodal connectivity and geometry are predefined and remain 
unchanged throughout the optimization process. The structure is required to safely withstand multiple load cases, 
while two conflicting objectives are to be minimized: the total structural weight and the maximum nodal 
displacement [23].  
 
This structure is subjected to three loading scenarios:  
 

Load Case 1: 11 kN applied at each free node in the global +x direction 
Load Case 2: 11 kN at each free node in the global +y direction 
Load Case 3: 14 kN at each free node in the global -z direction 
 

Since no member grouping is applied, each truss member is sized independently. As a result, there are 264 design 
variables, denoted as {S1, S2, … S264} each representing the cross-sectional section choice for one truss member. 
The cross-section selection is restricted to a predefined catalog of 37 commercially available circular hollow 
sections (Table 1) which are characterized by varying outer diameters and wall thicknesses. These are standard 
pipe profiles commonly used in steel structures. The variable Si is an integer between 1 and 37 indicating the 
section ID chosen for member-i.  A value of 1 corresponds to the smallest pipe section and 37 to the largest. The 
total number of possible designs is 37264, resulting in a vast and highly complex search space. 
 

Table 1. Available Circular Hollow Sections [23] 
ID Section Name Area (cm²) ID Section Name Area (cm²) 

1 PIPE 1/2" STD 1.6129 20 PIPE 3-1/2" XS 23.7419 
2 PIPE 1/2" XS 2.0645 21 PIPE 2-1/2" XXS 25.9999 
3 PIPE 3/4" STD 2.1484 22 PIPE 5" STD 27.7419 
4 PIPE 3/4" XS 2.7935 23 PIPE 4" XS 28.4516 
5 PIPE 1" STD 3.1871 24 PIPE 3" XXS 35.2903 
6 PIPE 1" XS 4.1226 25 PIPE 6" STD 35.9999 
7 PIPE 1-1/4" STD 4.3161 26 PIPE 5" XS 39.4193 
8 PIPE 1-1/2" STD 5.1548 27 PIPE 4" XXS 52.2580 
9 PIPE 1-1/4" XS 5.6839 28 PIPE 6" XS 54.1934 
10 PIPE 1-1/2" XS 6.9032 29 PIPE 8" STD 54.1934 
11 PIPE 2" STD 6.9032 30 PIPE 5" XXS 72.9031 
12 PIPE 2" XS 9.5484 31 PIPE 10" STD 76.7740 
13 PIPE 2-1/2" STD 10.9677 32 PIPE 8" XS 82.5805 
14 PIPE 3" STD 14.3871 33 PIPE 12" STD 94.1934 
15 PIPE 2-1/2" XS 14.5161 34 PIPE 6" XXS 100.6450 
16 PIPE 2" XXS 17.1613 35 PIPE 10" XS 103.8708 
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17 PIPE 3-1/2" STD 17.2903 36 PIPE 12" XS 123.8707 
18 PIPE 3" XS 19.4838 37 PIPE 8" XXS 137.4191 
19 PIPE 4" STD 20.4516    

 
The optimization problem is formulated as a bi-objective design task with two objectives. The first objective is to 
minimize the total structural weight, aiming to reduce material usage and construction cost; however, this often 
results in a more flexible structure. The second objective is to minimize the maximum nodal displacement, 
promoting a stiffer structural response with smaller deflections under loading. These objectives inherently 
conflict, as achieving lower displacements typically requires the use of larger or heavier cross-sections, which in 
turn increases the total weight of the structure. 
 
The optimization thus aims to find a Pareto front of designs ranging from very lightweight but flexible solutions to 
very stiff but heavy solutions.  Each solution is evaluated by running the structural analysis provided by a MATLAB 
function in ICSCO-2024. Constraint handling is performed using a dominance-based approach, in which any 
solution that violates constraints is considered to be dominated by all feasible solutions. Throughout the 
optimization process, it is ensured that the final Pareto front comprises only non-dominated, feasible solutions. In 
practice, when comparing two solutions, the feasible one is always preferred over the infeasible one. Alternatively, 
infeasible solutions may be penalized by assigning artificially high objective function values. Both SHAMODE and 
NSGA-II are configured to prioritize feasibility, either by discarding infeasible candidates or by applying a 
constraint-domination rule during selection. 
 
Since the true Pareto front of the optimization problem is unknown, a reference front was constructed following 
the approach described in Section 3. Specifically, all non-dominated solutions obtained from 30 independent runs 
of NSGA-II and SHAMODE were aggregated. Duplicate solutions were removed, and a final non-dominated sorting 
was applied to extract the reference front. This approximated front was then used as a common baseline to 
compute performance metrics such as GD and IGD. 
 
5. Results and Discussion 
 
The truss optimization problem was solved using both the NSGA-II and SHAMODE algorithms under identical 
experimental settings. For each algorithm, a population size of npop=80 was adopted, and the number of 
generations was specified to satisfy the evaluation budget of 106 function evaluations as conditioned in the 
competition [23]. Each algorithm was independently executed 30 times to ensure statistical reliability of the 
results. The initial solutions were constructed by randomly assigning section IDs to each member.  
 
The NSGA-II algorithm was configured with standard settings as described in the original study Ref. [1], including 
binary tournament selection, a crossover probability of 0.9, and a mutation rate defined as 1/ndim. SHAMODE was 
implemented according to its original formulation. Initial values of MF and MCR set to 0.5, and a historical memory 
size H=5 was used to guide the adaptive adjustment of control parameters as suggested in SHADE [25]. The 
maximum size of the external archive A was set to 1.4×npop, following the recommendation in L-SHADE [26]. It 
should be noted that the reference point used in the Hypervolume (HV) calculation was (F1, F2) = (57319, 10.5), 
as specified in Ref. [23] 
 
Both algorithms employed the same constraint-handling strategy, in which any solution violating one or more 
constraints was considered inferior to all feasible solutions. This was enforced through either explicit removal of 
infeasible solutions or by applying a constraint-domination principle during selection. To assess robustness, each 
algorithm was run independently 30 times. 
 
The HV results over 30 independent runs, including the mean, minimum, and standard deviation, are summarized 
in Table 2. As shown, SHAMODE achieved both a higher mean HV of 460 068.23 and a best HV of 451 693.92, 
outperforming NSGA-II, which yielded a best HV of 427 576.10 and a mean HV of 419 394.50. Given that higher 
HV reflects better front extension and quality, SHAMODE yielded approximately 7.6% higher hypervolume values 
compared to NSGA-II, indicating its stronger performance in generating well-distributed Pareto-optimal solutions 
for the multi-objective truss optimization problem. Additionally, the standard deviation of NSGA-II’ is lower than 
that of SHAMODE indicating that NSGA-II produced more consistent results across independent runs, despite 
SHAMODE achieving higher average and better HV values. 
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Table 2.  Hypervolume values from 30 independent runs. 

Run no SHAMODE NSGA-II 
 

Run no SHAMODE NSGA-II 

1 453087.0 419404.9 
 

16 452166.4 418808.5 

2 447849.8 417153.0 
 

17 441671.8 422215.2 

3 458956.0 415173.6 
 

18 459158.0 413460.7 

4 446232.7 418293.5 
 

19 460068.2 420869.1 

5 450712.4 422778.8 
 

20 449188.6 426207.9 

6 455086.1 419189.7 
 

21 452157.6 417076.3 

7 454098.9 420856.1 
 

22 458475.5 419432.9 

8 454376.8 410742.5 
 

23 448146.5 427576.1 

9 452833.3 417231.7 
 

24 443105.7 423951.3 

10 443396.7 422455.9 
 

25 453509.3 418885.3 

11 451249.8 421705.4 
 

26 449677.8 420469.3 

12 446786.2 413480.4 
 

27 459200.2 422722.0 

13 450593.6 418117.9 
 

28 444479.2 426849.8 

14 447118.4 418545.4 
 

29 457714.7 412677.4 

15 454774.0 412798.2 
 

30 454946.2 422707.3 

Best HV 460068.2 427576.1 
    

Mean HV 451693.9 419394.5 
    

Std 5094.8 4171.8 
    

 
Pareto fronts obtained by NSGA-II and SHAMODE on the 264-bar truss design problem. HV plots with reference 
point and corresponding Pareto fronts obtained by NSGA-II and SHAMODE are presented in Figures 1 and 2, 
respectively.  Each point corresponds to a feasible truss design, plotted by its total weight on horizontal axis and 
maximum nodal displacement on vertical axis. In the figures, the designs corresponding to the lowest weight with 
the highest displacement and the highest weight with the lowest displacement are highlighted within the same 
plot, using arrows pointing to the respective solutions on the Pareto front. Lower-left points are preferable, which 
denotes light and stiff designs. When comparing figures, it can be clearly seen that SHAMODE is able to extend the 
front slightly toward lighter weights and lower deflections, indicating a broader trade-off coverage.  
 
 

 
Figure 2. Hypervolume plot, best Pareto front, and representative structural designs obtained for the 264-bar truss using 

NSGA-II 
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Figure 3. Hypervolume plot, best Pareto front, and representative structural designs obtained for the 264-bar truss using 
SHAMODE 

Table 3 presents the performance metrics including GD, IGD, and STE for the SHAMODE and NSGA-II algorithms 
evaluated on the 264-bar truss optimization problem. In terms of convergence, SHAMODE outperforms NSGA-II, 
as reflected by its lower GD values (best: 2.15 vs. 3.68; mean: 3.53 vs. 6.32), indicating that SHAMODE’s solutions 
are closer on average to the reference front. The IGD metric, which evaluates both convergence and coverage, 
further confirms SHAMODE’s advantage. SHAMODE reports a significantly lower best IGD (11.80 vs. 478.29) and 
mean IGD (87.81 vs. 536.22), demonstrating a more comprehensive approximation of the reference front. Finally, 
the STE values which combine spacing and extent to assess uniformity show that SHAMODE provides a more 
uniformly distributed front (mean STE: 0.00158) compared to NSGA-II (mean STE: 0.00974). This suggests that 
SHAMODE's Pareto solutions are not only better in quality but also more evenly spaced. In summary, across all 
performance metrics, SHAMODE outperforms NSGA-II both in terms of solution quality and consistency, making 
it a more effective algorithm for the large-scale, multi-objective truss optimization problem considered, as shown 
in Figure 4.  
 

Table 3.  Performance Metrics for NSGA-II vs SHAMODE on the 264-bar Truss Problem 

Algorithm   HV GD IGD STE 

SHAMODE 

Best 460068.2 2.154979 11.79982 0.000493 

Mean 451693.9 3.529307 87.80671 0.001583 

Std 5094.797 0.862568 43.77879 0.000824 

NSGA-II 

Best 427576.1 3.675992 478.2892 0.006407 

Mean 419394.5 6.317392 536.2202 0.009739 

Std 4171.81 1.62877 32.1734 0.002277 

 
 
To statistically assess the significance of the observed performance differences in HV values, a Wilcoxon signed-
rank test was conducted using the results from 30 independent runs. The test yielded a p-value of 3.20 × 10-11, 
indicating that the differences between SHAMODE and NSGA-II are statistically significant at the 0.05 level. These 
results confirm that SHAMODE consistently outperforms NSGA-II in terms of HV metric across repeated trials. 
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Figure 4. Comparison of NSGA-II and SHAMODE Using Best Performance Metric Values 

 

 

 
Figure 5. Comparison of NSGA-II and SHAMODE Using Mean Performance Metric Values 

 

Figure 6 presents the HV convergence curves for SHAMODE and NSGA-II. Both algorithms exhibit a rapid initial 
increase in HV during the early iterations, which is typical as they quickly approximate the Pareto front. However, 
SHAMODE continues to improve steadily throughout the optimization, while NSGA-II's progress begins to plateau 
after approximately 4,000 iterations. This suggests that SHAMODE maintains a more effective balance between 
exploration and exploitation over time, enabling it to find better-distributed and more convergent solutions. 
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Figure 6. Hypervolume convergence trends of SHAMODE and NSGA-II 

 
 
 
 

In addition to evaluating solution quality, the computational effort required by each algorithm was assessed. The average 
computation time over 30 independent runs was 6521.81 seconds for SHAMODE and 5507.12 seconds for NSGA-II. As expected, 
SHAMODE required more time due to its more complex structure, which includes adaptive control parameters and historical 
memory mechanisms. While this increases the computational burden, it contributes to the algorithm’s improved search 
performance and robustness in generating high-quality Pareto fronts. A boxplot comparing the computation times of both 
algorithms is presented in Figure 7 to visually support this observation. 
 

 
Figure 7. Comparison of computation times for SHAMODE and NSGA-II over 30 independent runs. 

 
 

6. Conclusion 
 
This study presented a comparative performance analysis of two evolutionary algorithms, SHAMODE and NSGA-
II, for solving large-scale multi-objective truss optimization problems. Performance was evaluated using widely 
accepted metrics. Based on the 264-bar truss benchmark, SHAMODE consistently outperformed NSGA-II in terms 
of convergence, diversity, and distribution of Pareto-optimal solutions. SHAMODE achieved higher HV values, 
indicating better front extension, and demonstrated superior convergence behavior with lower GD and IGD scores. 
Furthermore, the algorithm provided more uniformly distributed solutions, as reflected by its favorable STE 
values. These findings were further supported by convergence trends and visualizations of Pareto fronts. Overall, 
the results highlight SHAMODE as a more effective and robust approach for addressing complex structural 
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optimization problems involving multiple conflicting objectives. As future work, upgraded versions of the present 
algorithms could be developed and evaluated on more complex multi‑objective truss optimization tasks. 
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