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Abstract: In recent years, mobile robots have begun to be used in sectors such as 
social life, education and health as well as in the industrial sector. For this reason, 
mobile robots and their problems have become the focus of attention by 
researchers. Path planning and tracking control are among the basic problems of 
mobile robots. However, the literature generally focuses on algorithmic 
improvements, ignoring the disadvantages that the path type can cause such as 
long computation times and high costs. This study focuses on the problem 
simplifying instead of the algorithmic improvements, and examines the effect of 
path linearity on a robot's tracking the planned path. Therefore, a pure pursuit 
controller is designed for curve and line-type optimal paths planned by artificial 
bee colony algorithm and path tracking performances are compared. For path 
planning, the line-type paths outperformed the curve-type paths by 3–11% in 
terms of path length and 13–22% in terms of running time. For tracking control, 
although both path types demonstrated similar accuracy, the curve-type paths 
showed slightly better performance, particularly in sharp turns. The maximum 
tracking errors were approximately 0.0018 m in the 𝑋-axis, 0.012 m in the 𝑌-axis 
and 0.046 rad in orientation. 

  
  

Mobil Robot Yol Planlaması ve Takip Kontrolünde Yol Doğrusallığının Etkisi 
 
 

Anahtar Kelimeler 
Mobil Robot, 
Yol Planlama, 
Yapay Arı Koloni, 
Yol Takip Kontrolü, 
Doğrusallık  

Öz: Son yıllarda mobil robotlar sosyal yaşam, eğitim ve sağlık gibi sektörlerin yanı 
sıra endüstriyel alanda da kullanılmaya başlanmıştır. Bu nedenle mobil robotlar ve 
problemleri araştırmacıların ilgi odağı haline gelmiştir. Yol planlama ve takip 
kontrolü mobil robotların temel problemleri arasındadır. Ancak literatür genellikle 
algoritmik iyileştirmelere odaklanmış, uzun hesaplama süreleri ve yüksek 
maliyetler gibi yol tipinin neden olabileceği dezavantajları göz ardı etmiştir. Bu 
çalışma algoritmik iyileştirmeler yerine problemin basitleştirilmesine odaklanmış 
ve yol doğrusallığının bir robotun planlanan yolu takip etmesi üzerindeki etkisini 
incelemiştir. Bu nedenle yapay arı kolonisi algoritması ile planlanan eğri ve çizgi 
tipi optimal yollar için bir saf takip denetleyicisi tasarlanmış ve yol takip 
performansları karşılaştırılmıştır. Yol planlaması için, çizgi tipi yollar yol uzunluğu 
açısından           %3–11 ve çalışma süresi açısından %13–22 oranında eğri tipi 
yollardan daha iyi performans göstermiştir. Takip kontrolü için ise her iki yol türü 
benzer doğruluk göstermesine rağmen, eğri tipi yollar özellikle keskin dönüşlerde 
biraz daha iyi performans göstermiştir. Maksimum takip hataları 𝑋 ekseninde 
yaklaşık 0.0018 m, 𝑌 ekseninde 0.012 m ve yönelimde 0.046 rad olarak 
ölçülmüştür. 
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1. Introduction
 
In recent years, mobile robots have become increasingly important in social life as well as in industrial areas. In 
this context, practical applications such as robot vacuum cleaners in homes are an indication of the widespread 
use of mobile robots. However, the potential for use of mobile robots in areas such as education and health 
sectors is also quite large. Unlike fixed robotic arms, mobile robots stand out with their ability to move freely 
within a certain work area. In addition, these robots can have an autonomous structure, meaning they can 
perform their tasks without human intervention. As mechatronic systems, mobile robots have generally been the 
subject of research addressing four fundamental problems: mapping, localization, path planning, and path 
tracking. Mapping is about a robot recognizing its environment and creating a detailed map of the area. 
Localization means that the robot accurately estimates its position in the environment. Path planning is a 
problem that involves calculating the path that a robot should reach target points at optimum cost without 
collisions. Finally, path tracking is a problem that involves designing the control systems required to ensure that 
the robot moves accurately and efficiently along a planned path [1-2].  
 
The rapid development and widespread use of mobile robot technology has brought with it some technical 
difficulties. Among these difficulties, the inability of robots to move as desired on slippery surfaces and their 
tendency to deviate from the determined path while traveling at high speeds stand out. Especially in industrial 
applications, such problems can prevent robots from operating efficiently. In order to overcome such technical 
difficulties, it is important to design and implement path tracking controllers. Path tracking controllers are used 
to regulate the movement of the robot, direct it to the desired path and provide the most efficient performance. 
These controllers monitor the robot's movement in real time, evaluate environmental conditions and ensure that 
it travels on the desired path by making the necessary corrections [3]. 
 
This study focuses on path planning and path tracking problems of mobile robots. Therefore, the literature is 
reviewed in terms of these two problems. Recent studies based on path planning can be summarized as follows: 
Lu et al. proposed an improved teaching learning based optimization algorithm. This method effectively 
optimized mobile robot path planning and outperformed the leading algorithms in terms of efficiency [4]. Psotka 
et al. proposed an improved wavefront algorithm for ground mobile robots. This algorithm removed 
unnecessary waypoints and smoothed the generated path using B-spline [5]. Ali et al. used firefly algorithm in 
mobile robot path planning. This algorithm created smooth paths by finding suitable control points in various 
environments [6]. Wang et al. proposed a method that includes genetic algorithm (GA) and grid-based methods. 
This method effectively optimized the path planning of mobile robots in complex environments [7]. Abed et al. 
proposed a hybrid approach of particle swarm optimization (PSO) and bat algorithm for multi-objective 
optimization of autonomous mobile robots for moving targets in dynamic environments [8]. Qin et al. used 
proximal policy optimization algorithm for safe path planning of mobile robots using local information from 
LiDAR in unknown environments [9]. Li et al. proposed a machine vision based mobile robot path planning 
system and a method based on ant colony optimization. This method planned safe and efficient paths with 
optimal parameter combination in mobile robot areas [10]. Yanhua et al. proposed an improved spider swarm 
algorithm. This algorithm effectively improved mobile robot path planning, enhanced search ability and avoided 
local optimization problems [11]. Alabdalbari et al. proposed a hybrid version of grey wolf optimization and PSO 
algorithm. This method effectively optimized the feasible paths in static environments and outperformed 
different methods such as PSO and artificial bee colony algorithm [12]. Yildirim et al. proposed a model in which 
PSO and k-means clustering algorithms are used as a hybrid for multi-obstacle environments and the problem 
size is reduced by clustering the obstacles [13]. Akay et al. stated that the sine cosine algorithm (SCA) could not 
produce satisfactory results due to a single update strategy for multi-robot path planning, and proposed a new 
algorithm based on SCA [14]. Galarza-Falfan et al. proposed an approach by thoroughly analyzing the integration 
of deep learning-based artificial vision systems into autonomous mobile robots. By comparing ResNet18 and 
YOLOv3 algorithms for real-time object detection, it introduced a method to improve the adaptability and 
efficiency of robots in dynamic environments [15]. Li et al. proposed an improved deep deterministic policy 
gradient algorithm (DDPG) to address the low success rate and slow training speed. This method adds dynamic 
delay update strategy and Ornstein-Uhlenbeck noise with prior experience repetition and transfer learning to 
improve the learning efficiency, thus improving the success rate and training speed in path planning [16]. 
 
Recent studies based on path tracking can be summarized as follows: Wang et al. proposed an improved pure 
pursuit path control method based on heading error rate, effectively reduced the tracking error in agricultural 
applications, and improved the convergence and the working quality of the robot [17]. Nawawi et al. proposed a 
PID controller optimized with PSO and a two-wheeled mobile robot controller based on pure pursuit algorithm. 
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This controller enabled autonomous movement to specific waypoints in various applications [18]. Anurag et al. 
compared model predictive controller, pure pursuit and linear quadratic regulator control schemes in robo-taxi 
maneuvers and concluded that the best controller is the model predictive controller [19]. Zhao et al. proposed an 
adaptive fuzzy neural network for the path tracking problem. This control method improved the tracking and 
trajectory starting point optimization [20]. Shi et al. proposed a tracking control method based on AVRX 
operating system, and this controller improved the robot's path tracking accuracy [21]. Mérida-Calvo et al. 
proposed an improved motor control system composed of PID controller, Smith predictor, anti-windup scheme 
and Coulomb friction compensator. This method significantly improved the tracking accuracy for low-cost 
mobile robots [22]. Zeng et al. proposed a hybrid version of interval type II fuzzy logic and sliding mode control. 
This controller improved the tracking and motion quality of mobile robots under unknown environment 
conditions [23]. A hybrid controller of backstepping and fractional-order PID proposed by Xu et al. enabled 
effective path tracking of wheeled differential-driven mobile robots. The authors also proposed an improved 
beetle swarm optimization algorithm to tune the parameters [24]. Fadlo et al. proposed a different backstepping 
controller for a wheeled mobile robot. This method effectively reduced the energy consumption by providing fast 
convergence and proved to be effective in various scenarios [25]. Zaman et al. proposed a controller called fuzzy 
reinforcement learning and showed that autonomous mobile robots effectively track the planned path [26]. The 
authors proposed a deep reinforcement learning (DRL)-based method for path following and formation control 
of unmanned surface vehicles (USVs), incorporating a novel random braking mechanism to prevent training 
from getting stuck in local optima. This enhanced control strategy improves the adaptability and robustness of 
the formation, enabling flexible and automatic adjustment during navigation [27]. 
  
According to the path planning-based studies, although there are some studies on curve-type paths, line-type 
paths and smoothing line-type paths, improvements have been made on the algorithm side in these studies. The 
path tracking-based studies have also aimed at improving a controller. However, it is ignored that the path type 
may cause some disadvantages such as long calculation times and high cost. In order to overcome these 
disadvantages, curve and line-type paths should be planned and evaluated separately. In [28], curve and line-
type optimal paths were planned using GA and the performances of these path types were compared for the path 
planning problem. It was observed that line-type paths gave better results than curve-type paths in terms of both 
length and calculation time. However, the effect of path linearity on path tracking control was not investigated in 
[28] and no study has been conducted on this investigation in the recent literature. Understanding the effect of 
path geometry (path linearity) on tracking performance is essential for reducing computational cost and 
ensuring reliability in real-world mobile robot applications. This necessity forms the main motivation of this 
study. The contribution of this study is to focus on the problem improvements instead of the algorithmic 
improvements, and to examine the effect of path linearity on a robot's tracking the planned path. Therefore, a 
pure pursuit controller was designed for curve and line-type paths planned using artificial bee colony algorithm 
and the path tracking performances of these path types were compared. 
 
The rest of this study is organized in three sections: Section 2 examines the method in which ABC algorithm, 
formulation of path planning and pure pursuit controller are mentioned. Section 3 presents simulation data and 
results. The last part of the study, Section 4, is the conclusion. 
 
2.  Method 
 
2.1. Artificial bee colony algorithm 
 
Artificial Bee Colony (ABC) algorithm, introduced in 2005, is a population-based optimization technique inspired 
by the foraging behavior of honey bees [29]. The algorithm operates as follows: it begins by randomly generating 
an initial population, as described in Equation 1. 
 

𝕏 = 𝑋𝑗
𝑚𝑖𝑛 + (𝑋𝑗

𝑚𝑎𝑥 − 𝑋𝑗
𝑚𝑖𝑛) × 𝑅,   𝑅 ~ 𝑈(0,1)𝑁×𝐷 ,   𝑖 ∈ {1,2, … , 𝑁},   𝑗 ∈ {1,2, … , 𝐷}       (1) 

 

Where 𝕏 represents the population, 𝑋𝑖𝑗  denotes the parameter 𝑗 of the solution 𝑖, [𝑋𝑗
𝑚𝑖𝑛

, 𝑋𝑗
𝑚𝑎𝑥

] are boundary 

values for the parameter 𝑗, 𝑁 is the population size and 𝐷 is the problem size. This initial population is subjected 
to employed bee, onlooker bee and scout bee stages. A random parameter is selected in the employed bee stage 
and this parameter of the solutions is updated using Equation 2. 
 

𝑉𝑖𝑗 = 𝑋𝑖𝑗 + 𝛷𝑖𝑗(𝑋𝑖𝑗 − 𝑋𝑘𝑗),   𝑘 ≠ 𝑖,   𝑘 ∈ {1,2, … , 𝑁}       (2) 

 
where 𝑉𝑖𝑗  represents the updated value of the parameter 𝑗 of the solution 𝑖, 𝑋𝑘𝑗 denotes the parameter 𝑗 of 

another randomly chosen solution from the population, and 𝛷𝑖𝑗 is a randomly generated number within the 
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interval [-1,1]. The modified population is then evaluated using the objective function, and the fitness value is 
computed as shown in Equation 3. 
 

𝑓𝑖𝑡𝑖 = {   

1

1 + 𝑓𝑉𝑖

                𝑖𝑓 𝑓(𝑖) ≥ 0

1 + |𝑓𝑉𝑖
|               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

          (3) 

 
where 𝑓𝑖𝑡𝑖 represents the fitness of the solution 𝑖 and 𝑓

𝑉𝑖
 denotes its corresponding cost. Prior to moving on to 

the onlooker bee phase, the selection probability for each solution is determined using Equation 4.  
 

𝛿𝑖 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑖
𝑁
𝑖=1

       (4) 

 
where 𝛿𝑖 is the selection probability of the solution 𝑖. In the onlooker bee phase, these selection probabilities 
guide the algorithm toward solutions with higher fitness, improving its exploitation capability. At this stage, a 
random number is generated for each solution, and if it is less than the solution’s selection probability, the 
solution is updated using Equation 2. The revised solution is then evaluated through the objective function, and 
its fitness is recalculated using Equation 3. In the scout bee phase, solutions that haven't improved within a 
certain limit are replaced by new ones generated via Equation 1, highlighting the algorithm’s exploration ability. 
The best-performing solution from the updated population is stored, and this cycle continues until the stopping 
condition is satisfied [30]. The core steps of the ABC algorithm are outlined in Algorithm 1.  
 

Algorithm 1. The basic steps of ABC 
1. Set control parameters of the algorithm 
2. Generate population using Equation 1 
3. Evaluate the population using the objective function 
4. Store the optimum solution 
5. while (unless the stopping criterion is satisfied) 
6.  Update the population using Equation 2 
7.  Evaluate the population using Equation 3 
8.  Calculate the selection probabilities using Equation 4 
9.  Update the population using Equation 2 according to the selection probabilities 

10.  Evaluate the population using Equation 3 
11.  Generate a solution using Equation 1 instead of the solution that are not updated up to a limit 
12.  Update the optimum solution 
13. end while 
14. Report the optimum solution 

 
2.2. Formulation of path planning 
 
For modeling the path planning, different types of maps are created. In the case of continuous space maps, the 
process involves specifying the robot’s start and target points, as well as identifying any obstacles in the map. 
The map data and start-target points are defined as shown in Equation 5 and 6, respectively. 
 

𝐸 = {𝑝 ∈ ℝ2 | ∃ℱ ∈ 𝐶([0 1], ℝ2)}       (5) 
 

{𝑝𝑠 , 𝑝𝑡} ∈ 𝐸\𝑂,   𝑝𝑠 ≠ 𝑝𝑡       (6) 
 
where 𝐸 is the map data, ℱ is a continuous function, 𝑝𝑠 , 𝑝𝑡 are the start and target points, 𝑂 is the obstacle 
cluster. In this study, the obstacles are designed as circles, and defined as in Equation 7.  
 

𝑂 = {{𝑝𝑗
𝑜 , 𝑟𝑗 } | 𝑝𝑗

𝑜 ∈ 𝐸, 𝑗 ∈ {1,2, … , 𝑛𝑜}, 𝑟𝑗 ∈ ℝ+ , 𝑛𝑜 ∈ ℕ+}       (7) 

 
where 𝑝𝑗

𝑜  is the center of the obstacle 𝑗, 𝑟𝑗  is the radius of the obstacle 𝑗 and 𝑛𝑜 is the number of the obstacles. In 

the continuous space maps, the paths are planned by interpolation method. The solutions produced by ABC 
algorithm represent data points to be used for the interpolation. The number of these points determines 
dimension of the problem (𝐷). The data points are defined as shown in Equation 8 and 9. 
 

𝑃𝑑 = {𝑝𝑠 , 𝑝𝑡} ∪ {𝑝𝑚
𝑑  | 𝑝𝑚

𝑑 ∈ 𝐸, 𝑚 ∈ {1,2, … , 𝐷}, 𝐷 ∈ ℕ+}       (8) 
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𝑃𝑑 = {𝑝𝑘
𝑑  | 𝑝𝑘

𝑑 ∈ 𝐸, 𝑘 ∈ {1,2, … , (𝐷 + 2)}}       (9) 

where 𝑝
𝑖
𝑑 is the data point 𝑖 and 𝐷 is the number of the data points. The data points represent the dimension of 

the problem. Since the start and target points are included, the dimension of 𝑃𝑑  is (𝐷 +  2). The data points are 
subjected to the interpolation between each two consecutive data points, and multiple waypoints are generated 
that define the path as in Equation 10 and become ready to evaluate. 
 

𝑃𝑦 = {𝑝𝑖
𝑦

 | 𝑝𝑖
𝑦

∈ 𝐸, 𝑖 ∈ {1,2, … , 𝑛𝑦}, 𝑛𝑦 ∈ ℕ+, 𝑛𝑦 ≥ (𝐷 + 2)},   𝑃𝑦 ⊇ 𝑃𝑑      (10) 

 

where 𝑝𝑖
𝑦

 is the point of the waypoint 𝑗 in the path, 𝑛𝑦 is the number of the waypoints. The interpolated path is 

sampled at 𝑛𝑦 waypoints, which define the planned path and are used in the objective function for length 

evaluation and collision avoidance. The paths are evaluated using the objective function in Equation 11 [31].  
 

arg min
𝑃𝑦

𝐹 = 𝐿(1 + 𝛽𝑉)     (11) 

 
where 𝐹 is the objective function, 𝐿 is path length cost, 𝑉 is obstacle violation cost and 𝛽 is obstacle violation 
coefficient. 𝐿 and 𝑉 are calculated as shown in Equation 12 and 13, respectively. Thus, the objective function 
returns the planned path and overall cost of the path to ABC algorithm. ‖⋅‖ is the calculation of the Euclidean 
distance. 
 

𝐿 = ∑ ‖𝑝𝑖
𝑦

− 𝑝𝑖+1
𝑦 ‖

𝑛𝑦−1

𝑖=1

     (12) 

 

𝑉 = ∑ ∑ { 1 −
‖𝑝𝑖

𝑦
− 𝑝𝑗

𝑜‖

𝑟𝑗

,           𝑖𝑓 (1 −
‖𝑝𝑖

𝑦
− 𝑝𝑗

𝑜‖

𝑟𝑗

) > 0

0,                                                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 }

𝑛𝑜

𝑗=1

𝑛𝑦

𝑖=1

     (13) 

 
2.2.1. Curve-type paths  
 
𝑝𝑘

𝑑 is interpreted as a two-dimensional coordinate point, representing a position in the Cartesian plane. This 
interpretation is illustrated in detail in Equation 14, where its components are explicitly defined and used to 
describe spatial relationships within the modeled system.  
 

𝑝𝑘
𝑑 = [

𝑥𝑘
𝑑

𝑦𝑘
𝑑

] ,   𝑘 ∈ {1,2, … , (𝐷 + 2)}     (14) 

 
For curve-type paths, cubic spline interpolation is used in this paper. This interpolation uses a segmented 
polynomial function that creates a smooth curve between the data points. In this method, curves are created 
using third-degree polynomials for each segment and these curves are connected at the data points. For each 
segment [𝑥𝑘

𝑑  , 𝑥𝑘+1
𝑑  ], the cubic polynomial is defined as in Equation 15. 

 

𝑆𝑘(𝑥) = 𝑎𝑘 + 𝑏𝑘(𝑥 − 𝑥𝑘
𝑑) + 𝑐𝑘(𝑥 − 𝑥𝑘

𝑑)
2

+ 𝑑𝑘(𝑥 − 𝑥𝑘
𝑑)

3
     (15) 

 
𝑎𝑘 , 𝑏𝑘 , 𝑐𝑘 and 𝑑𝑘 are coefficients. These coefficients are determined and each polynomial accurately represents 
the data points. Cubic spline interpolation satisfies the following conditions:  
 

• For each segment, 𝑆𝑘(𝑥𝑘) = 𝑦𝑘 and 𝑆𝑘(𝑥𝑘+1) = 𝑦𝑘+1. 
 

• The polynomials are continuous at the point 𝑥𝑘: 𝑆𝑘(𝑥𝑘) = 𝑆𝑘+1(𝑥𝑘) 
 

• The first derivatives are continuous at the same point: 𝑆𝑘
′ (𝑥𝑘) = 𝑆𝑘+1

′ (𝑥𝑘) 
 

• The second derivatives are continuous at the same point: 𝑆𝑘
′′(𝑥𝑘) = 𝑆𝑘+1

′′ (𝑥𝑘) 
 
These conditions create a system of linear equations for determining the coefficients and by solving each 
polynomial. In this way, cubic spline interpolation provides a smooth and continuous curve between the data 
points. 
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2.2.2. Line-type paths  
 
For line-type paths, linear interpolation is used in this paper. This interpolation is a simple method used to 
estimate an unknown point by establishing a linear relationship between two data points. Mathematically, the 
goal of linear interpolation is to determine 𝑦 corresponding to any 𝑥 in between using two consecutive data 
points (𝑥𝑘

𝑑 , 𝑦𝑘
𝑑) and (𝑥𝑘+1

𝑑 , 𝑦𝑘+1
𝑑 ). This is accomplished by defining a linear function for x and is calculated as in 

Equation 16. 
 

𝑆𝑘(𝑥) = 𝑦𝑘
𝑑 + (𝑥 − 𝑥𝑘

𝑑)
(𝑦𝑘+1

𝑑 − 𝑦𝑘
𝑑)

(𝑥𝑘+1
𝑑 − 𝑥𝑘

𝑑)
      (16) 

 
Thus, a linear function is defined for the segment [𝑥𝑘

𝑑 , 𝑥𝑘+1
𝑑 ]. Linear interpolation provides a linear transition 

between data points for each segment. In this way, lines between the data points is created. 
 
2.3. Pure pursuit controller  
 
Pure pursuit controller is a path-tracking algorithm that attempts to geometrically calculate the curvature that 
will move a mobile robot from its current position to a target [32]. The algorithm is modeled after people looking 
slightly ahead of their cars and moving toward that point while driving. Therefore, the robot is thought to be 
tracking a point a little further down the path. This target point is a point on the path that is one lookahead 
distance away from the current position of the robot. An arc is created connecting the current position and the 
target position. The geometry of the algorithm is shown in Figure 1. 
 

 
Figure 1. Geometry of pure pursuit controller 

 
The point (𝑥, 𝑦) in Figure 1 is the position that is lookahead distance (𝑙) away from the origin position of the 
mobile robot. Therefore, Equation 17 can be written for the triangle formed on the left, and Equation 18 can be 
written for the triangle on the right. 𝑟 in Equation 18 is the radius of the arc, and 𝑑 is the difference between 𝑟 
and the projection of the target position on 𝑿 axis, as seen in Equation 19. 
 

𝑥2 + 𝑦2 = 𝑙2      (17) 
 

𝑑2 + 𝑦2 = 𝑟2      (18) 
 

𝑑 = 𝑟 − 𝑥      (19) 
 
If the expression for 𝑑 in Equation 19 is written and rearranged in Equation 18, the expression for  (1/𝑟), will be 
obtained as in Equation 20. 
 

𝛾 =
1

𝑟
=

2𝑥

𝑙2
      (20) 

 
The choice of lookahead distance in path tracking is also very important. A large lookahead distance will show a 
slow reflex in tracking the path, while small lookahead distances will cause an aggressive oscillate to track the 
path. This effect is shown in Figure 2. 
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Path 

𝑙 = large 

𝑙 = small 

 
Figure 2. Effect of lookahead distance on the path 

 
Although the pure pursuit controller is a useful path-tracking algorithm, it has two important limitations. The 
first of these is that the points between the waypoints cannot be directly tracked. The other limitation is that the 
mobile robot cannot be stabilized at any point. For this reason, in the control loop, the distance between the 
robot’s current position and the target position must be constantly checked and the control loop must be 
terminated when it falls below the desired value. In addition, the linear speed of the mobile robot is fixed, and 
the controller produces angular velocity as a control signal. Figure 3 presents the closed-loop control block 
diagram of the system, where the Pure Pursuit controller is used to generate steering commands based on the 
tracking error. This figure highlights how the reference path and robot states interact through the control loop. 
 

 
Figure 3. Pure pursuit closed-loop control block diagram  

 
3. Results  
 
All simulations in this paper were coded in the MATLAB programming language and run on a computer with 16 
GB RAM and 2.6 GHz processor. Firstly, the effects of curve and line-type paths on path planning were briefly 
analyzed. Secondly, the effects of these path types on path tracking were analyzed and interpreted 
comprehensively, using the paths in the path planning analysis. 
  
3.1. Effect of path types in path planning   
 
To analyze the effect of path type, different maps in meter were designed and curve and line-type paths were 
planned with ABC algorithm. In this paper, three maps were designed with different levels of difficulty and 
shown in Figure 4. In all maps, the coordinate of the start point is (0,0) and the coordinate of the target point is 
(10,10). Obstacles were randomly distributed in the maps. Number of obstacles is 4 in Map 1, 9 in Map 2, and 29 
in Map 3.  
 

   
                                                (a)                                                                    (b)                                                                 (c) 
Figure 4. The maps designed with different levels of difficulty: (a) Map 1, (b) Map 2, (c) Map 3 (The turquoise circle, the 
black cross and the gray circles represent the start point, the target point and the obstacles, respectively.) 
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For path planning, 𝛽 and 𝑛𝑦 were set to 100. Number of data points (𝐷) is 3 for Map 1, 4 for Map 2, and 5 for Map 

3. For ABC algorithm, maximum number of fitness evaluation and population size were set to 5000 and 50, 
respectively. The algorithm was run 30 times for both maps. Planned curve and line-type paths are shown in 
Figure 5, path length and running time comparisons are shown in Table 1. The planned paths are the solutions 
with the minimum fitness among 30 runs.  
 

    
                                                 (a)                                                                    (b)                                                                 (c) 
Figure 5. Planned curve and line-type paths: (a) Map 1, (b) Map 2, (c) Map 3 (The turquoise circle, the black cross and the 
gray circles represent the start point, the target point and the obstacles, respectively. The red line, the blue line, the red dots 
and the blue dots represent the curve-type path, the line-type path, the data points of the curve-type path, and the data points 
of the line-type path, respectively)  

 
Table 1. Path length and running time comparisons of the path types (These results represent the mean of 30 runs.) 

Path Type 
Map 1 Map 2 Map 3 

Path Length 
(m) 

Running Time  
(s) 

Path Length 
(m) 

Running Time 
(s) 

Path Length 
(m) 

Running Time 
(s) 

Curve-Type 15,3579 6,2743 15.3686 6.9937 16,7069 14,5349 

Line-Type 14,8176 4,8335 14.5158 5.5418 14,8417 12,5704 

 
Considering Table 1, line-type paths produced better results than curve-type paths in terms of path lengths for 
both maps. The line-type paths outperformed curve-type paths by 3.52% for Map 1, 5.55% for Map 2, and 
11.15% for Map 3. It can be said that as maps becomes more complex, the advantage of the line-type paths 
becomes more obvious. Moreover, it is seen that the line-type paths were planned faster than curve-type paths 
for all maps. The line-type paths outperformed curve-type paths by 22.97% for Map 1, 20.76% for Map 2, and 
13.5% for Map 3. This rate of Map 3 is lower than Map 1-2, and this is due to the difficulty of the problem. As a 
result, it can be said that the line-type paths showed better performance in all maps. 
 
3.2. Effect of path types in path tracking 
 
In this simulation, the tracking performance of a mobile robot on the planned paths in Subsection 3.1 was 
analyzed. A pure pursuit controller is designed and tracking performances of these two types of paths are 
compared. The parameters of the pure pursuit controller are given in Table 2.  
 

Table 2. Pure pursuit controller parameters 
Controller Parameters Parameter Values 

Reference Linear Velocity 1.5 m/s 

Maximum Angular Velocity 2 rad/s 

Lookahead Distance 0.3 m 

Target Point Radius 0.1 m 

Sampling Time 0.1 s 

 
Tracking time and distance left comparisons are shown in Table 3, and the path tracking performance of the 
mobile robot is shown in Figure 6. Distance left measures how close the robot is to the target point at the end of 
the simulation. 
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Table 3. Tracking time and distance left comparisons of the path types 

Path Type 
Map 1 Map 2 Map 3 

Tracking Time 
(s) 

Distance Left  
(m) 

Tracking Time 
(s) 

Distance Left 
(m) 

Tracking Time 
(s) 

Distance Left 
(m) 

Curve-Type 9,7 0,0433 9,5 0,0306 9,5 0,0580 

Line-Type 9,7 0,0323 9,5 0,0166 9,4 0,0425 

 
 

   
                                                 (a)                                                                    (b)                                                                 (c) 
Figure 6. Path tracking performance of the mobile robot: (a) Map 1, (b) Map 2, (c) Map 3 (The turquoise circle, the black 
cross and the gray circles represent the start point, the target point and the obstacles, respectively. The red line and the blue 
line represent the curve-type and the line-type paths, respectively. The green and yellow circles represent the tracking points 
of the curve-type and line-type paths, respectively.) 

 
Considering the distance left, there is a difference of 0.011 m in Map 1, 0.014 m in Map 2, and 0.0155 m in Map 3. 
As can be seen, there is a very small difference for all maps. However, although the tracking times are the same 
for Map 1-2, it is seen that it is slightly less for the line-type path in Map 3. Nevertheless, it cannot be said that 
there is a significant difference. It can be interpreted that these two types of paths give successful results for all 
maps. It will be more explanatory to examine this tracking performance on the path components. 𝑥, 𝑦 and 𝜃 
components of the desired path and actual path tracked by the mobile robot are given in Figure 7 for Map 1, 
Figure 9 for Map 2, and Figure 11 for Map 3. The errors in 𝑋 and 𝑌 axes and the orientation angle error of the 
robot for these paths are given in Figure 8 for Map 1, Figure 10 for Map 2, and Figure 12 for Map 3. Moreover, 
RMSE of these tracking errors are given in Figure 13. 
 

 

 

 
Figure 7. Desired and actual path components (𝑥, 𝑦, 𝜃) in Map 1 
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Figure 8. Tracking error components (𝑥𝑒 , 𝑦𝑒 , 𝜃𝑒) in Map 1 

   

 

 

 
Figure 9. Desired and actual path components (𝑥, 𝑦, 𝜃) in Map 2 
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Figure 10. Tracking error components (𝑥𝑒 , 𝑦𝑒 , 𝜃𝑒) in Map 2 

 

 

 

 
Figure 11. Desired and actual path components (𝑥, 𝑦, 𝜃) in Map 3 
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Figure 12. Tracking error components (𝑥𝑒 , 𝑦𝑒 , 𝜃𝑒) in Map 3 

 

  
                                                 (a)                                                                    (b)                                                                 (c) 

Figure 13. RMSE tracking errors: (a) Map 1, (b) Map 2, (c) Map 3 

 
Considering Figure 7-12, tracking of the curve-type paths is more successful than the line-type paths for both 
maps. This tracking performance is especially evident in turns. In the line-type paths, which has sharper turns, 
the orientation angle of the robot is delayed in reaching the target orientation, and even some oscillation occurs 
in the orientation. This situation causes serious deviations from the path in both 𝑋 and 𝑌 axes during turns. This 
is also seen in Figure 13, where RMSE errors are given. However, it can be said that pure pursuit controller is a                   
high-performance method and exhibits good tracking performance especially in the curve-type paths. In 
addition, considering the RMSE errors, the fact that the maximum error in 𝑋-axis is approximately 0.0018 m, the 
maximum error in 𝑌-axis is approximately 0.012 m, and the maximum orientation error is approximately 0.046 
rad shows that there is no significant difference in tracking performance between the curve and line-type paths.  
 
It is seen that the line-type paths are advantageous in the metrics of path length and running time for path 
planning, tracking time and distance left for path tracking. Considering the tracking errors, it can be said that 
although the line-type paths produce partially worse results, there is no significant difference between these two 
types of paths. 
 
4. Discussion and Conclusion 
 
In this study, the effects of path linearity on both path planning and path tracking performance of mobile robots 
were investigated. Two different maps with various numbers of static obstacles were designed, and optimal 
curve and line-type paths were planned using ABC algorithm. The results showed that in both maps, line-type 
paths achieved shorter path lengths and lower running times compared to curve-type paths by 3–11% in path 
length and 13–22% in running time. This highlights the computational efficiency of line-type paths, especially in 
relatively complex environments. 
 
For path tracking, a pure pursuit controller was applied to both path types. While the overall tracking accuracy 
was similar, the curve-type paths yielded slightly better results, particularly in sharp turns. The maximum 
tracking errors remained low (approximately 0.0018 m in 𝑋-axis, 0.012 m in 𝑌-axis, and 0.046 rad in 



 The Effect of Path Linearity on Mobile Robot Path Planning and Tracking Control 
 

602
 

orientation), indicating that both path types are feasible in terms of control performance. However, due to the 
simpler structure of the test maps, the differences in tracking errors were not statistically significant. 
 
Compared to existing approaches in the literature that focus primarily on algorithmic improvements, this study 
presents a unique perspective by emphasizing problem-level improvements; specifically, analyzing the impact of 
path geometry. This approach offers a practical and low-cost alternative for improving overall performance 
without increasing algorithmic complexity. 
 
In summary, line-type paths were more advantageous in terms of path length, running time, and tracking 
efficiency, while curve-type paths provided smoother control responses in turning maneuvers. This trade-off 
should be considered when designing navigation strategies for mobile robots in real-world applications. 
 
For future work, both comparative analyses involving various types of controllers and more comprehensive, 
detailed studies under dynamic and realistic scenarios are planned to thoroughly evaluate the performance and 
robustness of the proposed approach. 
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