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Arastirma Makalesi

oz
Makale Tarihgesi: Mobil vingler, agir yiikleri kaldirmak ve tasimak igin tasarlanmis Gzel
Gelis tarihi: 24.04.2025 . . . S . . . . o
Kabul tarihi:25.09.2025 makinelerdir. Tekerlekli veya paletli bir sasiye sahip olabilirler ve insaat, agir
Online Yaymlanma:13.01.2026 sanayi, enerji ve denizcilik gibi sektorlerde yaygin olarak kullanilmaktadirlar.

Bu vingler, uzatilabilir kollar ve kaldirma ekipmanlar1 kullanarak hidrolik
Anahtar Kelimeler- sistemler ve n‘wk‘aml‘( kuvvetler araciligiyla yﬁkler} yiil'<sek vgyg dar aIgnIargan
Mafsalli bomlu ving kaldirir. Verimli bir ¢aligma, agirlik ve kapasitenin optimize edilmesine
Kaldirma mekanizmast baglidir; agir1 yiikler veya dinamik kuvvetler giivenlik risklerine veya mekanik
Parcacik siirii optimizasyonu . ... .. .. .
arizalara yol agabilir. Bu arastirma, pargacik siirii optimizasyon yontemi
kullanarak bir mafsalli bomlu vincin kaldirma mekanizmasinin boyutlarin
optimize etmeye, moment kolunu maksimize etmeye ve ivmeyi minimize
etmeye odaklanmaktadir. Bu ¢alismada, silindir hizinin optimum A degerinin
belirlenmesinde ihmal edilebilir bir etkiye sahip oldugu, optimum lambda
degeri i¢in birincil belirleyici faktoriin ise (y) agis1 oldugu gosterilmistir.

Design Optimization of Knuckle Joint Crane Lifting Mechanism by Using Particle Swarm
Optimization

Research Article ABSTRACT

Avrticle History: Mobile cranes are specialized machines designed for lifting and moving

iﬁi‘;mﬂi gg'.ggégi‘g heavy loads. They feature either a wheeled or tracked chassis and are widely

Published online:13.01.2026 used in industries such as construction, heavy manufacturing, energy, and
maritime operations. These cranes utilize hydraulic systems and mechanical

Keywords: forces to lift objects from elevated or confined spaces by employing extended

Knuckle joint crane arms and lifting attachments. Efficient operation depends on optimizing

Lifting mechanism

Particle swarm optimization weight and capacity, as excessive loads or dynamic forces can lead to safety

risks or mechanical failures. This research focuses on optimizing the
dimensions of a knuckle joint boom crane's lifting mechanism to maximize
the moment arm and minimize acceleration, by employing the particle swarm
optimization (PSO) method. It is shown in this study that cylinder velocity
has a negligible impact on the determination of the optimal A value while the
primary determining factor for the optimum value of lambda is the (y) angle.

To Cite: Sahin OS., Catal A., Tas O., Coban K. Design Optimization of Knuckle Joint Crane Lifting Mechanism by Using
Particle Swarm Optimization. Osmaniye Korkut Ata Universitesi Fen Bilimleri Enstitiisii Dergisi 2026; 9(1): 366-378.
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1. Introduction

The dimensional optimization of mobile crane lifting mechanisms is crucial for performance, safety,
and cost-efficiency. The main goal of optimizing crane mechanism dimensions is to enhance the lifting
capacity. This process is critical for properly sizing the mechanism’s components, optimizing material
use, and ensuring that performance remains within safe limits. Dimensional optimization is generally
achieved by physical and operational parameters. Various numerical analysis and simulation techniques
are commonly employed to achieve optimal results. In practical engineering applications, various
sources of uncertainty frequently arise due to inconsistencies in material properties, manufacturing
processes, and measurement techniques (Fang et al., 2015; Sun et al., 2018; Dawood et al., 2020; Xu et
al., 2021). Accordingly, the consideration of uncertainties in engineering design has garnered increasing
attention in recent years (Yuan et al., 2019; Li et al., 2020; Chen et al., 2021). For example, Xian et al.
(2022) introduced a comprehensive analytical framework for stochastic optimization of nonlinear
viscous dampers used in energy-dissipating systems, which was successfully applied to uncertainty-
based optimization in suspension bridge applications. With the growing complexity of engineering
systems, the presence of diverse and interacting uncertainties has become inevitable, often resulting in
challenges related to their identification and quantification (Tan et al., 2023). If such uncertainties are
not properly accounted for, ensuring the reliability and safety of engineering systems becomes
increasingly difficult (Zhu et al., 2020; Bagheri et al., 2021; Xue et al., 2022; Plotnikov, 2023). In this
context, the Reliability-Based Design Optimization (RBDO) methodology has been widely employed
to enhance the safety and robustness of complex mechanical systems (Zhang et al., 2022). RBDO seeks
to maintain system reliability within acceptable bounds while optimizing performance-related objective
functions (Dui et al., 2023). In recent years, numerous optimization algorithms have been developed,
inspired by nature. One of the most commonly used techniques is Particle Swarm Optimization (PSO),
which is frequently applied to solve complex engineering design problems involving multiple
parameters, nonlinearity, and continuous variables. PSO is an optimization method widely used in
machine learning and artificial intelligence domains. This algorithm involves a group of particles
(candidate solution points) moving through a predefined space in search of the best solution. Each
particle is located within the solution space, and its velocity vectors are updated by remembering both
its own best position and the best position found within the swarm. PSO has gained significant attention
over the years, inspired by the social behavior of animals, particularly the flocking patterns of birds
(Moravec, 2017). The algorithm was first introduced in 1995 (Kennedy et al., 1995). By simulating a
simplified social system, the behavior of PSO can be understood as an optimization process. Compared
to other optimization algorithms, PSO requires less computational time. However, it is important to note
that not all optimization algorithms are suited for every type of problem (Wolpert et al., 1997; Belot,
2020). Despite this, PSO is known for its ability to find global optimum solutions and offers the

advantage of greater computational efficiency, making it highly suitable for nonlinear optimization
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problems (Wu and Wu, 2018). In PSO, particle movement is governed by rules that update both speed
and position. The cognitive component involves each particle recalling its best position from the past
and moving toward that point, while the social component directs the particle to move based on the best
solution found by the entire swarm. The interplay of these two factors enables faster and more precise
convergence to the optimal solution. In PSO, the process starts by determining the solution space for
each parameter, assigning random initial positions, evaluating the objective function, updating the
particles' velocities and positions based on their individual best solutions and the best solution in the
swarm, and then repeating the process a set number of times. As a result, PSO has been successfully
applied to solve various problems (Naka et al., 2003; Arumugam et al., 2009; Wang and Guan, 2013).
proposed an optimal design for hydraulic supports using an analytical approach (Oblak et al., 2000).
Prebil et al. showed how the synthesis of a four-bar linkage in a hydraulic support could be achieved
through a global optimization algorithm (Prebil et al., 2002; Jianguo et al., 2012). Dan et al. applied a
multi-objective mathematical model to optimize the four-bar linkage while ensuring the strength
requirements were met, based on kinematic and mechanical analysis (Dan et al., 2009). Ye et al. utilized
the least squares method to optimize the four-bar linkage of hydraulic supports (Ye et al., 2009)
Additionally, some researchers (Fateh et al., 2011; Dong-yun et al., 2013) applied Particle Swarm
Optimization (PSO) for the optimal control of hydraulic excavators. Given the highly standardized
nature of crane design procedures, the majority of time and effort is often spent interpreting and
implementing existing design standards (Erden, 2002). The design characteristics of cranes can differ
significantly depending on their primary operational specifications (Abid et al., 2015). Numerous studies
have focused on analyzing stress distributions and tip deflection, employing optimization techniques
such as the Marine Predator Algorithm and the Search and Rescue algorithm (Mladenovi¢, et al., 2024).
Cross-section optimization was explored using the Lagrange multiplier method (Stephen et al., 2018),
while the effects of inertial loads were examined by other researchers (\VVolianiuk et al., 2021). The finite
element method was also employed to analyze the performance of work platforms in studies (Zdravkovié¢
et al., 2010; Guo et al, 2016). This study is focused on optimizing the geometric dimensions of a three-
limb mechanism used for positioning the movable arm in mobile cranes, with the goal of obtaining the

minimum acceleration and the maximum moment arm using the PSO technique.

2. Materials and Methods

The Particle Swarm Optimization (PSO) algorithm operates by representing the unknown parameters as
particles. Starting with a random initialization, the particles move through a search space to minimize
an objective function. The parameters are estimated by minimizing the objective function. Each
particle's fitness is assessed based on the objective function, which helps update both the particle's best
position and the best position among all particles. In each iteration, particles are directed towards both

their previous best position and the best position found by the entire swarm. As a result, particles tend
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to fly toward the more promising areas of the search space. The velocity of the ith particle, vi, is

calculated as follows [2]:

Vit =@.vi'+ C1.r1.(Xbesti=Xit)+ + C2.r2.(Xpestg™-Xi)

It is important to note that the inertia weight was not included in the original version of PSO (Ratnaweera

et al 2004). The new position of the ith particle is then determined as follows:

xit+l: xit +Vit+l

Where

vit: Velocity of i" particle at instant t

vit*l: Velocity of i particle at instant t+1

o: Inertial coefficient

C1, C2: Cognitive Coefficient (personal learning factor) and Social Coefficient (global learning factor):
r1, r.: Random coefficients selected between [0,1]

Xpesti': Personal best point of it particle

Xpestg': Global best position

xi: Position of i particle at instant t

It is reported that the solution of PSO algorithm is highly influenced by weight factors and the
acceleration factors. Larger coefficients are beneficial to global search, while smaller coefficients

encourage local exploitation. Algorithm parameters are shown in Table 1.

Table 1. Algorithm parameters

Parameter Name Value
Population Size 30
Number of Iteration 100
Inertial Weight 0.7
cl 1.5
c2 1.5
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Table 2. Mechanism design parameters

Parameter Name Value
6 angle (Deg.) -15to +83
v angle (Deg.) +15 to +75
Cylinder velocity (m/s) 0.005 to 0.015

[AB], [AC]=Fixed
[BC]= Variable

Figure 1 illustrates the schematic representation of lifting mechanism widely used in knuckle joint boom
cranes. The mathematical formulations and numerical solutions were carried out by using parameters

presented in Table 2.

— — — = horizontal

B
Figure 1. Mechanism design parameters
Y+0+ B+ y=180=n (1)
o+ 0=y ()
f+ 0 +y=mn— ¥ =Fixed 3)
p=n—¥Y—-y-—0 4)

Applying the Sinus theorem we get equations (5), (6) and (7) as follows;
|AB| _ lAC| (5)
siny sinf

. _.1.|AB|
y = sin 1(W .sin ) (6)
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B+ sin‘l(%.sinﬁ)—n’+‘l’: -0 ™)

In triangle ABC, the length of link BC is variable. Therefore, the remaining lengths are AB and AC. In
cranes, the basic length AC determines the moment arm, and therefore the lifting capacity. Therefore,
when designing cranes with different capacities, AC is the primary determining parameter. However,
this length is related to the crane's horizontal capacity. The amount of space the crane will occupy on
the chassis and the length of the moment arm at different angular positions (6) and the angular velocity
and acceleration of link AC depend on length AB. Therefore, a new parameter has been used to represent
the required length of AB for a given AC length. Introducing a new parameter as A=[AB]/[AC], Eq (8)

can be obtained;

sin(¥ + 0)

A— cos(¥ +0)
sin(¥ — 0) @)

A— cos('I’—B))

0 >0 B= tan1(

0 <0 B=tan"(

Then, the moments arm (d(0)) can be expressed as follows

d(@) = |AB|.sinp

This type of mechanism generally operates with a very low acceleration. However, during the
optimization process, it should be considered. It is assumed that the hydraulic cylinder moves at a
constant velocity (Vr), it still can cause angular acceleration due to variation of angular positions of the

members. The angular velocity and angular acceleration are expressed as follows.

de V,.siny
== A €))

é:ﬂ: Vr .cosy .y’

dtz  |AC| (10)
Where, dy/dt and dp/dt are expressed as;
dy ’ 4 _ A.cosﬂ.(%)
prin Y = sin" " (4.sinf) = \/m
Where (11
B:%: 1—A1.cos(0— W) . Vr 2 Vr A.sing

dt 1-—2A.cos(6— W)+ 4% |AC| |AC]|

Finally, the angular acceleration of arm member is expressed as follows.
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. V A.cos
6= —— .cos(sin"1(A.sinp)). d . (12)
|AC| J1—22 sin? B
The objective and constraints of the optimization are summarized in Table 3
Table 3. Objectives and restrictions
Objectives
#1 Minimum angular acceleration
#2 Maximum B at 6=-15/+83 interval
#3 Minimum variation at § at 6=-15/+83 interval
Constraint
#1 A—cos(W + 0) # 0 (Numerical constraint)
#2 A—cos(W + 0) # 0 (Numerical constraint)
#3 |A.sin B| < 1 (Numerical constraint)
#4 Jmin> 0,15 (Manufacturability constraint)
The above-mentioned requirements yield the following type of objective function.
F(y,Vr)=wl-F1+w2-F2+w3-F3 (13)

Where, F1, F2 and F3 represents, maximization of the moment arm, minimization of the change in the
moment arm and minimization of the angular acceleration respectively. On the other hand, these factors
need to be weighting by using weighting factors and the overall objective function is then defined as Eq.
(13) under specified constraints. The weights lifted by a crane and operator’s interest are depends on
fragility of the lifted material and operational costs. So, these relative weights were chosen in such a

way that it covers all aspects of the lifting operations in the view of our experience.

Three weighting factors have been defined and a code has been developed by using MS-Excel VBA for
solving the above-mentioned problem by using PSO. The final form of objective function is shown in
Eqgn (14)

F(y, Vr)=0,6*min (abs(angular acceleration))-0,2*max(B)+0,2*min (abs(dp/dy)) (14)

3.Results and Discussions

The solution to the problem mentioned above was carried out based on the geometric parameters and
speed values commonly used in the crane industry. The results obtained are presented in Figure 2.
Additionally, the effects of the vr and (y) parameters on the lambda value were statistically evaluated

and presented in Figure 3. As seen in the figures, depending on the selected () angle, the lambda value
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varies between the dimensional limits of 0,15 and 0,9. On the other hand, as shown in the figure, the
primary determining factor for the optimum value of lambda is the (y) angle. When considering the
selected values for the cylinder speed, it has been evaluated that their effect on the optimum value of
lambda is negligible. When the same problem was analyzed based on minimizing the change in the
moment arm during the lifting operation, it was observed that the lambda value approaches 1. When
examining cranes of different capacities available in the market, it is generally seen that the (y) angle is
chosen between 40°-50° and the lambda value is typically chosen to be approximately 1. In this case, it
can be concluded that the solution was based on minimizing the change in the moment arm during the

lifting operation for these products.

Eko-lam
0.014 < 0,40
0,40 - 0,44
i 0,44-0,48
M 0,48-0,52
M 0,52-0,56
S0te | > 0.56
0.010
0.008
0.006
1 1 1 1
20 30 40 50 60 70
psi

Figure 2. Optimal lambda values for cylinder velocity (vr) and geometry parameter ((y) )

vr

psi [ vr

Mean

0.3+

0.2

0.1-
15 20 25 30 35 40 45 50 55 60 65 70 75 0.005 0.010 0.015
Figure 3. Main effect of cylinder velocity (vr) and geometry parameter ((v) )

When the Figures 2 and 3 are examined together with the numerical results presented in the appendix,

it can be said that the numerical magnitude of the "angular acceleration™ term does not have a significant
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impact on determining the optimum point, due to its relatively small magnitude. However, considering
the capacities and reach distances of cranes in the industry (400 ton.m, >60m), it can be said that the
crane itself can reach significant dimensions with its own inertia. Therefore, more detailed studies are
planned for high-capacity cranes.

As can be seen in the results, in some cases, optimal value of A can go as low as 0.15, indicating that it
is highly dependent on the selected y angle. Therefore, it was concluded that the optimum values
obtained in this study are more suitable for use in telescopic cranes where the load is lifted by using

pulleys while the boom is kept still.

4.Conclusions

This study primarily focused on the optimization of the lifting mechanism in a knuckle joint boom crane,
with the main objective of maximizing the moment arm and minimizing acceleration through the
application of the Particle Swarm Optimization (PSO) method. The analysis underscored the critical
influence of the (y) angle on determining the optimal lambda (L) value. It was observed that A varies
within the range of 0.15 to 0.9, depending significantly on changes in w, highlighting the
interdependency between these two parameters in achieving an optimal lifting configuration.
Moreover, the results indicated that cylinder speed has a negligible impact on the determination of the
optimal A value. This finding suggests that within the studied operational range, dynamic effects related
to speed do not substantially alter the optimal geometrical parameters, thereby simplifying the control
requirements for the system. A key conclusion drawn from the study is the importance of minimizing
variation in the moment arm throughout the lifting process. Maintaining a consistent moment arm
contributes to improved load stability and more efficient energy usage during crane operation. The
optimal configuration for effective and stable lifting was found to generally occur when the y angle lies
between 40° and 50°, with a corresponding A value approaching 1. This combination provides a
favorable balance between mechanical advantage and control stability, which is essential for safe and
efficient crane performance.

The focus of the current study is to obtain the geometric dimensions based on bioinspired approach and
manufacturers expectations. However, these solutions covers only the lifting mechanism. It is obvious

that optimal geometrical dimensions may vary depending on the weighting factors preferred by scenario.
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9. Appendix: Numerical results

v |vr Aopt Ang. acc. @
15 | 0,005 0,525321757 7,49956E-12
15 (0,01 0,525321524 2,99982E-11
15 10,015 0,525321298 6,7496E-11
20 {0,005 0,964966017 2,19442E-11
20 (0,01 0,964966006 8,77769E-11
20 {0,015 0,964965995 1,97498E-10
25 | 0,005 0,15 4,05567E-13
25 10,01 0,15 1,62227E-12
25 (0,015 0,15 3,6501E-12
30 |0,005 0,15 9,68778E-15
30 |0,01 0,15 3,87511E-14
30 |0,015 0,15 8,719E-14
35 |0,005 0,15 -6,88855E-13
35 |0,01 0,15 -2,75542E-12
35 0,015 0,15 -6,1997E-12
40 |0,005 0,633319041 1,09584E-11
40 ]0,01 0,633318873 4,38336E-11
40 0,015 0,633318703 9,86256E-11
45 0,005 0,921751243 1,9037E-11
45 10,01 0,92175122 7,61481E-11
45 10,015 0,92175119 1,71333E-10
50 0,005 0,15 7,65808E-13
50 |0,01 0,15 3,06323E-12
50 0,015 0,15 6,89227E-12
55 0,005 0,15 -2,77807E-13
55 10,01 0,15 -1,11123E-12
55 10,015 0,15 -2,50026E-12
60 | 0,005 0,15 -5,04878E-13
60 |0,01 0,15 -2,01951E-12
60 |0,015 0,15 -4,5439E-12
65 | 0,005 0,730173454 1,44998E-11
65 |0,01 0,730173332 5,79994E-11
65 |0,015 0,730173218 1,30499E-10
70 10,005 0,862318825 1,40982E-11
70 |0,01 0,862318781 5,63926E-11
70 0,015 0,862318731 1,26883E-10
75 {0,005 0,15 1,04273E-12
75 10,01 0,15 4,17094E-12
75 10,015 0,15 9,38461E-12
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