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Mobil vinçler, ağır yükleri kaldırmak ve taşımak için tasarlanmış özel 

makinelerdir. Tekerlekli veya paletli bir şasiye sahip olabilirler ve inşaat, ağır 

sanayi, enerji ve denizcilik gibi sektörlerde yaygın olarak kullanılmaktadırlar. 

Bu vinçler, uzatılabilir kollar ve kaldırma ekipmanları kullanarak hidrolik 

sistemler ve mekanik kuvvetler aracılığıyla yükleri yüksek veya dar alanlardan 

kaldırır. Verimli bir çalışma, ağırlık ve kapasitenin optimize edilmesine 

bağlıdır; aşırı yükler veya dinamik kuvvetler güvenlik risklerine veya mekanik 

arızalara yol açabilir. Bu araştırma, parçacık sürü optimizasyon yöntemi 

kullanarak bir mafsallı bomlu vincin kaldırma mekanizmasının boyutlarını 

optimize etmeye, moment kolunu maksimize etmeye ve ivmeyi minimize 

etmeye odaklanmaktadır. Bu çalışmada, silindir hızının optimum λ değerinin 

belirlenmesinde ihmal edilebilir bir etkiye sahip olduğu, optimum lambda 

değeri için birincil belirleyici faktörün ise (ψ)  açısı olduğu gösterilmiştir. 

Anahtar Kelimeler: 
Mafsallı bomlu vinç  

Kaldırma mekanizması 

Parçacık sürü optimizasyonu 
 

Design Optimization of Knuckle Joint Crane Lifting Mechanism by Using Particle Swarm 

Optimization 

Research Article  ABSTRACT 

Article History: 

Received: 24.04.2025 
Accepted: 25.09.2025 

Published online:13.01.2026 

 

 Mobile cranes are specialized machines designed for lifting and moving 

heavy loads. They feature either a wheeled or tracked chassis and are widely 

used in industries such as construction, heavy manufacturing, energy, and 

maritime operations. These cranes utilize hydraulic systems and mechanical 

forces to lift objects from elevated or confined spaces by employing extended 

arms and lifting attachments. Efficient operation depends on optimizing 

weight and capacity, as excessive loads or dynamic forces can lead to safety 

risks or mechanical failures. This research focuses on optimizing the 

dimensions of a knuckle joint boom crane's lifting mechanism to maximize 

the moment arm and minimize acceleration, by employing the particle swarm 

optimization (PSO) method. It is shown in this study that cylinder velocity 

has a negligible impact on the determination of the optimal λ value while the 

primary determining factor for the optimum value of lambda is the (ψ) angle.  
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1. Introduction  

 

The dimensional optimization of mobile crane lifting mechanisms is crucial for performance, safety, 

and cost-efficiency. The main goal of optimizing crane mechanism dimensions is to enhance the lifting 

capacity. This process is critical for properly sizing the mechanism’s components, optimizing material 

use, and ensuring that performance remains within safe limits. Dimensional optimization is generally 

achieved by physical and operational parameters. Various numerical analysis and simulation techniques 

are commonly employed to achieve optimal results. In practical engineering applications, various 

sources of uncertainty frequently arise due to inconsistencies in material properties, manufacturing 

processes, and measurement techniques (Fang et al., 2015; Sun et al., 2018; Dawood et al., 2020; Xu et 

al., 2021). Accordingly, the consideration of uncertainties in engineering design has garnered increasing 

attention in recent years (Yuan et al., 2019; Li et al., 2020; Chen et al., 2021). For example, Xian et al. 

(2022) introduced a comprehensive analytical framework for stochastic optimization of nonlinear 

viscous dampers used in energy-dissipating systems, which was successfully applied to uncertainty-

based optimization in suspension bridge applications. With the growing complexity of engineering 

systems, the presence of diverse and interacting uncertainties has become inevitable, often resulting in 

challenges related to their identification and quantification (Tan et al., 2023). If such uncertainties are 

not properly accounted for, ensuring the reliability and safety of engineering systems becomes 

increasingly difficult (Zhu et al., 2020; Bagheri et al., 2021; Xue et al., 2022; Plotnikov, 2023). In this 

context, the Reliability-Based Design Optimization (RBDO) methodology has been widely employed 

to enhance the safety and robustness of complex mechanical systems (Zhang et al., 2022). RBDO seeks 

to maintain system reliability within acceptable bounds while optimizing performance-related objective 

functions (Dui et al., 2023). In recent years, numerous optimization algorithms have been developed, 

inspired by nature. One of the most commonly used techniques is Particle Swarm Optimization (PSO), 

which is frequently applied to solve complex engineering design problems involving multiple 

parameters, nonlinearity, and continuous variables. PSO is an optimization method widely used in 

machine learning and artificial intelligence domains. This algorithm involves a group of particles 

(candidate solution points) moving through a predefined space in search of the best solution. Each 

particle is located within the solution space, and its velocity vectors are updated by remembering both 

its own best position and the best position found within the swarm. PSO has gained significant attention 

over the years, inspired by the social behavior of animals, particularly the flocking patterns of birds 

(Moravec, 2017). The algorithm was first introduced in 1995 (Kennedy et al., 1995). By simulating a 

simplified social system, the behavior of PSO can be understood as an optimization process. Compared 

to other optimization algorithms, PSO requires less computational time. However, it is important to note 

that not all optimization algorithms are suited for every type of problem (Wolpert et al., 1997; Belot, 

2020). Despite this, PSO is known for its ability to find global optimum solutions and offers the 

advantage of greater computational efficiency, making it highly suitable for nonlinear optimization 
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problems (Wu and Wu, 2018). In PSO, particle movement is governed by rules that update both speed 

and position. The cognitive component involves each particle recalling its best position from the past 

and moving toward that point, while the social component directs the particle to move based on the best 

solution found by the entire swarm. The interplay of these two factors enables faster and more precise 

convergence to the optimal solution. In PSO, the process starts by determining the solution space for 

each parameter, assigning random initial positions, evaluating the objective function, updating the 

particles' velocities and positions based on their individual best solutions and the best solution in the 

swarm, and then repeating the process a set number of times. As a result, PSO has been successfully 

applied to solve various problems (Naka et al., 2003; Arumugam et al., 2009; Wang and Guan, 2013). 

proposed an optimal design for hydraulic supports using an analytical approach (Oblak et al., 2000). 

Prebil et al. showed how the synthesis of a four-bar linkage in a hydraulic support could be achieved 

through a global optimization algorithm (Prebil et al., 2002; Jianguo et al., 2012). Dan et al. applied a 

multi-objective mathematical model to optimize the four-bar linkage while ensuring the strength 

requirements were met, based on kinematic and mechanical analysis (Dan et al., 2009). Ye et al. utilized 

the least squares method to optimize the four-bar linkage of hydraulic supports (Ye et al., 2009) 

Additionally, some researchers (Fateh et al., 2011; Dong-yun et al., 2013) applied Particle Swarm 

Optimization (PSO) for the optimal control of hydraulic excavators. Given the highly standardized 

nature of crane design procedures, the majority of time and effort is often spent interpreting and 

implementing existing design standards (Erden, 2002). The design characteristics of cranes can differ 

significantly depending on their primary operational specifications (Abid et al., 2015). Numerous studies 

have focused on analyzing stress distributions and tip deflection, employing optimization techniques 

such as the Marine Predator Algorithm and the Search and Rescue algorithm (Mladenović, et al., 2024). 

Cross-section optimization was explored using the Lagrange multiplier method (Stephen et al., 2018), 

while the effects of inertial loads were examined by other researchers (Volianiuk et al., 2021). The finite 

element method was also employed to analyze the performance of work platforms in studies (Zdravković 

et al., 2010; Guo et al, 2016). This study is focused on optimizing the geometric dimensions of a three-

limb mechanism used for positioning the movable arm in mobile cranes, with the goal of obtaining the 

minimum acceleration and the maximum moment arm using the PSO technique. 

 

2. Materials and Methods 

The Particle Swarm Optimization (PSO) algorithm operates by representing the unknown parameters as 

particles. Starting with a random initialization, the particles move through a search space to minimize 

an objective function. The parameters are estimated by minimizing the objective function. Each 

particle's fitness is assessed based on the objective function, which helps update both the particle's best 

position and the best position among all particles. In each iteration, particles are directed towards both 

their previous best position and the best position found by the entire swarm. As a result, particles tend 



369 

 

to fly toward the more promising areas of the search space. The velocity of the ith particle, vi, is 

calculated as follows [2]: 

 

Vi
t+1=ω.vi

t+ c1.r1.(xbest,i
t-xi

t)+ + c2.r2.(xbest,g
t-xi

t)  

 

It is important to note that the inertia weight was not included in the original version of PSO (Ratnaweera 

et al 2004). The new position of the ith particle is then determined as follows:  

 

Xi
t+1= Xi

t +Vi
t+1  

Where 

vi
t: Velocity of ith particle at instant t 

vi
t+1: Velocity of ith particle at instant t+1 

ω: Inertial coefficient 

C1, C2: Cognitive Coefficient (personal learning factor) and Social Coefficient (global learning factor): 

r1, r2: Random coefficients selected between [0,1] 

xbest,i
t: Personal best point of ith particle 

xbest,g
t: Global best position 

xi
t: Position of ith particle at instant t 

It is reported that the solution of PSO algorithm is highly influenced by weight factors and the 

acceleration factors. Larger coefficients are beneficial to global search, while smaller coefficients 

encourage local exploitation. Algorithm parameters are shown in Table 1. 

Table 1. Algorithm parameters 

Parameter Name Value 

Population Size 30 

Number of Iteration 100 

Inertial Weight 0.7 

c1 1.5 

c2 1.5 
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Table 2. Mechanism design parameters 

Parameter Name Value 

 angle (Deg.) -15 to +83 

 angle (Deg.) +15 to +75 

Cylinder velocity (m/s) 0.005 to 0.015 

[AB], [AC]=Fixed  

[BC]= Variable  

 

Figure 1 illustrates the schematic representation of lifting mechanism widely used in knuckle joint boom 

cranes. The mathematical formulations and numerical solutions were carried out by using parameters 

presented in Table 2. 

 

Figure 1. Mechanism design parameters 

𝜳 +  𝜽 +  𝜷 +  = 𝟏𝟖𝟎 =  𝝅   (1) 

𝝈 +  𝜽 =  𝜸 (2) 

𝜷 +  𝜽 + 𝜸 =  𝝅 −  𝜳 = 𝑭𝒊𝒙𝒆𝒅 (3) 

𝜷 = 𝝅 −  𝜳 − 𝜸 −  𝜽  
 

(4) 

Applying the Sinus theorem we get equations (5), (6) and (7) as follows; 

|𝑨𝑩|

𝒔𝒊𝒏 𝜸
=  

|𝑨𝑪|

𝒔𝒊𝒏 𝜷
 

(5) 

𝜸 =  𝐬𝐢𝐧−𝟏(
|𝑨𝑩|

|𝑨𝑪|
 . 𝐬𝐢𝐧 𝜷) (6) 
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𝜷 +  𝐬𝐢𝐧−𝟏(
|𝑨𝑩|

|𝑨𝑪|
 . 𝐬𝐢𝐧 𝜷) −  𝝅 + 𝜳 =  − 𝜽 (7) 

 

In triangle ABC, the length of link BC is variable. Therefore, the remaining lengths are AB and AC. In 

cranes, the basic length AC determines the moment arm, and therefore the lifting capacity. Therefore, 

when designing cranes with different capacities, AC is the primary determining parameter. However, 

this length is related to the crane's horizontal capacity. The amount of space the crane will occupy on 

the chassis and the length of the moment arm at different angular positions () and the angular velocity 

and acceleration of link AC depend on length AB. Therefore, a new parameter has been used to represent 

the required length of AB for a given AC length. Introducing a new parameter as =[AB]/[AC], Eq (8) 

can be obtained; 

𝜽 ≥ 𝟎   𝜷 =  𝐭𝐚𝐧−𝟏(
𝐬𝐢𝐧(𝜳 + 𝜽)

𝝀 −  𝐜𝐨𝐬( 𝜳 + 𝜽) 
) 

(8) 
𝜽 ≤ 𝟎   𝜷 =  𝐭𝐚𝐧−𝟏(

𝐬𝐢𝐧(𝜳 − 𝜽)

𝝀 −  𝐜𝐨𝐬( 𝜳 − 𝜽) 
) 

 
Then, the moments arm (d(θ)) can be expressed as follows 

𝒅(𝜽) =  |𝑨𝑩| . 𝐬𝐢𝐧 𝜷  

This type of mechanism generally operates with a very low acceleration. However, during the 

optimization process, it should be considered. It is assumed that the hydraulic cylinder moves at a 

constant velocity (Vr), it still can cause angular acceleration due to variation of angular positions of the 

members. The angular velocity and angular acceleration are expressed as follows. 

 

𝜽̇ =  
𝒅𝜽

𝒅𝒕
=  

𝑽𝒓 . 𝐬𝐢𝐧 𝜸

 |𝑨𝑪|
 (9) 

𝜽̈ =  
𝒅𝟐𝜽

𝒅𝒕𝟐
=  

𝑽𝒓

 |𝑨𝑪|
 . 𝐜𝐨𝐬 𝜸 . 𝜸′ 

 

(10) 

Where, dγ/dt and dβ/dt are expressed as; 

𝒅𝜸

𝒅𝒕
=  𝜸′ =  𝐬𝐢𝐧−𝟏(𝝀 . 𝐬𝐢𝐧 𝜷) =  

𝝀 . 𝐜𝐨𝐬 𝜷 . (
𝒅𝜷
𝒅𝒕

)

√𝟏 − 𝝀𝟐 . 𝐬𝐢𝐧𝟐 𝜷 
 

(11) Where 

𝜷̇ =  
𝒅𝜷

𝒅𝒕
=  

𝟏 − 𝝀 . 𝐜𝐨𝐬(𝜽 −  𝜳)

𝟏 − 𝟐𝝀 . 𝐜𝐨𝐬(𝜽 −  𝜳) + 𝝀𝟐
 .

𝑽𝒓

|𝑨𝑪|
 . 𝝀𝟐 .

𝑽𝒓

|𝑨𝑪|
 . 𝝀 . 𝐬𝐢𝐧 𝜷 

 Finally, the angular acceleration of arm member is expressed as follows. 
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𝜽̈ =   
𝑽𝒓

 |𝑨𝑪|
 . 𝐜𝐨𝐬(𝐬𝐢𝐧−𝟏(𝝀 . 𝐬𝐢𝐧 𝜷)) .

𝝀 . 𝐜𝐨𝐬 𝜷

√𝟏 − 𝝀𝟐 . 𝐬𝐢𝐧𝟐 𝜷 
 . 𝜷̇ (12) 

The objective and constraints of the optimization are summarized in Table 3 

Table 3. Objectives and restrictions 

Objectives 

#1 Minimum angular acceleration 

#2 Maximum β at θ=-15/+83 interval 

#3 Minimum variation at β at θ=-15/+83 interval 

Constraint 

#1 𝝀 − 𝒄𝒐𝒔(𝜳 +  𝜽)  ≠  𝟎 (Numerical constraint) 

#2 𝝀 − 𝒄𝒐𝒔(𝜳 +  𝜽)  ≠  𝟎 (Numerical constraint) 

#3 |𝝀. 𝐬𝐢𝐧 𝜷| ≤ 𝟏 (Numerical constraint) 

#4 λmin> 0,15  (Manufacturability constraint) 

 

The above-mentioned requirements yield the following type of objective function. 

F(ψ, Vr) = w 1 ⋅ F 1 + w 2 ⋅ F 2 + w 3 ⋅ F 3                    (13) 

Where, F1, F2 and F3 represents, maximization of the moment arm, minimization of the change in the 

moment arm and minimization of the angular acceleration respectively. On the other hand, these factors 

need to be weighting by using weighting factors and the overall objective function is then defined as Eq. 

(13) under specified constraints. The weights lifted by a crane and operator’s interest are depends on 

fragility of the lifted material and operational costs. So, these relative weights were chosen in such a 

way that it covers all aspects of the lifting operations in the view of our experience. 

Three weighting factors have been defined and a code has been developed by using MS-Excel VBA for 

solving the above-mentioned problem by using PSO. The final form of objective function is shown in 

Eqn (14) 

F(ψ, Vr)=0,6*min (abs(angular acceleration))-0,2*max(β)+0,2*min (abs(dβ/dy))                (14) 

3.Results and Discussions 

The solution to the problem mentioned above was carried out based on the geometric parameters and 

speed values commonly used in the crane industry. The results obtained are presented in Figure 2. 

Additionally, the effects of the vr and (ψ) parameters on the lambda value were statistically evaluated 

and presented in Figure 3. As seen in the figures, depending on the selected (ψ) angle, the lambda value 
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varies between the dimensional limits of 0,15 and 0,9. On the other hand, as shown in the figure, the 

primary determining factor for the optimum value of lambda is the (ψ) angle. When considering the 

selected values for the cylinder speed, it has been evaluated that their effect on the optimum value of 

lambda is negligible. When the same problem was analyzed based on minimizing the change in the 

moment arm during the lifting operation, it was observed that the lambda value approaches 1. When 

examining cranes of different capacities available in the market, it is generally seen that the (ψ) angle is 

chosen between 40°-50° and the lambda value is typically chosen to be approximately 1. In this case, it 

can be concluded that the solution was based on minimizing the change in the moment arm during the 

lifting operation for these products. 

 

Figure 2. Optimal lambda values for cylinder velocity (vr) and geometry parameter ((ψ) ) 

  

Figure 3. Main effect of cylinder velocity (vr) and geometry parameter ((ψ) ) 

When the Figures 2 and 3 are examined together with the numerical results presented in the appendix, 

it can be said that the numerical magnitude of the "angular acceleration" term does not have a significant 
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impact on determining the optimum point, due to its relatively small magnitude. However, considering 

the capacities and reach distances of cranes in the industry (400 ton.m, >60m), it can be said that the 

crane itself can reach significant dimensions with its own inertia. Therefore, more detailed studies are 

planned for high-capacity cranes. 

As can be seen in the results, in some cases, optimal value of  can go as low as 0.15, indicating that it 

is highly dependent on the selected  angle. Therefore, it was concluded that the optimum values 

obtained in this study are more suitable for use in telescopic cranes where the load is lifted by using 

pulleys while the boom is kept still. 

 

4.Conclusions 

This study primarily focused on the optimization of the lifting mechanism in a knuckle joint boom crane, 

with the main objective of maximizing the moment arm and minimizing acceleration through the 

application of the Particle Swarm Optimization (PSO) method. The analysis underscored the critical 

influence of the (ψ) angle on determining the optimal lambda (λ) value. It was observed that λ varies 

within the range of 0.15 to 0.9, depending significantly on changes in ψ, highlighting the 

interdependency between these two parameters in achieving an optimal lifting configuration. 

Moreover, the results indicated that cylinder speed has a negligible impact on the determination of the 

optimal λ value. This finding suggests that within the studied operational range, dynamic effects related 

to speed do not substantially alter the optimal geometrical parameters, thereby simplifying the control 

requirements for the system. A key conclusion drawn from the study is the importance of minimizing 

variation in the moment arm throughout the lifting process. Maintaining a consistent moment arm 

contributes to improved load stability and more efficient energy usage during crane operation. The 

optimal configuration for effective and stable lifting was found to generally occur when the ψ angle lies 

between 40° and 50°, with a corresponding λ value approaching 1. This combination provides a 

favorable balance between mechanical advantage and control stability, which is essential for safe and 

efficient crane performance. 

The focus of the current study is to obtain the geometric dimensions based on bioinspired approach and 

manufacturers expectations. However, these solutions covers only the lifting mechanism. It is obvious 

that optimal geometrical dimensions may vary depending on the weighting factors preferred by scenario. 
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9. Appendix:  Numerical results  

 vr opt Ang. acc. ̈ 

15 0,005 0,525321757 7,49956E-12 

15 0,01 0,525321524 2,99982E-11 

15 0,015 0,525321298 6,7496E-11 

20 0,005 0,964966017 2,19442E-11 

20 0,01 0,964966006 8,77769E-11 

20 0,015 0,964965995 1,97498E-10 

25 0,005 0,15 4,05567E-13 

25 0,01 0,15 1,62227E-12 

25 0,015 0,15 3,6501E-12 

30 0,005 0,15 9,68778E-15 

30 0,01 0,15 3,87511E-14 

30 0,015 0,15 8,719E-14 

35 0,005 0,15 -6,88855E-13 

35 0,01 0,15 -2,75542E-12 

35 0,015 0,15 -6,1997E-12 

40 0,005 0,633319041 1,09584E-11 

40 0,01 0,633318873 4,38336E-11 

40 0,015 0,633318703 9,86256E-11 

45 0,005 0,921751243 1,9037E-11 

45 0,01 0,92175122 7,61481E-11 

45 0,015 0,92175119 1,71333E-10 

50 0,005 0,15 7,65808E-13 

50 0,01 0,15 3,06323E-12 

50 0,015 0,15 6,89227E-12 

55 0,005 0,15 -2,77807E-13 

55 0,01 0,15 -1,11123E-12 

55 0,015 0,15 -2,50026E-12 

60 0,005 0,15 -5,04878E-13 

60 0,01 0,15 -2,01951E-12 

60 0,015 0,15 -4,5439E-12 

65 0,005 0,730173454 1,44998E-11 

65 0,01 0,730173332 5,79994E-11 

65 0,015 0,730173218 1,30499E-10 

70 0,005 0,862318825 1,40982E-11 

70 0,01 0,862318781 5,63926E-11 

70 0,015 0,862318731 1,26883E-10 

75 0,005 0,15 1,04273E-12 

75 0,01 0,15 4,17094E-12 

75 0,015 0,15 9,38461E-12 

 


