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Abstract 

 

This study aims to evaluate air quality in Ardahan, a province located in the northeastern part of Türkiye, based on the 

pollutants PM₁₀, SO₂, and O₃ measured throughout 2024. Air Quality Index (AQI) values were calculated on an hourly, daily, and 

monthly scale, and the percentage contribution of each pollutant to the AQI was analyzed. According to the data, a total of 123 risky 

hours were identified where the AQI exceeded 100, a level considered unhealthy for sensitive groups. In all of these hours, the 

dominant pollutant was determined to be PM₁₀. The results indicate that PM₁₀ was the most influential pollutant on AQI throughout 

the year, particularly during winter months when high humidity and emissions from heating contributed to increased concentrations. 

However, from the perspective of daily average AQI values, only 3 days exceeded the threshold of 100. This suggests that while 

high pollution levels occurred during certain hours of some days, these peaks were not widespread enough to elevate the daily 

average beyond the threshold. O₃ became more prominent during summer months due to increased photochemical reactions, 

although it occasionally appeared as the dominant pollutant in certain periods due to data unavailability. The contribution of SO₂ to 

the AQI remained at a relatively low level. These findings provide important insights for air quality management and environmental 

policy development. They highlight how critical the issue of missing data is in AQI prediction. Therefore, it is suggested that 

artificial intelligence and machine learning-based models, which can produce reliable predictions even with incomplete data, are 

essential tools for improving air pollution early warning systems.  
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1. Introduction 

 

Air pollution poses a significant threat to both human 

health and ecological systems across the globe, stemming from 

diverse anthropogenic sources including industrial processes, 

transportation emissions, and fossil fuel usage (Ansari and 

Alam, 2024). With the progress of modern urbanization and 

industrialization, it has become one of the most significant 

threats to environmental and public health. According to the 

World Health Organization (WHO) air pollution program, 91% 

of the global population is exposed to polluted air, and 

approximately 4.2 million deaths occur each year due to ambient 

air pollution (Krishan et al., 2019). In 2019, WHO estimated that 

more than 15% of all deaths globally were attributable to 

ambient air pollution (Ansari and Alam, 2024). Air pollution 

increases the risk of conditions such as asthma, cardiovascular 

issues, skin infections, eye diseases, throat infections, lung 

cancer, and bronchitis (Arslan et al., 2024; Natarajan et al., 

2024). It has been shown to be responsible for more than one-

third of deaths caused by these health problems (Krishan et al., 

2019). Prolonged exposure to air pollution not only increases the 

likelihood of premature death but can also cause developmental 

problems such as impaired lung function and cognitive 

development in children (Natarajan et al., 2024). 
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Monitoring air quality is crucial, especially in 

environments where pollutant concentrations exceed health-

based thresholds. In this regard, the Air Quality Index (AQI), 

developed by the United States Environmental Protection 

Agency (USEPA),  (Horn and Dasgupta, 2024), serves as a vital 

indicator that quantifies the intensity of air pollutants and helps 

assess their health impacts (Janarthanan et al., 2021). The Air 

Quality Index informs the public about the level of air quality in 

their environment and warns vulnerable groups such as children, 

the elderly, and individuals with cardiovascular or respiratory 

diseases about potential health hazards (Kingsy and Manju, 

2019). The AQI is calculated based on measurements of 

pollutants such as PM2.5, PM10, CO, SO₂, NO₂, and O₃ and 

expresses air quality as a single numerical value. The AQI, 

which spans a scale from 0 to 500, classifies air quality into six 

distinct categories: Good, Moderate, Unhealthy for Sensitive 

Groups, Unhealthy, Very Unhealthy, and Hazardous 

(Janarthanan et al., 2021; Oruc, 2022). More precisely, AQI 

scores ranging from 0 to 50 indicate “Good” air quality, while 

values from 51 to 100 correspond to “Moderate” conditions. 

Levels between 101 and 150 signal air that is “Unhealthy for 

Sensitive Groups,” 151 to 200 reflect “Unhealthy” status, 201 to 

300 are labeled “Very Unhealthy,” and scores from 301 to 500 

fall under the “Hazardous” category. Index values exceeding 

500 are classified as “Beyond AQI,” yet still considered within 

the Hazardous range (Horn and Dasgupta, 2024). Given the 

severe harm air pollution inflicts on both human health and 

agricultural economies, accurate air quality forecasting is 

critically important for assisting governments with atmospheric 

early warning systems and emergency planning (Qiao et al., 

2022). The AQI enables individuals-especially the elderly, 

children, and those with respiratory diseases-to take protective 

measures based on daily air quality levels. Additionally, local 

authorities and environmental agencies can utilize AQI data to 

develop anti-pollution policies and respond through early 

warning systems in situations that threaten public health. 

In rural areas, the use of fossil fuels for heating and the 

incineration of waste contribute significantly to the deterioration 

of air quality by releasing harmful pollutants into the 

atmosphere, such as carbon monoxide (CO), sulfur dioxide 

(SO₂), nitrogen oxides (NOₓ), and particulate matter (PM) 

(Natarajan et al., 2024). Among the six air pollutants considered 

in AQI calculations, PM2.5 and O₃ are particularly critical for 

human health. Ozone, a secondary pollutant formed through 

photochemical reactions between NOₓ and volatile organic 

compounds (VOCs), has been shown to significantly reduce 

crop yields and is a major component of smog, which poses toxic 

risks to both animal and plant life (Wang et al., 2019). Long-

term exposure to PM2.5 is a major environmental risk factor for 

cardiopulmonary and lung cancer-related mortality (Pope et al., 

2002). 

Although global interest in air quality has intensified in 

recent decades, the majority of scholarly investigations continue 

to concentrate on densely populated metropolitan areas and 

highly industrialized urban centers. Within the context of 

Türkiye, empirical research on air quality has similarly exhibited 

a spatial bias, predominantly prioritizing regions characterized 

by elevated levels of industrial activity and demographic 

concentration. Notable examples include Istanbul, Çanakkale, 

Adıyaman, Antalya, and Mersin, which have frequently 

constituted the focal points of monitoring initiatives and 

analytical assessments. (Eke et al., 2024; Kara et al., 2024; Oguz 

and Pekin 2024; Ozdemir et al., 2024; Yavuz 2025). The 

emphasis of previous research can be ascribed to the fact that air 

pollution in these urban centers is capable of affecting larger 

segments of the population and of giving rise to considerable 

public health concerns. Nevertheless, this research orientation 

has led to the underrepresentation, within the existing literature, 

of smaller-scale regions with limited industrial activity, which 

may nonetheless be subject to episodic air pollution risks due to 

particular meteorological and geographical conditions. For this 

reason, Ardahan Province, situated in northeastern Türkiye, was 

selected in the present study as a representative case of a smaller 

region with restricted industrial development. The province is 

characterized by prolonged and severe winters, frequent 

meteorological inversions, and elevated levels of fuel 

consumption for residential heating, all of which contribute 

significantly to air pollution risks especially during the winter 

months.  

Despite its limited industrial activity, Ardahan is exposed 

to high particulate matter (PM) levels in winter due to increased 

fuel usage for heating and meteorological inversions. In this 

study, Air Quality Index (AQI) values were calculated on an 

hourly, daily, and monthly basis based on the measured 

concentrations of pollutants such as PM₁₀, SO₂, and O₃. In 

addition, the relative contributions of these pollutants to AQI 

values were also determined. The findings of this analysis are 

expected to make a significant contribution to environmental 

planning and policy development processes in provinces like 

Ardahan, which are especially vulnerable to air quality issues 

during the winter season. 

 

2. Material and methods 

 

2.1. Monitoring location 

 

Located in the northeastern part of Türkiye, Ardahan 

Province lies between 42.70° east longitude and 41.11° north 

latitude. Geographically, it shares international borders with 

Georgia and Armenia to the northeast, and is surrounded by the 

provinces of Kars to the south and southeast, Erzurum to the 

southwest, and Artvin to the west (Barlik et al., 2024). The data 

used in this study comprise hourly measurements for the year 

2024, obtained from the Ardahan Air Quality Monitoring 

Station (Ardahan/City Center, coordinates: latitude 41.110816, 

longitude 42.7010571), which operates under the National Air 

Quality Monitoring Network of the Ministry of Environment, 

Urbanization and Climate Change of the Republic of Türkiye 

(SIM, 2025). The analysis focused on the parameters PM₁₀, SO₂, 

O₃, NOₓ, and NO. The measurement period spans from January 

1, 2024, to December 31, 2024. The location of the province and 

the monitoring station is presented in Fig. 1.  

In all air quality monitoring stations affiliated with the 

central authority, sulfur dioxide (SO₂) and particulate matter 

(PM₁₀, PM₂.₅) are measured alongside nitrogen oxides (NO, 

NO₂, NOₓ), carbon monoxide (CO), and ozone (O₃) using fully 

automated systems. The measurement data collected at these 

stations are transmitted via GSM modems to the Data Processing 

Center of the Environmental Reference Laboratory, which 

operates under the Ministry of Environment, Urbanization, and 

Climate Change. The data, received as hourly averages from the 

stations, are subjected to verification procedures (Sahin, 2025). 

Subsequently, the validated data from the air quality monitoring 

stations are made publicly accessible through the website 

www.havaizleme.gov.tr and the National Air Quality 

Monitoring Network mobile application. 
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Fig. 1. Ardahan province and station location where air quality data were obtained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2. Air quality index 

 

The AQI provides a standardized numerical representation 

of air quality by evaluating the concentration levels of various 

atmospheric pollutants. Commonly included in AQI 

computations are PM2.5, PM10, sulfur dioxide (SO₂), nitrogen 

dioxide (NO₂), carbon monoxide (CO), and ozone (O₃). As 

outlined by the United States Environmental Protection Agency 

(EPA) under the National Ambient Air Quality Standards 

(NAAQS), the AQI for each pollutant is determined through a 

specific formula designed to translate pollutant concentrations 

into index values (Bishoi et al., 2009): 

 

𝐴𝑄𝐼𝑖 =
𝐼𝐻𝑖 − 𝐼𝐿𝑜
𝐶𝐻𝑖 − 𝐶𝐿𝑜

(𝐶𝑖 − 𝐶𝐿𝑜) + 𝐼𝐿𝑜 

 

Definition of variables: 

AQIi: The calculated AQI value for pollutant i; it represents 

the air quality index for that specific pollutant. Ci: The measured 

concentration of the pollutant (e.g., in µg/m³ for PM₁₀ and SO₂, 

or in ppb for O₃). CLo and CHi: 

The lower and upper bounds of the concentration range that 

includes 𝐶𝑖. These breakpoints are determined based on national 

or international air quality standards. 𝐼𝐿𝑜 and 𝐼𝐻𝑖: The 

corresponding AQI values for CLo and CHi, defining the AQI 

range into which the concentration falls. The ranges shown in 

Table 1 are used: (0-50, 51-100, 101-150, 151-200, 201-300 and 

301-500). 

 
Table 1 

Pollutant-Based AQI breakpoints categorized by health risk levels and 

color indicators. 

AQI Category, Pollutants and Health Markers 

PM10 

(µg m-3) 

24-hr 

SO2 (ppb) 

1-hr 

O3 (ppb) 

8-hr 
AQI AQI 

Category 

𝐶𝐿𝑜- 𝐶𝐻𝑖 𝐼𝐿𝑜- 𝐼𝐻𝑖𝑜 

0-54 0-35 0-54 0-50 Good 

55-154 36-75 55-70 51-100 Moderate 

155-254 76-185 71-85 101-150 
Unhealty for sensitive 

groups 

255-354 186-304 86-105 151-200 Unhealty 

355-424 305-604 106-200 201-300 Very Unhealty 

425-604 605-1004 - 301-500 Hazardous 

 

The analysis was performed using measurements obtained 

from the air quality monitoring station, focusing on PM₁₀, SO₂, 

and O₃, which are primary contributors to AQI calculations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since the pollutant concentration values such as PM2.5, NO₂, and 

CO were not available in the data obtained from the monitoring 

station, they were excluded from the calculations. In this 

context, AQI calculations were performed using 24-hour 

average concentrations for PM₁₀, 8-hour rolling averages for O₃, 

and hourly measurements for SO₂. The AQI breakpoint values 

for each pollutant, determined according to EPA’s color-coded 

standards, are presented in Table 1. 

 

3. Results  

 

3.1. Statistical analysis 

 

The data were obtained in Excel format, and the 

preprocessing phase was conducted using both Python (pandas, 

numpy libraries) and Microsoft Excel. Out of the hourly 

measurements recorded over the course of one year, 72.53% of 

PM10, 71.94% of SO₂, and 98.22% of O₃ data were valid. While 

O₃ data demonstrates high reliability in terms of data 

completeness, there are significant gaps in PM10 and SO₂ 

measurements. Since the calculation of the National Air Quality 

Index (NAQI) requires valid data from at least three pollutants, 

these deficiencies may limit the ability to compute the index 

during certain time periods. During preprocessing, missing data 

(represented by “–”) were cleaned and filtered to retain only 

statistically meaningful entries. For each pollutant, only valid 

(measurable) hourly values were included in the analysis. The 

pollutant data were structured in separate columns, and a unified 

dataset was created for further evaluation. Descriptive statistics 

for each measured pollutant parameter are presented in Table 2. 

 
Table 2 

Descriptive statistical properties of pollutant parameters. 

Pollutants Min. Max. Mean Std. Dev. 

PM10 (μg/m³) 24-hr 13.83 179.07 44.08 22.55 

SO2 (ppb) 1-hr 0.18 9.25 1.99 1.12 

O3 (ppb) 8-hr 3.29 78.75 33.82 15.17 

NO (μg/m³) 1-hr 0.33 96.62 7.35 7.40 

NOX (μg/m³) 1-hr 0.0 198.64 32.07 24.77 

 

Among the air pollutants evaluated in this study, PM₁₀ 

exhibited the highest average concentration, with a mean value 

of 44.08 μg/m³ and a standard deviation of 22.55, indicating a 

broad dispersion. O₃ ranked second with an average 

concentration of 33.82 ppb; however, its maximum value 

reached a remarkable 78.75 ppb. SO₂, on the other hand, 

demonstrated a relatively stable distribution, characterized by a 

low average (1.99 ppb) and a narrow range of variation. The NO 
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parameter remained at a low level with a mean concentration of 

7.35 μg/m³, but its temporal fluctuations were supported by a 

standard deviation of 7.40. The NOₓ data, despite having a 

modest average value, included one of the most extreme 

maximum values recorded 198.64 μg/m³. The high standard 

deviation and the substantial gap between the average and 

maximum values indicate the occurrence of sporadic but severe 

pollution events. These statistical indicators provide critical 

insights into the air quality observed in Ardahan Province 

throughout 2024, highlighting the need for targeted mitigation 

policies, particularly concerning PM₁₀, NOₓ, and O₃ pollutants. 

 

3.2. Temporal distribution of AQI at hourly, daily, and 

monthly scales 

 

Extensive research has been devoted to investigating the 

health impacts of air pollution and to advancing predictive and 

control strategies for air quality management, with ongoing 

efforts continuing in this domain. In this study, data obtained 

from the National Air Quality Monitoring Station were analyzed 

on an hourly, daily, and monthly basis. Fig. 2 illustrates the 

maximum hourly AQI values measured throughout 2024 in 

Ardahan, along with the dominant pollutant types identified on 

an hourly scale. Each pollutant type is represented by a distinct 

color and symbol in the figure. In general, hourly AQI values 

fluctuated between 30 and 100, though they occasionally 

exceeded 120. These time periods may pose potential risks, 

especially for sensitive groups. It is evident that air quality can 

vary  significantly  within a day on an hourly basis. PM₁₀ frequ- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ently appeared as the dominant pollutant in the hourly data. 

According to the report published by the Turkish State 

Meteorological Service, the average relative humidity in 

Ardahan ranged between 66.7% and 70.5% between the years 

1970 and 2024 (MGM, 2024). Higher relative humidity levels 

enhance the adhesion of particulate matter to water vapor, 

increasing the mass concentration of particles (Zhang et al., 

2017). The elevated humidity levels in Ardahan appear to 

significantly contribute to the increased concentration and 

dominance of PM₁₀. 

In addition, O₃ also emerged as a dominant pollutant during 

specific hours and days. Incomplete fuel combustion results in a 

direct increase in CO, NO₂, and particulate matter emissions. 

The photochemical reactions between emitted NO₂ and volatile 

organic compounds (VOCs) subsequently lead to ozone 

formation. These ozone-producing photochemical reactions can 

peak during the summer months, when solar radiation is more 

intense (Horn and Dasgupta, 2024). This phenomenon can be 

associated with elevated ozone levels driven by sunlight 

exposure during summer. Notably, on the evenings of August 4 

and 5, 2024 (between 18:00 and 20:00), AQI values exceeded 

120, with O₃ identified as the dominant pollutant during those 

hours. Furthermore, reduced fossil fuel consumption for heating 

during the summer in Ardahan likely leads to decreased PM₁₀ 

concentrations, thereby allowing O₃ to become the prevailing 

pollutant. 

During the sampling period, the daily average maximum 

AQI values measured in Ardahan and the dominant pollutant 

types for each day are presented in Fig. 3. The daily AQI values  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Hourly AQI trends by time of day. 

 

Fig. 3. Daily average AQI trends for 2024. 
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generally ranged between 30 and 80, indicating that air quality 

in Ardahan was mostly at a moderate level. Only on a few days 

did the AQI exceed 100, reaching levels considered unhealthy 

for sensitive groups. PM₁₀ was observed as the most frequently 

dominant pollutant in the graph, suggesting that particulate 

matter pollution is a significant issue in Ardahan. PM₁₀ is 

typically associated with residential fuel combustion, dust 

transport, and road traffic emissions. It was also observed that 

ozone (O₃) appeared as the dominant pollutant on certain days. 

Similarly, between 2019 and 2023, a marked increase in ozone 

concentrations was reported, particularly on hot days (Barlik et 

al., 2024). Although ozone is generally known to be more 

prominent during warmer months, the analysis revealed several 

instances during the winter months where ozone appeared as the 

dominant pollutant. Further investigation indicated that these 

occurrences often coincided with the unavailability of PM₁₀ data. 

However, attributing the prevalence of ozone solely to missing 

PM₁₀ concentrations may lead to a misleading interpretation. 

Therefore, to ensure a more reliable assessment, data were re-

evaluated using weekly and monthly averages. This approach 

helps mitigate the influence of short-term data gaps and provides 

a more robust representation of pollutant dominance across 

seasons. Fluctuations in AQI values were more pronounced 

during the winter months. In contrast, during the summer 

months, air quality was more stable and generally at better 

levels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Monthly average AQI values for 2024. 

 

Fig. 4 displays the monthly average AQI values for 

Ardahan throughout the year 2024. PM₁₀ (represented by blue 

bars) was the most dominant pollutant across the entire year. 

Notably, PM₁₀ levels were particularly high in January (2024-

01) and February (2024-02), exceeding values of 45 and 70, 

respectively In a study conducted in areas close to the region 

based on data between 2010 and 2018, it was observed that 

PM10 concentrations generally reached higher values in the 

winter months (Ghale et al., 2021). This suggests that emissions 

from heating and stagnant atmospheric conditions in winter 

contribute significantly to increased PM₁₀ pollution. 

O₃ (represented by green bars) exhibited a pronounced 

increase in July (2024-07), reaching an AQI value approaching 

60, which constituted the highest recorded O₃ level of the year. 

This increase highlights the intensification of ozone formation 

due to higher temperatures and increased solar radiation during 

the summer months. SO₂ (represented by orange bars) remained 

at generally low levels throughout the year. A slight increase was 

observed only in November (2024-11) and December (2024-12). 

This rise can be attributed to the use of fossil fuels such as coal 

during the winter months. 

3.3. Contribution of PM10, SO₂, and O₃ to the air quality ındex 

 

Since the AQI is determined based on the pollutant with 

the highest concentration at a given time, the percentage 

contributions of each pollutant type to the AQI were calculated 

in this study. Fig. 5 illustrates the hourly contribution 

percentages of PM₁₀, SO₂, and O₃ pollutants to the AQI 

throughout 2024. PM₁₀ emerged as the most dominant pollutant 

year-round, with its contribution to the AQI concentrated mostly 

within the 40%-90% range. A previous study also reported 

similar findings, indicating that PM₁₀ was the most influential 

parameter affecting the 24-hour average AQI with a contribution 

rate of 88.5% (Barlik et al., 2024). This phenomenon was found 

to be associated with data gaps in PM₁₀ measurements during 

those specific periods. Missing data can significantly 

compromise the accuracy and reliability of AQI calculations. 

When only one pollutant is available, the AQI becomes overly 

sensitive to that particular pollutant. 

To address this issue, the literature suggests various 

approaches, including statistical imputation techniques, time 

series analyses, artificial neural networks, and machine learning-

based prediction and alert systems (Peng et al., 2017; Mo et al., 

2019; Gogikar et al., 2019; Han et al., 2023; Durán Boneth et al., 

2024). These methods aim to mitigate the impact of missing data 

and to produce more balanced and reliable AQI estimations. 

SO₂, in contrast, generally contributed less than 10% to the AQI, 

indicating that it was not a primary determinant of air quality in 

the case of Ardahan. 

Fig. 6 presents the daily contribution percentages of PM₁₀, 

SO₂, and O₃ to the AQI throughout the year 2024. PM₁₀ 

consistently appears as the dominant pollutant, contributing 

between 40% and 80% across the year. O₃, on the other hand, 

emerged as the dominant pollutant on certain days, particularly 

during the early months of the year and in the summer. The 

contribution of SO₂ remained quite low, generally below 10%. 

It is noteworthy that the significant data gaps in the chart 

(especially between February and March) are due to incomplete 

measurements. During this period, O₃ appears to contribute 

100% to the AQI, which is a technical artifact caused by the 

absence of data from other pollutants. This visualization clearly 

highlights the dominant influence of PM₁₀ on AQI in Ardahan, 

while also indicating that ozone can be seasonally significant, 

and that the overall contribution of SO₂ is limited. 

Fig. 7 illustrates the monthly percentage contributions of 

PM₁₀, SO₂, and O₃ to the AQI for the year 2024. The chart clearly 

demonstrates the extent to which each pollutant influenced AQI 

throughout the year. PM₁₀ consistently emerged as the primary 

contributor to AQI, with contribution rates exceeding 60% in 

January, February, November, and December. This suggests that 

emissions from heating and stagnant atmospheric conditions 

during the winter months significantly increased PM₁₀ 

accumulation. O₃ contributed 100% to AQI in March and April, 

likely due to missing data from other pollutants during those 

months, resulting in a technically induced dominance. In other 

months, ozone contributed between 30% and 60%, which can be 

attributed to increased photochemical reactions during the 

warmer seasons. SO₂, by contrast, had a very limited impact on 

AQI throughout the year. Its contribution generally remained 

below 5%, reaching close to 10% only in a few months. This 

indicates that SO₂ is not a determining pollutant in Ardahan’s air 

quality. Overall, PM₁₀ was the most influential pollutant on AQI 

throughout the year. While O₃ was significant during spring and 

summer  months,  its  apparent  dominance  in  certain months is  
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Fig. 5. Hourly percentage contribution of PM10, SO₂, and O₃ to AQI during 2024. 

 

Fig. 6. Daily percentage contribution of PM10, SO₂, and O₃ to AQI during 2024. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7. Monthly percentage contribution of PM10, SO₂, and O₃ to AQI 

during 2024. 

 

largely due to the absence of data for other pollutants. The 

contribution of SO₂ remained negligible across the entire period. 

The results obtained demonstrate the critical importance of 

seasonal variations and data availability in determining the 

dominant pollutant in AQI calculations. In addition to seasonal 

and technical influences, data availability plays a key role in 

shaping AQI assessments. Particularly during periods when 

ozone appears as the dominant pollutant, it can be assumed that 

other parameters were not measured. If such data gaps occur in 

metropolitan areas where urbanization and industrialization are 

intense, this may significantly hinder the accurate prediction of 

public health risks associated with air pollution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Discussion 

 

After excluding missing data points (when fewer than three 

pollutant measurements (PM₁₀, SO₂, O₃) were available), hourly 

National Air Quality Index (NAQI) values were calculated 

based on valid observations. The computed NAQI values 

demonstrate temporal variability in air quality throughout the 

measurement period. PM₁₀ was frequently identified as the 

dominant pollutant, particularly in periods where elevated 

particulate levels corresponded with higher index values. In 

contrast, SO₂ and O₃ generally contributed to lower index values, 

reflecting relatively lower ambient concentrations and lesser 

impact on the overall index. 

The dominance of PM₁₀ in the index calculations suggests 

that particulate pollution remains a critical concern in the studied 

region, particularly during winter months, due largely to 

increased domestic heating and meteorological conditions that 

restrict atmospheric dispersion. While periods of generally 

moderate to good air quality have been recorded, intermittent 

elevations in NAQI (mostly due to PM₁₀) highlight the need for 

targeted air quality management strategies aimed at reducing 

particulate matter emissions. 

According to the 2021 World Health Organization (WHO) 

air quality guidelines, the recommended 24-hour mean limit for 

PM₁₀ is 45 µg/m³, while the annual mean should not exceed 15 

µg/m³. For SO₂,  WHO  suggests  a  24-hour average limit of 40 
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µg/m³, and for ozone (O₃), the 8-hour maximum daily average 

should remain below 100 µg/m³ (Matar et al., 2024) .The 

descriptive statistics in Table 2 indicate notable variability in 

pollutant levels. PM₁₀ reached a peak value of 179.07 µg/m³, 

which significantly exceeds the daily limit value of 45 µg/m³ set 

by both WHO. This suggests the occurrence of short-term 

pollution episodes with potentially adverse health impacts, 

particularly for sensitive populations such as children, the 

elderly, and individuals with respiratory conditions (Mushtaq et 

al., 2024). SO₂ peaked at 9.25 ppb, which remains well below 

the hourly standard of 75 ppb (according to EPA guidelines). 

This indicates that sulfur dioxide pollution is generally not a 

dominant concern in the study area during the monitoring 

period. O₃ showed a maximum concentration of 78.75 ppb, 

which is close to or slightly above the 8-hour average standard 

of 50 ppb recommended by WHO (Donzelli and Suarez-Varela, 

2024). This suggests that during certain periods, ozone levels 

may have posed moderate health risks, particularly during warm 

and sunny days conducive to photochemical reactions. While 

PM₁₀ appears to be the most critical pollutant, frequently 

exceeding acceptable limits, SO₂ levels remained consistently 

low, and O₃ levels occasionally approached or surpassed 

threshold values, potentially contributing to elevated air quality 

index scores during specific episodes. These thresholds are 

designed to protect public health, especially vulnerable groups 

such as children, the elderly, and individuals with respiratory 

conditions. Exceedances of these values, as observed in certain 

periods of the dataset, indicate potential health risks and 

highlight the need for targeted air quality management 

strategies. 

When examining studies conducted in Turkish provinces 

with higher levels of industrial activity and population density 

compared to Ardahan, it has been reported that the average PM₁₀ 

concentration over a three-month period in Adana was 

12.54 µg/m³ (Pekdogan et al., 2024). In another study conducted 

in Adıyaman, the annual average concentrations of PM₁₀ and 

SO₂ were found to be 45.6 µg/m³ and 8.9 µg/m³, respectively; 

while the maximum concentrations reached 751.81 µg/m³ for 

PM₁₀ and 562.27 µg/m³ for SO₂ (Kara et al., 2024). In a study 

covering 12 different districts of Istanbul, ozone (O₃) 

concentrations ranged between 7.04 and 39.69 µg/m³, while 

PM₁₀ concentrations varied between 28.27 and 125.41 µg/m³ 

(Ozdemir et al., 2024). In the present study, the annual average 

concentrations of O₃, PM₁₀, and SO₂ were calculated as 

39.67 µg/m³, 43.98 µg/m³, and 24.23 µg/m³, respectively. When 

compared with findings from other regions in Türkiye, these 

values reveal the spatial variability of air pollution levels. The 

fact that the PM₁₀, SO₂, and O₃ concentrations observed in this 

study are similar to or occasionally higher than those recorded 

in major metropolitan areas indicates that air pollution is not 

solely attributable to industrial or traffic-related sources. 

Instead, residential heating, meteorological conditions, and 

regional factors also play a significant role in determining 

pollutant levels. Consequently, these factors can periodically 

lead to unhealthy levels in the Air Quality Index (AQI). 

Additionally, during the measurement period, it was 

observed that pollutant concentrations could not be detected at 

certain time intervals based on the data obtained from the air 

quality monitoring station. In recent years, the use of artificial 

intelligence (AI) and machine learning (ML) techniques in air 

pollution forecasting has gained significant momentum, 

primarily due to their superior capacity to model complex and 

nonlinear interactions among variables (Liu et al., 2021). 

Among the commonly applied models are artificial neural 

networks (ANNs), support vector machines (SVMs), and fuzzy 

logic systems (FLMs), as well as their more sophisticated 

variants such as the Backpropagation Neural Network (BPNN). 

Artificial neural networks (ANNs), support vector machines 

(SVMs), and fuzzy logic systems (FLM), along with their 

advanced versions such as BPNN Backpropagation neural 

network (BPNN) (Kamal et al., 2006), Radial basis function 

neural network (RBFNN) (Wahid et al., 2011), LSSVM (Least 

squares support vector machine) (Li and Yang, 2010), and 

ANFIS (Adaptive neural network fuzzy inference system), offer 

high prediction accuracy. In addition to deep learning models 

such as Long Short-Term Memory (LSTM), classical machine 

learning methods such as Autoregressive Integrated Moving 

Average (ARIMA), Decision Trees, K-Nearest Neighbors 

(KNN), Gradient Boosting (GB), AdaBoost, Huber Regressor, 

and Dummy Regressor are also widely used in air quality 

prediction and have proven to be effective in handling complex 

data structures (Mishra and Gupta, 2024). This study has 

demonstrated the importance of applying alternative modeling 

approaches to improve the reliability of Air Quality Index (AQI) 

predictions in cases of technical failures or data gaps at air 

quality monitoring stations in Türkiye. 

 

5. Conclusion 

 

The findings of this study indicate that, throughout 2024, 

air quality in Ardahan was frequently at “moderate” and 

“unhealthy for sensitive groups” levels, particularly during the 

winter months due to PM₁₀-related pollution. Ozone (O₃), on the 

other hand, was found to become dominant during the summer 

as a result of photochemical processes intensified by higher 

temperatures and solar radiation. However, its dominance 

during winter months was identified as a technical artifact 

caused by data gaps. The contribution of SO₂ to the AQI was 

found to be minimal, suggesting that it is not a major pollutant 

influencing air quality in the Ardahan region. Furthermore, the 

study revealed that data gaps in AQI calculations can lead to 

misleading identification of the dominant pollutant. This 

highlights the necessity of addressing missing data in air quality 

assessments. Therefore, the applicability of artificial intelligence 

(AI) and machine learning (ML)-based models is considered 

crucial for reducing the impact of incomplete datasets and for 

achieving more accurate AQI predictions. In conclusion, hybrid 

and deep learning-based approaches offer higher predictive 

accuracy compared to classical methods. These models are 

particularly valuable as decision-support tools for local 

administrations in regions such as Ardahan, which may face 

significant air quality challenges during the winter season. 
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