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Abstract  

 

Stability testing to determine whether or not a phase is stable is a necessary preliminary step for equilibrium 

calculations as well as a useful object of decision for design and management of  reservoir operations. A suitable, and 

rodost Equation of State (EOS) model has been developed to achieve this for a reservoir fluid system over a wide range 

of pressure conditions. This was done  by incorporating the variable parameter ‘a’ approach (VPAA), which treats the 

attractive parameter as a variable regressed by two straight lines, into the Helmholtz stability criterion. The EOS model 

was tested on three oil wells with high, medium and low parameter ‘b’ values to predict phase stability status of the 
fluids over a wide range of pressure conditions. For Well-1, the vapor phase was unstable while the liquid phase was 

stable at 47.4 atm. For Well-2, the vapor phase was stable at 209 atm. while the liquid phase was unstable For Well-3 

however, the vapor phase was stable at 45.7 atm. while two liquid phases were identified. The lighter one was unstable 

at the temperature of interest, while the heavier one was stable at 115.9 atm  
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1. Introduction 

Although a reservoir fluid may be composed of many 

thousands of compounds, the phase behavior fundamentals 

can be explained with some degree of accuracy by 

examining the behavior of pure species. The complexity of 

the defining model however increases as the number of 

species increases. Since reservoir fluids are made up of 

basically hydrocarbons, they, to some appreciable degree, 

follow similar patterns of phase behavior.  

Studies of various hypotheses have led to recent 

deductions by Danesh [1], that the composition of a 

reservoir fluid depends on the depositional environment of 

the formation, its geological maturity and the migration 

path from the source to the trap rocks. Fluids advancing 

into a trapping reservoir are usually of different 

compositions. Reservoir fluids are generally considered, as 

stated by England and Mackenzie [2], to have attained 

equilibrium by maturity due to molecular diffusion and 

mixing over geological times. The compounds constituting 

a crude in an oil well are classified into groups for easy 

handling and analysis. This classification and subsequent 

characterization have proved helpful over the years. Despite 

this classification into groups of similar materials, based 

mainly on molecular structure and size, between 15 and 25 

groups are often identified and are in regular use in 

laboratory studies of crude oils.  

Equations of state (EOS) are required for the prediction 

of phase behavior of mixtures of hydrocarbons. The cubic 

EOS over the years was developed from the ideal gas law 

and has been applied to non-ideal cases with the inclusion 

of the attractive force and repulsive force parameters, ‘a’ 

and ‘b’, respectively. These equations have been 

successfully applied to pure liquids and gases even at high 

pressures as shown by Smith et al [3]. 

 

There are inherent deficiencies in the use of equation of 

state models, particularly for multicomponent, multiphase 

mixtures, such as reservoir fluids. Recent investigations 

have focused on removing these deficiencies. Therefore, the 

work reported herein presents, in this quest, a novel model 

that determines the stability status of a multicomponent, 

multiphase system, (reservoir fluids) over a wide pressure 

range. This model thus indicates at what pressure a phase 

split will occur at a specified temperature.  

 

2. The Search for Reliable EOS Models  

Peng-Robinson EOS, developed by Peng and Robinson 

[4] has gained wide application in the petroleum industry 

and its modifications by Patel and Teja [5], Ihaveri and 

Youngren [6], as well as Erdogmus and Adewumi [7] have 

led to improvements in the prediction of thermodynamic 

properties of reservoir fluids. In phase equilibrium 

calculations, it has become widely accepted, as enunciated 

by Baker et al.[8], Michelsen [9], [10], Firoozabadi [11], as 

well as Firoozabadi and Pan [12], that phase stability 

analysis is a necessary preliminary step. Phase stability 

analysis is currently carried out using a stability testing 

approach which determines by point tests whether or not a 

system phase is stable at a specified temperature and 

pressure condition by minimizing the Tangent Plane 

Distance (TPD) function as shown by Michelsen [10], 

Baker et al. [8] and Nghiem et al. [13]. Improvements on 

the dimensionless TPD method of stability testing have 

been done by researchers who have extended the work to 

binary and ternary mixtures. The works of Firoozabadi and 

Pan [12] as well as Hendricks and van Bergen [14] among 

others extended stability testing to multicomponent 

mixtures like reservoir fluids by working in the reduced 
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space. Improvements in robustness, efficiency and accuracy 

of solution methods have been the focus of recent works All 

stability testing methods however simply tell, at a specified 

T and P condition (or T and v or some other convenient pair 

of thermodynamic properties) whether or not a system is 

stable. It is thus challenging to have to carry out very many 

point stability tests over a wide range of temperature and 

pressure conditions by varying one property at a time. The 

work of Michelsen [15] showed that it is therefore needful 

to develop more efficient stability analysis methods which 

will be able to ‘search’ over a wide range of pressures and 

determine the conditions at which a system will become 

stable or unstable by splitting into two or more phases. 

Furthermore, it is not enough just to know whether or not a 

system is stable but models that can tell how stable a 

system is will be of great benefit in developing new and 

more efficient methods for stability analysis This is the 

focus of this work; here we present a novel simple model 

which shows the stability status of a system over a wide 

pressure range and hence indicates at what pressure a phase 

split will occur (if it will occur) at the specified 

temperature. This was achieved by a very major 

modification of the attractive parameter in the Peng-

Robinson cubic EOS. 

In the works of Babalola and Susu [16], as well as 

Knudsen et al. [17], the Peng-Robinson Equation of State 

(which is cubic) was used to develop a model for predicting 

the stability limit of a pure system. This was found 

appropriate for representative paraffinic, naphthenic and 

aromatic compounds. The EOS having been developed for 

a pure substance has been modified to improve its 

generality and hence can be applied to binary, ternary, and 

even multi component mixtures [12], [13], [18]. For an 

EOS to be applied to a mixture, the parameters ‘a’ and ‘b’ 

(which are characteristic of pure substances) are calculated 

for mixtures using mixing rules. A lot of work by 

researchers including Mathias et al. [19] and Lin et al. [20] 

has yielded success in this regard for binary, ternary and 

also  multicomponent mixtures. 

There are inherent deficiencies in the use of equations of 

state particularly for multicomponent mixtures. Recent 

investigations have focused on removing these deficiencies. 

EOS models may predict highly erroneous results 

particularly for near critical conditions, even for well-

characterized fluids. Real reservoir fluids contain thousands 

of components for which the principles of the mixing rules 

are highly limited. Danesh [1] has shown that some 

experimental errors, contained in the analyses of reservoir 

fluids and the fact that carbon groups are often not well 

defined result in poor EOS models. Compositional analyses 

are often not very reliable because they are based on 

equilibrated phases rather than the more accurate high-

pressure fluid analysis. The thousands of compounds 

contained in the reservoir fluids are described by a limited 

number of pure substances and carbon groups. Generalized 

correlations often with significantly diverging results are 

used to estimate the critical properties of the carbon groups 

required for EOS-based calculations. All these factors 

further deteriorate prediction by EOS for real reservoir 

fluids [1]. Kaul and Thrasher [21] showed that the current 

approach in the industry is to calibrate or tune the EOS 

against experimental data generated at pertinent conditions 

for specific field studies. These tuned models serve for 

prediction beyond the conditions for which data are 

available. Perdersen et al. [22] discussed some methods of 

tuning equations of state each of which requires a specific 

set of large amounts of data and could be quite involving 

and expensive. A much simpler alternative to tuning termed 

the ‘variable parameter a approach’ (VPAA) has been 

proposed by Babalola and Susu [18]; in this approach, the 

parameter ‘a’ of the Peng-Robinson Equation of State (PR-

EOS) is taken no longer as a constant but as a variable.  

In this work, the VPAA is employed in developing an 

EOS model that more accurately predicts the detailed phase 

behavior of multi component multiphase systems. The 

model is then applied to reservoir fluids from three 

Nigerian oil wells to graphically determine the stability 

status of the fluids over a wide range of pressures at the 

reservoir temperature.  

 

3. Methodology 

The necessity for tuning an Equation of state model is to 

make it perform accurately in predicting properties for 

which data measurements cannot be done and unless a 

model is tuned with the specific set of data for a particular 

fluid system, the errors are usually of great magnitudes 

[22]. It is desirous to develop EOS models that will not 

require tuning; such models will save much cost if they are 

relatively simple [1]. Perderson et al [22]. have frayed into 

this quest of a solution method without tuning, by using 

many experimental compositional analyses, which also 

could be expensive, to describe the composition of the fluid 

under consideration. 

The work of Babalola and Susu [18], in addressing this 

issue, showed mathematically that when the variable 

parameter ‘a’ curve is regressed by using two straight lines 

for a reservoir fluid sample from an oil well–one straight 

line for pressures below bubble point pressure and another 

for pressures above it, the need for tuning would be 

automatically eliminated. They inferred that the regression 

by the straight lines intrinsically ‘tunes’ the EOS model for 

more accurate performance. This approach, termed the 

Variable Parameter ‘a’ Approach (VPAA), was proposed 

in their work as a means to overcome the challenges 

encountered when using mixing rules in dealing with heavy 

reservoir systems. We therefore here incorporate the VPAA 

into a modified  Peng-Robinson EOS and apply the 

Helmhotz free energy criterion for intrinsic stability to 

develop a new EOS model for which no tuning is required. 
 

3.1 Model Development 

The Helmholtz energy stability criterion is given as; 

 

𝐴𝑣𝑣 = (
𝜕𝑃

𝜕𝑉
)

𝑇,𝑁
= 0         (1) 

 

The Peng-Robinson EOS is given as 

 

𝑃 =
𝑅𝑇

𝑣−𝑏
−

𝑎𝑐𝛼

𝑣(𝑣+𝑏)+𝑏(𝑣−𝑏)
         (2) 

where 

ac = 0.457235R2Tc
2/Pc 

b = 0.077796RTc/Pc 

α = [1 + m(1 – Tr
0.5 ) }2 

m was correlated as 

m = 0.37464 + 1.5422 ω – 0.26992 ω 2 

for lighter components and  was later modified for heavier 

components [23] as 

m = 0.3796 + 1.485 ω –0.1644 ω 2 + 0.01667 ω 3 
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We employ the VPAA in which parameter ‘a’ being a 

straight line is given by 

𝑎𝑐 = 𝑎1𝑃 + 𝑎2          (3) 

Hence  𝑎𝑐 is a function of P. Therefore, the PR-EOS is 

modified thus 

𝑃 =
𝑅𝑇

𝑣−𝑏
−

(𝑎1𝑃+𝑎2)𝛼

𝑣(𝑣+𝑏)+𝑏(𝑣−𝑏)
         (4) 

Let 

[𝑣(𝑣 + 𝑏) + 𝑏(𝑣 − 𝑏)] = 𝑄        (5) 

Thus:  

𝑃 =
𝑅𝑇

(𝑣−𝑏)
−

𝑎1𝑃𝛼

𝑄
−

𝑎2𝛼

𝑄
         (6) 

Eq. (6) can be re–arranged to yield 

 

𝑃 =
𝑅𝑇𝑄

(𝑣−𝑏)(𝑄+𝑎1𝛼)
−

𝑎2𝛼

(𝑄+𝑎1𝛼)
        (7) 

Eq. (7) is the modified EOS for application to multi 

component mixtures. 

Applying the Helmholtz free energy criterion for 

intrinsic stability, we will differentiate the modified EOS 

[Eq. (7)] with respect to V (volume) and at constant T 

(Temperature) and N (Number of components). Thus for 

one mole, 

 

(
𝜕𝑃

𝜕𝑉
)

𝑇,𝑁
=

(𝑣−𝑏)(𝑄+𝑎1𝛼)[𝑅𝑇(2𝑣−2𝑏)]−𝑅𝑇𝑄[(𝑄+𝑎1𝛼)+(𝑣−𝑏)(2𝑣+2𝑏)]

(𝑣−𝑏)2(𝑄+𝑎1𝛼)2   

                     − [
−𝑎2𝛼(2𝑣+2𝑏)

(𝑄+𝑎1𝛼)2 ] = 0        (8) 

So that 

𝑅𝑇(𝑣−𝑏)(𝑄+𝑎1𝛼)(2𝑣+2𝑏)−𝑅𝑇𝑄(𝑄+𝑎1𝛼)+𝑅𝑇𝑄(𝑣−𝑏)(2𝑣+2𝑏)

(𝑣−𝑏)2(𝑄+𝑎1𝛼)2   

+
𝑎2𝛼(2𝑣+2𝑏)

(𝑄+𝑎1𝛼)2 = 0           (9) 

Let  

(𝑣 − 𝑏)(𝑄 + 𝑎1 𝛼)(2𝑣 + 2𝑏) − 𝑄(𝑄 + 𝑎1𝛼) 

+𝑄(𝑣 − 𝑏)(2𝑣 + 2𝑏) = 𝑌      (10) 

So that  

𝑅𝑇𝑌

(𝑣−𝑏)2(𝑄+𝑎1𝛼)2 +
𝑎2𝛼(2𝑣+2𝑏)

(𝑄+𝑎1𝛼)2 = 0      (11) 

The expression for T therefore becomes 

𝑇 =
−𝑎2𝛼(2𝑣−2𝑏)(𝑣−𝑏)2

𝑅𝑌
       (12) 

Substituting Eq. (12) into Eq. (7) we have 

 

𝑃 =
𝑅𝑄

(𝑣−𝑏)(𝑄+𝑎1𝛼)
  

∗
(𝑎2𝛼)(2𝑣+2𝑏)(𝑣−𝑏)2

𝑅𝑌
−

𝑎2𝛼

𝑄+𝑎1𝛼
  

  

𝑃 =
𝑄(−𝑎2𝛼)(2𝑣+2𝑏)(𝑣−𝑏)−𝑎2𝛼𝑌

(𝑄+𝑎1𝛼)𝑌
      (13) 

                                                                                            

Substituting for Q from Eq. (5) and Y from Eq. (10) and 

simplifying, we obtain 

 

3𝑃𝑣6 + 10𝑃𝑏𝑣5 + (4𝑃𝑎1𝛼 − 5𝑃𝑏2 − 5𝑎2𝛼)𝑣4 + 

(4𝑃𝑎1𝛼𝑏 − 28𝑃𝑏3 + 8𝑎2𝛼𝑏)𝑣3  

+(5𝑃𝑏4 − 16𝑃𝑎1𝛼𝑏2 + 𝑃𝑎1
2𝛼2 − 14𝑎2𝛼𝑏2 + 𝑎1𝑎2𝛼2)𝑣2 

+(10𝑃𝑏5 − 4𝑃𝑎1𝛼𝑏3 − 2𝑃𝑎1
2𝛼2𝑏 − 8𝑎2𝛼𝑏3

− 2𝑎1𝑎2𝛼2𝑏)𝑣 

+ (
𝑃𝑎1𝛼𝑏4 − 𝑃𝑎1

2𝛼2𝑏2 − 3𝑃𝑏6

−𝑎1𝑎2𝛼2𝑏2 + 5𝑎2𝛼𝑏4 ) = 0     (14)  

 

This gives us a 6th-order polynomial; 

 

𝐴𝑣6 + 𝐵𝑣5 + 𝐶𝑣4 + 𝐷𝑣3 + 𝐸𝑣2 + 𝐹𝑣 + 𝑔 = 0    (15) 

 

where 
 

𝐴 = 3𝑃 

𝐵 = 10𝑃𝑏 

𝐶 = (4𝑃𝑎1𝛼 − 5𝑃𝑏2 − 5𝑎2𝛼 

𝐷 = (4𝑃𝑎1𝛼𝑏 − 28𝑃𝑏3 + 8𝑎2𝛼𝑏) 

𝐸 = (5𝑃𝑏4 − 16𝑃𝑎1𝛼𝑏2 + 𝑃𝑎1
2𝛼2 − 14𝑎2𝛼𝑏2 + 𝑎1𝑎2𝛼2) 

𝐹 = (10𝑃𝑏5 − 4𝑃𝑎1𝛼𝑏3 − 2𝑃𝑎1
2𝛼2𝑏 − 8𝑎2𝛼𝑏3

− 2𝑎1𝑎2𝛼2𝑏) 

𝐺 = 4𝑃𝑎1𝛼𝑏4 − 𝑃𝑎1
2𝛼2𝑏2 − 3𝑃𝑏6 − 𝑎1𝑎2𝛼2𝑏2 + 5𝑎2𝛼𝑏4 

 

Eq. (15) was solved for its six roots using MATLAB 

software application at various pressures to give the 

stability limit curve. These were plotted for each well on a 

plot of pressure against volume. Details of the procedure for 

the plots are given in the Results section. 

The T-isotherm was obtained by rearranging the 

modified EOS for multi component mixtures [Eq. (7)], 

Thus: 

 

𝑃 =
𝑅𝑇𝑣2+2𝑅𝑇𝑏𝑣−𝑅𝑇𝑏2−𝑎2𝛼𝑣+𝑎2𝛼𝑏

𝑣3+𝑏𝑣2−3𝑏2𝑣+𝑏3+𝑎1𝛼𝑣−𝑎1𝛼𝑏
      (16) 

 

Cross-multiplying and collecting like terms, we have 

another polynomial; 

 

𝐽𝑣3 + 𝐾𝑣2 + 𝐿𝑣 + 𝑀 = 0       (17) 

 

where 
 

𝐽 = 𝑃 

𝐾 = 𝑃𝑏 − 𝑅𝑇 

𝐿 = 𝑎1𝛼𝑃 − 3𝑃𝑏2 − 2𝑅𝑇𝑏 + 𝑎2𝛼 

𝑀 = 𝑃𝑏3 − 𝑎1𝛼𝑃𝑏 + 𝑅𝑇𝑏2 − 𝑎2𝛼𝑏 
 

Eq. (17) was solved using the MATLAB software 

application to obtain three roots at various pressures and the 
result was used to plot the T-isotherm for each of the three 

wells considered on a Pressure-volume plot.  
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The limit of stability for the crude in each well was 

determined. This was accomplished by locating the point of  

intersection of the stability curve and the T-isotherm when 

displayed on the same graph at the temperature of the 

reservoir. If such a limit exists, then the intersection of 

these two plots indicates the limit of stability. Below the 

pressure at this point of intersection of the two curves, the 

substance is unstable. If the two curves do not meet within 

the temperature range of interest, then there is no limit of 

stability for that mixture and the mixture is said to be 

unstable within the pressure range considered. 

The authors believe that the error propagated by the 

assumption that parameter ‘a’ is a constant for a multi 

component mixture, is responsible for the deficiencies of 

equations of state such that tuning and sometime elaborate 

adjustments are then required. From previous works by 

Babalola and Susu [18], plots for the three wells have been 

shown to exhibit significant variations of parameter ‘a’ with 

pressure. Each of these plots was regressed to obtain a best 

fit. According to Jenson and Jeffreys [24], the ‘best fit’ in 

graphical methods is a matter of opinion and not necessarily 

the curve passing through the average points. In deciding 

the best fit for the plotted points, the least squares method 

was not used because they observed that the sensitivity of 

parameter ‘a’ to pressure was not constant. The sensitivity 

reduced with pressure decrease, and the best fit line was 

further enhanced by using two straight lines (instead of just 

one) to model the variation of parameter ‘a’ with pressure. 

The data for the three wells used in this work was obtained 

from the conventional PVT data  of three oil wells in 

Nigeria. The pressure and volume values were obtained 

from the PVT data while the parameter ‘a’ values were 

calculated using Eq. (2). The best-fit straight lines for the 

three wells considered in this work are given below: (for 

Well-1, the two straight lines have the same gradient) 

For Well-1, 

𝑎(10−6) = 0.99982𝑃 − 47.2175 (For all P) 

For Well-2, 

𝑎(10−6) = 0.09854𝑃 + 16.167 (For P > Pbbl)  

𝑎(10−6) = −0.0299𝑃 + 0.500 (For P < Pbbl) 

For Well-3,  

𝑎(10−6) = −0.02522𝑃 + 15.889 (For P > Pbbl) 

𝑎(10−6) = 0.0157𝑃 + 8.778 (For P < Pbbl) 

 

Other parameters of Eq. (7), which were obtained from 

data and open literature are: 

 

T = well temperature. This is from the PVT data 

Pb = bubble point pressure. This is also from the PVT 

data. 

b = Equation of state parameter. This is the molar 

volume of the crude at infinite pressure and is calculated 

using the expression given in Eq. (2) 

𝑎𝑐 = Equation of state parameter which is now a 

variable as given in Eq. (3)  

 = Equation of state parameter. This is calculated using 

the expression given in Eq. (2). 

R = gas constant = 82.06 cm3.atm/mol.K 

 

The other EOS parameters given above are presented 

for the three wells treated in this work in Table 1. 

Table 1. Equation of State (EOS) Parameters. 

 WELL-1 WELL-2 WELL-3 

T (K) 356.3 358.1 357.6 

  1.117911 1.32178 0.9108 

𝑎1(10−6)    

𝑎2(10−6)          

(P>Pb) 

0.99982  

-42.2175 

-0.09854 

16.167  

-0.02522 

15.889 

𝑎1(10−6) 

𝑎2(10−6) 

 (P < Pb) 

0.99982 

-42.2175 

-0.0299 

0.500  

0.0157  

8.778 

b 140.7948 106.745 72.80 

Pb (atm) 143.83 209.90 167.17 

 

4. Results And Discussion 

The robustness of the new EOS model is demonstrated 

by the simulation of the stability of  the fluid phases present 

in three oil wells. The uniqueness of each well is pictured 

clearly by the model in the graphs generated. 

WELL-1 

Eq. (15) was solved for well-1 and six roots were 

obtained. Only two of these roots were positive. Spiegiel 

[25] has shown that every root which had a real and an 

imaginary part (complex root) had its conjugate as a root 

too.. Only the real part of a complex root was considered 

meaningful in this result. The imaginary part only indicates 

at what quadrant of the imaginary axes (plane) the root 

occurred. All negative roots have no physical meaning 

since we are interested in volume, which cannot be 

negative. The two roots obtained at various pressure 

intervals yielded the stability curve of the vapor and liquid 

phases as shown in Figure 1. 

 

 
 

Figure 1. Stability Limit Curves for Well-1. 

 

By solving Eq. (17) for its three roots, only two positive 

roots were obtained within the pressure range of interest. 

This gave the T-isotherm for the vapor and liquid phases 

which were displayed on the sane graph as the stability 

curves as shown in Figure 2. The points of intersection of 

the stability curve and the isotherm gives the stability limit 

for each phase. The vapor phase stability curve and 

isotherm did not intersect showing that the vapor phase was 

unstable while the liquid phase stability limit is read off 

from the intersection of its stability curve and isotherm as 

47.4 atm.  
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Figure 2. Limit of Stability for Well-1. 

 

Theoretically, the stability limit curve (spinodal curve) 

intersects the T-isotherm at the point of stability of the 

system. This was demonstrated mathematically for pure and 

binary systems by Model and Reid [26] and validated using 

the experimental works of Skipov and Ermakov [27]. These 

works were very closely matched by the work of Babalola 

and Susu [16] The EOS model developed in this work is an 

extension of this Helmholtz energy stability criterion  

approach to multicomponent multiphase systems. There are 

strong theoretical indications that accurate stability analyses 

can be more easily achieved by models based on Helholtz 

energy criterion than those based on Gibbs energy stability 

criterion [26]. Nichita [28] explained that the difficulty in 

phase split determination consists in the fact that the Gibbs 

energy-based TPD objective function is highly non-linear 

and non-convex and hence does not guarantee that the 

global minimum will be found.  As far as the authors are 

aware, this is the first extension of Helmholtz energy  

stability criterion  to multicomponent multiphase systems. 

As expected from theory, this model is relatively simple 

and has several other advantages. It not only determines 

qualitatively whether or not a system is stable at specified 

temperature and pressure conditions, but also shows 

quantitatively how far from stability the said system is. The 

extent of stability and metastability of fluid systems are 

outside the scope of this paper and will be addressed in 

subsequent works. 

WELL-2 

For Well-2, the solutions of Eqs. (15) and (17) yielded 

two positive roots in each case;  the larger value for the 

vapor phase and the smaller for the liquid phase. The 

resulting plots are as shown in Figure 3. For the vapor 

phase, volume decreased slightly initially with increasing 

pressure, then went through a sudden rise around the bubble 

point pressure (Pb) and began to slightly decrease again 

after undergoing a maximum at 230 atm. For the liquid, the 

volume increased slightly initially with pressure rise, went 

through a little drop at a pressure of about 210 atm, and 

began to rise gently again. Very small intervals of pressure 

rise were simulated around this region for closer 

monitoring.  

 

 
 

Figure 3. Stability Limit Curves for Well-2. 

 

In Figure 4, the T-isotherm for the vapor phase 

intersects the vapor stability limit curve at 218 atm. The T-

isotherm for the liquid phase comes very close but does not 

intersects the stability limit curve. Such near-stability 

scenarios call for quite involving investigations that are 

currently on-going. However, it is hoped that helpful 

findings that will enhance phase behavior control tools in 

reservoir operations and management will emerge 

therefrom. Challenges arising mainly from the inaccuracies 

of EOS models, especially at near critical conditions [29], 

will be reduced with such models as this which do not 

require tuning.  Danesh [1] emphasized that an EOS that 

could predict phase behavior data reasonably well without 

requiring any tuning would be the best option 

 

 
 

Figure 4. Limit of Stability for Well-2. 

WELL-3 

The solution to Equation (15) yielded six roots for Well-

3 three of which were positive at each pressure value. Two 

of these roots corresponded to the liquid phase while one 

was for the vapor phase. These resulted in three stability 

limit curves for the fluid system in well-3  indicating one 

vapor phase and two liquid phases as shown in Figure 5. 

From Figure 6, the conditions at which these split phases 

are stable can easily be read off.  
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Figure 5. Stability Limit Curves for Well-3. 

 

This is quite intriguing and is a major hallmark 

advantage of this model. As far as the authors are aware, no 

model yet predicts the conditions for phase split by a simple 

‘search’ over a wide range of pressures. For the vapor 

phase, the volume decreased with increase in pressure and 

went through a sudden rise at the bubble point pressure and 

then began to decrease again at a slower gradient with 

further increase in pressure. For the lighter liquid phase, the 

stability limit curve showed a steady decrease in volume 

with increase in pressure, a slight but sudden rise around 

the bubble point pressure and then further decrease with 

increase in pressure at an even slower gradient. For the 

heavier liquid phase, the volume remained almost constant 

with increase in pressure, rose very slightly at the bubble 

point pressure and decreased very slowly with further 

increase in pressure. It is evident that the volume rise 

around the bubble point pressure is somewhat in direct 

proportion to the molar molume of the phase concerned. 

Two T-isotherms were obtained, one for the vapor 

phase and the other for the two liquid phases. The vapor 

phase T-isotherm intersects the vapor phase stability limit 

curve at a pressure of 45.7 atm. this is shown in Figure 6 

but is further enlarged and extended for clearer observation 

in Figure 7.  

 

 
 

Figure 6. Limit of Stability for Well-3. 

 

 
 

Figure 7. Vapor Phase Limit of Stability for Well-3. 

 

The T-isotherm for the liquid phases does not intersect 

the stability limit curve for the lighter liquid but intersects 

that of the heavier liquid at a pressure of 115.9 atm. as 

enlarged for clarity in Figure 8. This implies that the lighter 

liquid was unstable at the well temperature and over the 

pressure range considered while the heavier liquid was 

found to be stable at 115.9 atm. The summary of these 

results are shown in Table 2. 

 

 
 

Figure 8. Liquid Phase Limit of Stability for Well-3. 

 

Table 2. Stability Status of Crude Petroleum Fluids from 

Three Wells. 

WELL STABILITY LIMIT (atm) 

Vapor Liquid 1 Liquid 2 

1 Unstable 47.4 None 

2 209 Unstable None 

3 45.7 Unstable 115.9 

 

Some of these cases of instability may actually include 

cases of  metastability for which some thermodynamic 

properties may be readily manipulated to bring about 

stability under the reservoir conditions. Models that will 

distinguish between these two states for multicomponent 

systems are yet to be developed, but the basic theoretical 

principles have been delineated by researchers [30]. 
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5. Conclusions  

The following conclusions are derivable from this work: 

1. The Equation of state model developed in this work is 

an improvement on the advances made so far in the quest 

for a reliable EOS model as evidenced in various works 

cited here. It takes account of virtually all the factors that 

contribute to the phase behavior of crudes while minimizing 

the unwanted influence of error propagation due to large 

data usage in model development and applications. 

2. This EOS model gives not only the detailed phase 

behavior of any crude but also clearly indicates the number 

of phases present and their paths of intrinsic stability. 

3. Of great practical significance is the capacity of the 

model to show the splitting of the liquid phase in Well-3. 

This is likely to be connected with the particularly low 

molecular weight (overall) of the crude from this well  

which also resulted in its low value of parameter ‘b’ as 

shown in Table 4.  

4. With this model, an oil well phase scenario, over a 

wide pressure range, can be seen at a glance for well-

informed decisions on design, operations and management 

of the well during production. 

 

6. Nomenclature 

 

AVV = Helmholtz free energy 

𝑎𝑐= Equation of state attractive force parameter 

b = Equation of state repulsive force parameter (co-volume) 

𝜔 = acentric factor 

T = Temperature 

P = Pressure 

v = molar volume 

R = Universal gas constant 

Pb = Bubble point pressure 

TPD = Tangent Plane Distance 

EOS = Equation of State 
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