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oz
Sunulan ¢alismada, zamana gore kesirli mertebeden tiirevli lineer olmayan Klein Gordon denklemini ¢6zmek i¢in yeni bir niimerik
sema sunuldu. Kesirli mertebeden denklemin yaklasik ¢oziimleri kiibik B-spline kollokasyon sonlu eleman yontemi ve L2
algortimasma dayanmaktadir. Denklemde verilen kesirli tiirev ise Caputo anlaminda ele alinmistir. Yontemler kullanilarak, kesirli
mertebeden diferansiyel denklem bilgisayar kodlamasina elverigli cebirsel denklem sistemine doniistiiriiliir. Daha sonra, amaglanan

yontemin giivenilirligini ve etkisini gostermek amaci ile iki model problem ele alindi ve hata normlar1 hesaplandi. Yeni hesaplanan
hata normlar saysisal ¢oziimlerin tam ¢oziimlerle uyum i¢inde oldugunu gostermektedir.

Anahtar Kelimeler: Sonlu eleman yontemi, kollokasyon, kesirli mertebeden Klein Gordon denklemi, Caputo tiirevi.

A New Perspective on The Numerical Solution for
Fractional Klein Gordon Equation

ABSTRACT

In the present manuscript, a new numerical scheme is presented for solving the time fractional nonlinear Klein-Gordon equation.
The approximate solutions of the fractional equation are based on cubic B-spline collocation finite element method and L2
algorithm. The fractional derivative in the given equation is handled in terms of Caputo sense. Using the methods, fractional
differential equation is converted into algebraic equation system that are appropriate for computer coding. Then, two model
problems are considered and their error norms are calculated to demonstrate the reliability and efficiency of the proposed method.
The newly calculated error norms show that numerical results are in a good agreement with the exact solutions.

Keywords: Finite element method, collocation, Fractional Klein Gordon equation, Caputo derivative.
1. INTRODUCTION

Fractional differential equations own a deep history and
also rich theory. Its past is as long as classical calculus

Dfu(x,t)+au, (x,t)+bu(x,t)

+eu’ (x,t)u(x,t)= f(xt) @

and up to date since 1695. Over the years, many
mathematician and physicist have been attracted by
fractional calculus because of its wide application areas,
longterm memory and chaotic behaviour such as physics,
biology, finance, fluid dynamics, engineering etc. The
development and obtaining numerical and exact solutions
of the equations, containing fractional derivative and
integral, have gained great and significant importance.
So, various methods have been investigated for this
purpose. Among others,some of themare [1, 2, 3, 4, 5, 6,
71.

In this study, we are going to concern with obtaining
numerical solutions of time fractional Klein Gordon
equation in terms of Caputo sense derivative which is one
of the fundamental equations seen in fractional calculus.

The mathematical expression of the equation is given as

*Sorumlu Yazar (Corresponding Author)
e-posta : bkaraagac@adiyaman.edu.tr

subject to the following initial and boundary conditions
u(x,0)=uy(x), u(x0)=u(x)

u(0,t) =hy(x), u(l,t)=h(x) @)
where D/ (.) symbolizes «,, order fractional derivative
according to time variable and the range of « is (1,2].

f (x,t) is a known forced term and in addition to these

terms a,b,c and B are real constants and also ¢ can

seen as a variable coefficients in some examples. For
a =2, we get the classical Klein Gordon equation which
appears in classical relativistic and quantum mechanics
and analysing of wave propagation in linear dispersive
media. Additionally, The fractional Klein—Gordon
equation has many application in nonlocal quantum field
theory and stochastic quantization of nonlocal fields [8]

The equation has been solved by several authors using
different methods and techniques. Among others, Nagy
[7] has solved the problem using a method consisting of
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expanding the required approximate solution as the
elements of Sinc functions along the space direction and
shifted Chebyshev polynomials of the second kind for the
time variable. Kheri et. al. [9] have solved inhomogenous
fractional Klein-Gordon equation by the method of
separating variables and applied the method for three
boundary conditions.

Mohebbi et al. [10] have applied a high-order difference
scheme for the solution of some time fractional partial
differential equations including linear time fractional
Klein-Gordon and dissipative Klein-Gordon equations.
Lyu and Vong [11] have considered difference schemes
for nonlinear timefractional Klein-Gordon type
equations. Khader et al. [12] have implemented the
Chebyshev spectral method for solving the non-linear
fractional Klein-Gordon equation and considered the
fractional derivative in the Caputo sense. Algahtani [13]
has implemented the spectral collocation method with the
help of the Legendre polynomials for solving the non-
linear Fractional (Caputo sense) Klein-Gordon Equation.
For all that, recent developments in computational
methods are lead to improving new numerical methods
for solving fractional or ordinary order partial differential
equations. One can receive more information about
newly research in Refs [ 14,15,16,17,] and therein.

The manuscript consists of four parts. The first part
presents an introduction to the model problem and some
research papers on it. The second one covers application
of cubic B-spline collocation method to the problem and
obtaining numerical formulation. Two different
examples of time fractional Klein Gordon equation and
their numerical results are considered in the third part for
different values of constants and forced term. The last
one is conclusion

2. Application of collocation cubic B-spline FEM
method to the time fractional Klein Gordon
equation

In this part of paper, we are going to obtain numerical
solution for the fractional Klein Gordon equation with the
help of finite element formulation and cubic spline basis.
At first, we discretize the problem in time for fractional
derivative with the help of L2 finite difference
approximation. We consider t; as the grid points for time
and At are grid size. So time discretization for
t, =t,+ jAt(j=0,1,2,---,n) is obtain as following
[18]
At Q@

Dzzf t) = ( W(l’”‘) f t

t ( ) r(3—0{)§ |: (n+l—k) (3)

26 (t, )+ f (ta)]

w = (k+1)"” —k**). T() symbolizes
Euler Gamma function and n is the time step as taken

where

_ tfinal

A Before construction of numerical scheme, let

us divide the interval [0,1] into N subinterval using
{x ", nodal points such that

0:X0<X1<”'<XN—1<XN =1
and symbolize each element as a typical element with

step size h=[x,X..]. Our aim is to develop an

(R B
approximate solution for u(x,t) as it will be U, (x,t)
and are used to be linear combination of cubic B-spline
basis (¢ (x)) and time dependent element shape

functions (5(t)) in the form

N+1

Uy (%1)= 2.3, (1) (x)- @

m=-1
In order to define all spline basis in same typical element
[%, ., ] and create a systematic procedure for numerical

scheme, it is apparent the cubic B-spline basis required a
local transformation coordinate instead of global
coordinates. So we should use transformation & = X — X
0< & <1. After the transformation, cubic B-spline basis
functions are defined as [19] follows

_(h=¢)
Pos = T

h®+3h?(h—¢&)+3h(h—&) -3(h—¢)’

h’ | (5)
h® +3h?£ +3h&? - 38°

¢m+1: h3 ’

§3
¢m+2= F

Moreover the approximate solution can be written in
terms of the basis given in (5) as

m+2

Uy (xt)= 2.5(t)4(c)- (6)
i=m-1
The nodal values of U, and U, at the points X; are
derived using (2) as

Uy =6, 1)+ 45, () + 5, (1),
Uy =2 (0a0-0,,0,) )
Uy = 5 (604(0-26,0+,.,0)

First all of , we will start to progress with a simple
linearization choosing zm = uy, . Then substituting (2)
into Eq.(1) and using (7), we have
D (8,4 (t)+46, (t)+6,,. (1))
6a
+F(5m*1 (t)-25, (t)+3,.,(1))

+(b+czmﬁ)(§m71 (t)+45, (t)+5,., (1) = f(xt).

(8) For
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going on to obtain numerical scheme, time dependent
element shape functions &(t) s’ are discretized using

L2 algorithm given in (1.3), forward difference and
crank-Nicolson formula as

DfS(t) = —F((A:Ba) gw“‘“) (5™ (1)
—25" (t)+ F6" (1) ] ©)
" (t)+5" (1) " (t)-o" (t).

s(t)= . o) = e
At the end, after some calculation and simplification we
we get a algebraic equation system consisting (n +1)[h
time step unknown &"**(t) parameters and n,, time step
known &" (t) parameters following form

s
5“()[1 3:25+(bﬂzzm)5] 5"1(t)(47@+2(b+czm”)5)

+(>n::1(t>[1 = (bmmﬂ)s] (0{

2
" )[ 7333 (b+czm"’)8j

3aS (b +czm’)$ }
2

+8n(t )(8+6his—2(b+czm/’) J+§r:+1

2
(3 (t)+ 407" (1) + 575 (1)

_kzi;wum){(égi’k (1) -2 () + 871 (1) o
+4(é.n+1k( ) 26 "( ) 5n1k(t))

+ S (1) = 2008 (1) + St (1))} SF (xt

Where S=I(3-a)(At)" and
(t)+45, (t)+ 6.,
consisting of (N +1) equations and (N +3) unknown

variables. Eqg. (10) is valid for only interior nodal points
so to obtain unique solution one must apply boundary
conditions given in (2) to numerical scheme. For this
purpose, we employ
u(0,t)=5,(t)+46,(t)+5,(t)=h,(0) for m=0 and
u(l,t) =8, (t)+46, (t)+ .. (t)=h (1) for m=N. So
eliminating &, (t) and &, (t) from the system we get

(N +1)x(N+1) system of equations. At the last , we

have a iterative system. Now, we need an initial vector
for begining iteration, so one can obtain &"(0)

parameters easily by using initial conditions as

U(%,,0) =Uy (x,,0) =uy(x, ). Ifthis is written clearly,

we get
5.,(0)+46,(0)+46,(0)=u
5, (O)+451(0)+52 (O) =u

m=4, ., (t). Now we get a system

1)

'5N72(0)+45,H(0 Sy (0) = Uy (Xy_y)
Sy_1(0)+48, (0)+ 3., (0) = Uy (X )

as seen from the Eq. (11), there exist (N +1) equations

and (N +3) unknown variables. &,(0) and &,,,(0)
parameters can be eliminated using
u(0,0)=U,(0,0)=6,(0)+45,(0)+5,(0) and
u(1,0)=U, (1,0) =6, (0)+45, (0)+6,.,(0). this
system can now be solved with any algorithm and
iteration can be started.

3. Numerical Tests for Time Fractional
Gordon Equation

In the third section of the manuscript, we are going to
demonstrate efficiency and applicability of numerical
method using two test problems. For two examples, since
the exact solutions of the examples are known, we are
going to calculate error norms L, and L, using the

definition given as below;

N 2
= ||“‘UN||2 = w/h;‘;‘ui _(UN )]‘ ’

L =[u-Uyl, = maxu; ~(Uy) |

0<j<N
where u and U, represent exact and numerical

solutions, respectively. And the order of convergence is
calculated with the following formula;

Log ( hold ]
hnew
compare exact ones with numerical ones.

3.1. Example 1:

In the following first numerical experiment, we have
taken time fractional Klein-Gordon equation with the
values of the coefficientsas a=-1,b=0,c =1, =1 for

0<x<1and

Klein

order = . Thus, we are able to

t;a =1. SO we can rewrite the equation given in (1) with
the forced term, as follows

r(5/2)
r(5/2-a)

2 e e

Dfu—u, +u? = (1-x)"* @)

(12)

and with non-zero right boundary condition
u(x,0)=0, u(x0)=0
u(ot)=t"%, u(L,t)=0

exact solution of the example is given as
u(xt)=(1-x)"* 2 (14)

First of all, the results are calculated for various space

step (h) and time step (At) size for o =1.3. Then the

(13)

error norms L, and L are presented in Tables 1 and
2, respectively. In addition, error norms and orders are
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reported in Table 3 for « =1.7 and At =0.00001. It is
seen from Tables 1, 2 and 3, when the number of time
step size are the same, to increase number of collocation
points lead to a decrease in the error norms. Additionally,

for the collocation finite element method, time step sizes
as important as collocation points. So one can see,
decreasing of time step sizes results decreasing in the
error norms.

Table 1. A representation of the L, x10° norm for various values of At and h for ¢=13.

446

At 0.01 0.005 0.001 0.0005 0.0001 0.00005 0.00001

h

0.25 5461326  4.731241 4.162181  4.092810 4.037694  4.030666  4.022183

0.125 2504028 1.724493  1.123959  1.052339  0.996010 0.989010  0.982798

0.1 2.166491 1.375058  0.762329 0.689667 0.632882  0.625871  0.619889

0.05 1744344  0.937212 0.297653  0.220406  0.161032  0.153902  0.148171

0.025 1.648449  0.838967 0.192712  0.112499 0.049669  0.042201  0.036389

0.0125 1.625804  0.815966 0.168899  0.088131  0.023748  0.015858  0.009760

0.01 1623192  0.813319 0.166198 0.085399  0.020871  0.012899  0.006696
Table 2. A representation of the _x10® norm for various values of At and h for ¢ =1.3

At 0.01 0.005 0.001 0.0005 0.0001 0.00005 0.00001

h

0.25 7.700108 6.972540 6.394705 6.323344 6.267288 6.260548 6.252998

0.125 3.245500 2.246167 1.569895 1.494217 1.456844 1.452790 1.449505

0.1 2.861628 1.789100 1.034280 0.970713 0.920066 0.913785 0.908673

0.05 2.382455 1.266362 0.385704 0.286827 0.224010 0.217614 0.212481

0.025 2.276125 1.154699 0.259479 0.148555 0.064919 0.056718 0.051215

0.0125 2.250264 1.128478 0.232098 0.120229 0.031186 0.020518 0.013229

0.01 2.247337 1.125460 0.229031 0.117111 0.027784 0.016821 0.008900
Table 3. The error norms and orders for various h values for At =0.0001,0.00001 for o =1.7

At 0.0001 0.00001

h L, x10° L, x10° order(L,) L, x10° L, x10° order(L,)

0.25 3.531801 5.748447 - 3.734496 6.148587 —

0.125 0.874420 1.372834 2.06602 0.898053 1.334451 2.20401

0.1 0.561053 0.845099 2.17429 0.567403 0.818875 2.18847

0.05 0.156823 0.217845 1.95582 0.138186 0.194232 2.07586

0.025 0.063585 0.083314 1.38667 0.035906 0.048160 2.01187

0.0125  0.042662 0.058626 0.507018 0.011576 0.015588 1.6274

0.01 0.040366 0.056028 0.203128 0.008835 0.012140 1.120034
Table 4. A comparison of absolute errors for At =0.00001,« =1.5,1.9 and N =10.

a=15 a=19
X [7] Present method [7] Present method
(m=n=286) (N =10) (m=n=86) (N =10)

0.1 1.9004x10° 1.065601x10™* 1.7145%10° 2.3961723x10°°

0.2  20752x10° 2.479456 <107 8.3897x10™* 2.7676947x10°°

03 2.0682x107 3.840470x10™ 5.9801x10°° 1.265934x10™"

0.4 18787x10°° 5.107724x10™* 4.2370x10™* 2.8074307x10°°

0.5 1.6102x10° 6.424084x10™ 7.4383x10™* 1.5788475x10°°

0.6 1.4483x10° 7.617908x10™" 8.5920x10™* 6.606390x10™*

0.7 1.5545x107 8.574570x10™* 5.6969x10™* 1.4651589x107°

0.8  1.6959x10° 9.138149x10™ 8.9237x10™ 8.686224x10

0.9 14757x10° 8.828905x10~* 7.4789x10°° 1.982566 x10~*

L2 6.18386x10™ 1.648307x10°°

L, 9.13815x10™* 2.807431x10°°
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Tables 4, 5and 6 compare absolute errors between three
different methods. Tables 4 is consist of a comparisons
between [7] and present method for
At =0.00001, ¢ =1.5,1.9 and N =10,20, respectively.
other one is between [7], VRM and present method for
At =0.00001,x=1.4,1.6 and N =10,20. Finally, we
tabulated some comparisons of absolute errors and

relative errors for At =0.00001, =1.6,1.8 and N =20
in Table 6 and 7. We can conclude that newly obtained
results are more convergent for the « =1.3, 1.5,and 1.6
and agree with for o =1.9 when partition number is
chosen as N =10. Also applied method has more
converges results for all « values when partition number
is chosenas N >10

Table 5. A comparison of absolute errors for At =0.00001,«=1.5,1.9 and N =20

a=15 a=19
X [7]1 Present method [7] Present method
(m=n=9) (N =20) (m=n=9) (N =20)
0.1  87105x10™ 2.29860x10°° 4.3675x10™ 3.547459x10™
02  6.7781x10™ 6.14772x10°° 9.8359x10°° 8.937207 x10™*
03  6.2089x10" 9.13921x10°° 4.8897x10™ 4.322902x10™*
04 57015x10™ 1.228082x10™" 7.6534x10™ 4.290707 x10™*
0.5  51476x10™ 1.538698x10™ 9.3043x107* 2.275352x10™
06  4.8948x10™ 1.811331x10™* 9.4248x10™ 3.7590x10™"
0.7 51671x10™ 2.023530x10™* 7.5585x10™" 1.286623x10™
08  53919x10* 2.136602x10™* 4.2006x10°° 2.716377x10™*
0.9  6.0660x10" 2.038887x10™* 5.4848x10°° 2.267357x10"*
L, 1.478850x10™" 450187 <10
L. 2.13660x10™" 9.10231x10™*
Table 6. A comparision of absolute errors for At =0.00001,« =1.4,1.6 and N =10,20
« (x.t) N=10 N =20
(0.1,0.1) 9.2852x10°  8.4385x10™* 4.5158x10°° 7.484x107
(0.2,0.2) 2.2201x10%  1.1433x10°° 5.4722x10°° 1.2260%x10°°
(0.3,03)  35651x10° 5.3780x10™* 1.75791x10°  4.5398x10°°
14 (0.4,0.4) 4.9628x10°  1.5545x10™* 6.16598x10°  1.52821x10°
(0.5,0.5) 6.4449x10°  5.3227x10" 1.487415x10*  3.61098x10°°
(0.6,0.6) 7.9514x107°  1.3268x10° 2.808198x10*  6.71903x10°
(0.7,0.7) 9.1443x107%  1.9159x10°° 4.465890x10*  1.056595x10*
(0.8,0.8) 8.7942x107%  2.0414x10°° 6.226345x10"  1.457116x10°°
(0.9,09)  9.2321x10°  1.8996x10°° 7.445275x10"  1.719402x107
(0.1,0.1) 4.1518x10°  1.1685x10°° 6.93424x10°  1.50576x10°
(0.2,0.2) 1.0319x10%  2.5887x10° 4.24945x10°  8.8257x10°
(0.3,0.3) 1.7757x107%  2.8863x10°° 3.96546x10°  8.6607x10°
16 (0.4,0.4) 2.6987x107%  2.3912x10° 5.38836x10°  1.26185x10°°
(0.5,0.5) 3.8327x107%  1.7692x10°° 1.316628x10*  3.09618x10
(0.6,06)  5.0993x107% 1.4174x107 2.538026x10*  6.06844x10°°
(0.7,0.7)  6.1379x10°  1.4334x10° 4.144158x10*  9.79853x10°°
(0.8,08)  56577x10% 1.6653x10°° 5.952975x10*  1.395405x10°*
(0.9,09)  3.8618x107% 1.7449x107 7.282169x10*  1.685685x10°*
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Table 7. A comparision of absolute errors for At =0.00001,« =1.6 and N =20.

a=16
[7] (m=9) Present Method
{ X Absolute error Relative error Absolute error Relative error
0.4 9.3726x10™* 1.3286x1072 1.26185x10° 1.789x10™*
0.6 9.4592x107* 3.6950x10°° 3.02423x10°° 1.1813x10°°
0.4 0.8 6.5448x107 1.4462x107" 4.52139x10°° 9.9910x107%
0.4 1.7359x10™* 8.6999x10™* 7.66008x107° 3.839x10™
0.8 0.6 1.2080x10™* 1.6683x107° 1.075323x10°* 1.4851x10°°
0.8 2.4657 x107* 1.9263x1072 1.395405x10* 1.09016x1072

Table 8. A comparision of absolute errors for At =0.00001,« =1.8 and N =20

a=18
[7] (m=9) Present Method
t X Absolute error Relative error Absolute error Relative error
0.4 3.4329x10°° 4.8663x107? 1.22000031x102  17.29385x10°°
0.6 3.4391x10°° 1.3434x10™* 7.7639662x10°  30.32794x107
0.4 0.8 2.1582x10°° 4.7690x10" 2.8061378x10°  62.00712x1072
0.4 6.9075x10™ 3.4618x107° 1.22414817x10?%  6.13509x102
0.8 0.6 6.5491x10™* 9.0448x10°° 1.22552370x107%  16.92529x10?
0.8 5.7248x10™ 4.4725%x1072 8.1618789x10°  63.76431x107?

Figure 1. The numerical solutions of Time Fractional Klein Gordon equation for &« =1.3 and 1.5.

Fiagure 2. The numerical solutions of Time Fractional Klein Gordon equation for ¢ =1.8 and 1.9.

3.2 Example 2: f(x,t)= M

In  our second example, weassume that
a=-1b=0,c=25¢e*, #=3/2and the forced termis

X (1—x)3t2
+(30x4 —60x3 +36x° —6x)t2“’
+ 2.5eXX4.5 (l— X)4-5 t3+1.5a

with the boundary conditions and the exact solution is
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u(x,0)=0, u,(x0)=0
u(0,t)=0, u(Lt)=0
u(x,t)=x° (l—x)stz*“

In the considering numerical experiment, we present a
series of table according to error norms L, and L, .

Table 6- 9 consist of error norms results for various
values of time step At . and space step h for « =1.3 and

1.5, respectively. It can be seen from the tables, the most
convergent results are found for the values h =0.01 and
At =0.00001.

Numerical results have same behaviour as first example
i.e decreasing in time and space step size ends up with
decreasing in the error norms. At the end of this part,
numerical simulations of example 2 are depicted for the
various choosing of « parameters in Figures 1 and 2.

Table 9. A representation of the L, x10° norm for various values of At and h for ¢ =1.3.

At 0.01 0.005 0.001 0.0005 0.0001 0.00005 0.00001
h
0.25 0.916627 0.916267 0.916166 0.916172 0.916182 0.916184 0.942900
0.125 0.271518 0.271585 0.271579 0.271572 0.271566 0.275610 0.275609
0.1 0.175499 0.175609 0.175612 0.175604 0.175596 0.175594 0.187200
0.05 0.044173 0.044332 0.044348 0.044338 0.044327 0.045241 0.062025
0.025 0.010973 0.011106 0.011124 0.011113 0.030162 0.011342 0.011340
0.0125 0.002817 0.002784 0.002801 0.002789 0.002777 0.002837 0.002835
0.01 0.001940 0.001788 0.001803 0.175604 0.001778 0.001817 0.032412
Table 10. A representation of the L_x10° norm for various values of At and h for ¢ =1.3.
At 0.01 0.005 0.001 0.0005 0.0001 0.00005 0.00001
h
0.25 1.178927 1.177854 1.177550 1.177568 1.177597 1.177603 1.236302
0.125 0.416998 0.416427 0.416247 0.416252 0.416265 0.419592 0.419595
0.1 0.256970 0.256507 0.256359 0.256363 0.256373 0.256375 0.282494
0.05 0.062948 0.062482 0.062332 0.062336 0.062346 0.063598 0.111092
0.025  0.016361 0.015783 0.015599 0.015604 0.053928 0.016170 0.016159
0.0125 0.004637 0.004063 0.003995 0.003950 0.003910 0.004070 0.004059
0.01 0.003248 0.002660 0.002603 0.002558 0.002500 0.002612 0.051111
Table 11. A representation of the L, x10° norm for various values of At and h for o =15.
At 0.01 0.005 0.001 0.0005 0.0001 0.00005 0.00001
h
0.25 0.933111 0.933327 0.933555 0.916172 0.916182 0.916184 0.916186
0.125 0.281918 0.281729 0.281544 0.271572 0.271566 0.271565 0.271564
0.1 0.187800 0.187536 0.187273 0.175604 0.175596 0.175594 0.175593
0.05 0.063206 0.062689 0.062171 0.044338 0.044327 0.044325 0.044323
0.025 0.038371 0.037691 0.036999 0.011113 0.011102 0.011100 0.011098
0.0125 0.034415 0.033709 0.032989 0.002789 0.002777 0.002775 0.002773
0.01 0.002590 0.001788 0.032617 0.001791 0.001778 0.001776 0.001775
Table 12. A representation of the L x10® norm for various values of At and h for =15
At 0.01 0.005 0.001 0.0005 0.0001 0.00005 0.00001
h
0.25 1.213214 1.213791 1.214409 1.177568 1.177597 1.177603 1.177608
0.125 0.406493 0.406761 0.407052 0.416252 0.416265 0.416267 0.416270
0.1 0.284914 0.283863 0.282795 0.256363 0.256373 0.256375 0.256377
0.05 0.113572 0.112493 0.111400 0.062336 0.062346 0.062348 0.062349
0.025  0.066852 0.065765 0.064665 0.015604 0.015616 0.015619 0.015621
0.0125 0.055051 0.053957 0.052853 0.003950 0.003910 0.003912 0.003914
0.01 0.004670 0.002660 0.051422 0.002558 0.002500 0.002501 0.002503
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Figure 3. The numerical solutions of Time Fractional Klein Gordon equation given in example 2 for =13 and 1.5.

Figure 4. The numerical solutions of Time Fractional Klein Gordon equation given in example 2 for ¢ =1.8 and 1.9.

4. CONCLUSION

In conclusion, this study has introduced to obtain
numerical approximations using the finite element
method. We have started with the application of the
method to the time fractional Klein Gordon equation.
Then, the problem has converted into ordinary
differential equation system with the help of cubic B-
spline basis and element shape parameters. Using
mathematical coding, the newly obtained numerical
scheme is solved with an iterative method uses an initial
vector to purpose of generate approximate solution for
two test problem. Additionally, the newly numerical
results with the calculation have shown that has a
reasonable agreement with exact ones. After all the
numerical experiments examined in this paper, we can
conclude that finite element collocation method and L2
algorithm can be a useful tool for obtaining numerical
solutions of wide variety problems on fractional order
partial differential equations.
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