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 ÖZ 

Sunulan çalışmada, zamana göre kesirli mertebeden türevli lineer olmayan Klein Gordon denklemini çözmek için yeni bir nümerik 

şema sunuldu. Kesirli mertebeden denklemin yaklaşık çözümleri kübik B-spline kollokasyon sonlu eleman yöntemi ve L2 

algortimasına dayanmaktadır. Denklemde verilen kesirli türev ise Caputo anlamında ele alınmıştır. Yöntemler kullanılarak, kesirli 

mertebeden diferansiyel denklem bilgisayar kodlamasına elverişli cebirsel denklem sistemine dönüştürülür. Daha sonra, amaçlanan 

yöntemin güvenilirliğini ve etkisini göstermek amacı ile iki model problem ele alındı ve hata normları hesaplandı. Yeni hesaplanan 

hata normları saysısal çözümlerin tam çözümlerle uyum içinde olduğunu göstermektedir. 

Anahtar Kelimeler: Sonlu eleman yöntemi, kollokasyon, kesirli mertebeden Klein Gordon denklemi, Caputo türevi. 

A New Perspective on The Numerical Solution for 

Fractional Klein Gordon Equation 

ABSTRACT 

In the present manuscript, a new numerical scheme is presented for solving the time fractional nonlinear Klein-Gordon equation. 

The approximate solutions of the fractional equation are based on cubic B-spline collocation finite element method and L2 

algorithm. The fractional derivative in the given equation is handled in terms of Caputo sense. Using the methods, fractional 

differential equation is converted into algebraic equation system that are appropriate for computer coding. Then, two model 

problems are considered and their error norms are calculated to demonstrate the reliability and efficiency of the proposed method. 

The newly calculated error norms show that numerical results are in a good agreement with the exact solutions. 

Keywords: Finite element method, collocation, Fractional Klein Gordon equation, Caputo derivative. 

 1.  INTRODUCTION 

 Fractional differential equations own a deep history and 

also rich theory. Its past is as long as classical calculus 

and up to date since 1695 . Over the years, many 

mathematician and physicist have been attracted by 

fractional calculus because of its wide application areas, 

longterm memory and chaotic behaviour such as physics, 

biology, finance, fluid dynamics, engineering etc. The 

development and obtaining numerical and exact solutions 

of the equations, containing fractional derivative and 

integral, have gained great and significant importance. 

So, various methods have been investigated for this 

purpose. Among others,some of them are [1, 2, 3, 4, 5, 6, 

7]. 

In this study, we are going to concern with obtaining 

numerical solutions of time fractional Klein Gordon 

equation in terms of Caputo sense derivative which is one 

of the fundamental equations seen in fractional calculus. 

The mathematical expression of the equation is given as  

 

*Sorumlu Yazar  (Corresponding Author)  
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     

     

, , ,

, , = ,

t xxD u x t au x t bu x t

cu x t u x t f x t
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 


        

(1) 

subject to the following initial and boundary conditions  

      

       

       
0 1

0 1

,0 = , ,0 =

0, = , 1, =

tu x u x u x u x

u t h x u t h x
            (2)

 

where (.)tD  symbolizes th  order fractional derivative 

according to time variable and the range of   is (1, 2] . 

 ,f x t  is a known forced term and in addition to these 

terms , ,a b c  and   are real constants and also c  can 

seen as a variable coefficients in some examples.  For  

2  , we get the classical Klein Gordon equation which 

appears in classical  relativistic and quantum mechanics 

and analysing of wave propagation in linear dispersive 

media. Additionally, The fractional Klein–Gordon 

equation has many application in nonlocal quantum field 

theory and stochastic quantization of nonlocal fields [8] 

The equation has been solved by several authors using 

different methods and techniques. Among others, Nagy 

[7] has solved the problem using a method consisting of 
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expanding the required approximate solution as the 

elements of Sinc functions along the space direction and 

shifted Chebyshev polynomials of the second kind for the 

time variable. Kheri et. al. [9] have solved inhomogenous 

fractional Klein-Gordon equation by the method of 

separating variables and applied the method for three 

boundary conditions.  

Mohebbi et al. [10] have applied a high-order difference 

scheme for the solution of some time fractional partial 

differential equations including linear time fractional 

Klein-Gordon and dissipative Klein-Gordon equations. 

Lyu and Vong [11] have considered difference schemes 

for nonlinear timefractional Klein-Gordon type 

equations. Khader et al. [12] have implemented the 

Chebyshev spectral method for solving the non-linear 

fractional Klein-Gordon equation and considered the 

fractional derivative in the Caputo sense. Alqahtani [13] 

has implemented the spectral collocation method with the 

help of the Legendre polynomials for solving the non-

linear Fractional (Caputo sense) Klein-Gordon Equation.  

For all that, recent developments in computational 

methods are lead to improving new numerical methods 

for solving fractional or ordinary order partial differential 

equations. One can receive more information about 

newly research in Refs [ 14,15,16,17,] and therein. 

The manuscript consists of four parts. The first part 

presents an introduction to the model problem and some 

research papers on it. The second one covers application 

of cubic B-spline collocation method to the problem and 

obtaining numerical formulation. Two different 

examples of time fractional Klein Gordon equation and 

their numerical results are considered in the third part for 

different values of constants and forced term. The last 

one is conclusion 

2. Application of collocation cubic B-spline FEM 

method to the time fractional Klein Gordon 

equation 

In this part of paper, we are going to obtain numerical 

solution for the fractional Klein Gordon equation with the 

help of finite element formulation and cubic spline basis. 

At first, we discretize the problem in time for fractional 

derivative with the help of 2L  finite difference 

approximation. We consider 
jt  as the grid points for time 

and t  are grid size. So time discretization for 

 0= = 0,1,2, ,jt t j t j n   is obtain as following  

[18] 
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 where      (1 )1 1
= 1 . (.)w k k

  
    symbolizes 

Euler Gamma function and n  is the time step as taken 

=
finalt

n
t

. Before construction of numerical scheme, let 

us divide the interval  0,1  into N  subinterval using 

 
=0

N

i i
x  nodal points such that 

                      0 1 10 = < < < < = 1N Nx x x x   

and symbolize each element as a typical element with 

step size  1= ,i ih x x  . Our aim is to develop an 

approximate solution for  ,u x t  as it will be  ,NU x t  

and are used to be linear combination of cubic B-spline 

basis   i x  and time dependent element shape 

functions   t  in the form 

        

      

     
1

= 1

, = .
N

N m m

m

U x t t x 




                           (4) 

In order to define all spline basis in same typical element 

 1,i ix x   and create a systematic procedure for numerical 

scheme, it is apparent the cubic B-spline basis required a 

local transformation coordinate instead of global 

coordinates. So we should use transformation = ix x   

0 1  . After the transformation, cubic B-spline basis 

functions are defined as [19] follows  
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Moreover the approximate solution can be written in 

terms of the basis given in (5) as  

     
2

= 1

, = .
m

N i

i m

U x t t  




                             (6) 

The nodal values of NU  and '

NU  at the points ix  are 

derived using (2) as 

1 1

1 1

1 12

= ( ) 4 ( ) ( ),

3
= ( ( ) ( ), )

6
= ( ( ) 2 ( ) ( )).

N m m m
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N m m m
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U t t
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U t t t
h
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 
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 
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 

 


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                           (7) 

First all of , we will start to progress with a simple 

linearization choosing = Nzm u . Then substituting (2) 

into Eq.(1) and using (7), we have 
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For  
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going on to obtain numerical scheme, time dependent 

element shape functions  t s’ are discretized using 

2L  algorithm given in (1.3), forward difference and 

crank-Nicolson formula as

 
 

 
   

   

 
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

 


 

   
 



  

  

 


 
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 


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 (9)

 

 At the end, after some calculation and simplification we 

we get a algebraic equation system consisting  1
th

n   

time step unknown  1n t   parameters and thn  time step 

known  n t  parameters following form 
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Where   = 3S t


    and 

     1 1= 4 .m m mzm t t t      Now we get a system 

consisting of  1N   equations and  3N   unknown 

variables. Eq. (10) is valid for only interior nodal points 

so to obtain unique solution one must apply boundary 

conditions given in (2) to numerical scheme. For this 

purpose, we employ 

         1 0 1 00, = 4 = 0u t t t t h      for = 0m  and

         1 1 11, = 4 = 1N N Nu t t t t h      for = .m N  So 

eliminating  1 t  and  1N t 
 from the system we get 

   1 1N N    system of equations. At the last , we 

have a iterative system. Now, we need an initial vector 

for begining iteration, so one can obtain  0n  

parameters easily by using initial conditions as 

     0,0 = ,0 =m N m mu x U x u x . If this is written clearly, 

we get 
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 

           (11) 

 as seen from the Eq. (11), there exist  1N   equations 

and  3N   unknown variables.  1 0  and  1 0N   

parameters can be eliminated using 

         1 0 10,0 = 0,0 = 0 4 0 0Nu U       and 

         1 11,0 = 1,0 = 0 4 0 0N N N Nu U      . this 

system can now be solved with any algorithm and 

iteration can be started.  

3.  Numerical Tests for Time Fractional Klein 

Gordon Equation 

In the third section of the manuscript, we are going to 

demonstrate efficiency and applicability of numerical 

method using two test problems. For two examples, since 

the exact solutions of the examples are known, we are 

going to calculate error norms 2L  and L  using the 

definition given as below;              

 

 
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2 2
=0
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= = ,max
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N j N j
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N j N j
j N

L u U h u U
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where u  and NU  represent exact and numerical 

solutions, respectively. And the order of convergence is 

calculated with the following formula; 

 

 
= .

old

old

new

L
Log

L new
order

h
Log

h





 
  
 

 
 
 

Thus, we are able to 

compare exact ones with numerical ones. 

3.1. Example 1: 

In the following first numerical experiment, we have 

taken time fractional Klein-Gordon equation with the 

values of the coefficients as = 1, = 0, = 1, = 1a b c   for 

0 1x   and 

=1.finalt  So we can rewrite the equation given in (1) with 

the forced term, as follows  

 

 
   

   

5/2 3/22

1/2 53/2 3

5 / 2
= 1

5 / 2

15
1 1

4

t xxD u u u x t

x t x t






  

 

   

         (12) 

and with non-zero right boundary condition  

   

   3/2

,0 = 0, ,0 = 0

0, = , 1, = 0

tu x u x

u t t u t
                           

(13) 

exact solution of the example is given as 

   
5/2 3/2, = 1 .u x t x t                                  (14) 

 First of all, the results are calculated for various space 

step  h  and time step  t  size for =1.3 . Then the 

error norms 2L  and L  are presented in Tables 1 and 

2, respectively. In addition, error norms and orders are 
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reported in Table 3 for = 1.7  and = 0.00001t . It is 

seen from Tables 1, 2 and 3, when the number of time 

step size are the same, to increase number of collocation 

points lead to a decrease in the error norms. Additionally, 

for the collocation finite element method, time step sizes 

as important as collocation points. So one can see, 

decreasing of time step sizes results decreasing in the 

error norms. 

Table  1. A representation of the 3

2 10L   norm for various values of t  and h  for =1.3 . 

t         0.01  0.005  0.001 0.0005  0.0001  0.00005  0.00001 
h        

0.25  5.461326  4.731241  4.162181  4.092810  4.037694  4.030666  4.022183  

0.125  2.504028  1.724493  1.123959  1.052339  0.996010  0.989010  0.982798  

0.1  2.166491  1.375058  0.762329  0.689667  0.632882  0.625871 0.619889  

0.05  1.744344  0.937212  0.297653  0.220406  0.161032  0.153902  0.148171 

0.025  1.648449  0.838967  0.192712  0.112499  0.049669  0.042201 0.036389  

0.0125  1.625804  0.815966  0.168899  0.088131 0.023748  0.015858  0.009760  

0.01  1.623192  0.813319  0.166198  0.085399  0.020871 0.012899  0.006696 

Table 2. A representation of the 310L   norm for various values of t  and h  for =1.3    

t         0.01        0.005  0.001 0.0005  0.0001  0.00005  0.00001 
h        

0.25  7.700108  6.972540  6.394705  6.323344  6.267288  6.260548  6.252998  

0.125  3.245500  2.246167  1.569895  1.494217  1.456844  1.452790  1.449505  

0.1  2.861628  1.789100  1.034280  0.970713  0.920066  0.913785  0.908673  

0.05  2.382455  1.266362  0.385704  0.286827  0.224010  0.217614  0.212481 

0.025  2.276125  1.154699  0.259479  0.148555  0.064919  0.056718  0.051215  

0.0125  2.250264  1.128478  0.232098  0.120229  0.031186  0.020518  0.013229  

0.01  2.247337  1.125460  0.229031 0.117111 0.027784  0.016821 0.008900 

Table  3. The error norms and orders for various h  values for = 0.0001,0.00001t  for = 1.7  

t                            0.0001                             0.00001 

h  3

2 10L   310L    order L
 3

2 10L   310L    order L
 

0.25  3.531801 5.748447    3.734496  6.148587    

0.125  0.874420  1.372834  2.06602  0.898053  1.334451  2.20401  

0.1  0.561053  0.845099  2.17429  0.567403  0.818875  2.18847  

0.05  0.156823  0.217845  1.95582  0.138186  0.194232  2.07586  

0.025  0.063585  0.083314  1.38667  0.035906  0.048160  2.01187  

0.0125  0.042662  0.058626  0.507018  0.011576  0.015588  1.6274  

0.01  0.040366  0.056028  0.203128  0.008835 0.012140 1.120034 

Table 4. A comparison of absolute errors for = 0.00001, =1.5,1.9t   and =10N . 

           = 1.5                     = 1.9  
x      [7]  Present method       [7]   Present method 

 
 
( = = 6)m n  

  
( = 10)N   

 
( = = 6)m n  

 
( = 10)N  

0.1  
31.9004 10   

41.065601 10    31.7145 10   
32.3961723 10  

0.2  32.0752 10   
42.479456 10    48.3897 10   

32.7676947 10  

0.3  32.0682 10   
43.840470 10    55.9801 10   

41.265934 10  

0.4  31.8787 10   
45.107724 10    44.2370 10   

32.8074307 10  

0.5  31.6102 10   
46.424084 10    47.4383 10   

31.5788475 10  

0.6  31.4483 10   
47.617908 10    48.5920 10   

46.606390 10  

0.7  31.5545 10   
48.574570 10    45.6969 10   

31.4651589 10  

0.8  
31.6959 10   

49.138149 10    48.9237 10   
48.686224 10  

0.9  
31.4757 10   

48.828905 10    57.4789 10   
41.982566 10  

2L  
 46.18386 10     31.648307 10  

L  
 49.13815 10     32.807431 10  

 4. A comparison of absolute errors for  and . 
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Tables 4, 5 and 6  compare absolute errors between three 

different methods. Tables 4 is consist of a comparisons 

between [7] and present method for 

= 0.00001, =1.5,1.9t   and =10,20N , respectively. 

other one is between [7], VRM and present method for 

= 0.00001, =1.4,1.6t   and =10,20N . Finally, we 

tabulated some comparisons of absolute errors and 

relative errors for = 0.00001, =1.6,1.8t   and = 20N  

in Table 6 and 7. We can conclude that newly obtained 

results are more convergent for the =1.3 , 1.5 , and 1.6  

and agree with for = 1.9  when partition number is 

chosen as =10N . Also applied method has more 

converges results for all   values when partition number 

is chosen as >10N  

   Table 5. A comparison of absolute errors for = 0.00001, =1.5,1.9t   and = 20N  

           = 1.5             = 1.9  
x      [7]  Present method       [7]   Present method 

 
 
( = = 9)m n  

  
( = 20)N   

 
( = = 9)m n  

 
( = 20)N  

0.1  
48.7105 10   

52.29860 10    44.3675 10    
43.547459 10   

0.2  46.7781 10   
56.14772 10    59.8359 10    

48.937207 10   

0.3  46.2089 10   
59.13921 10    44.8897 10    

44.322902 10   

0.4  45.7015 10   
41.228082 10    47.6534 10    

44.290707 10   

0.5  45.1476 10   
41.538698 10    49.3043 10    

42.275352 10   

0.6  44.8948 10   
41.811331 10    49.4248 10    

73.7590 10   

0.7  45.1671 10   
42.023530 10    47.5585 10    

41.286623 10   

0.8  
45.3919 10   

42.136602 10    54.2006 10    
42.716377 10   

0.9  
46.0660 10   

42.038887 10    55.4848 10    
42.267357 10   

2L   41.478850 10      
44.50187 10   

L   42.13660 10      
49.10231 10   

 

Table 6. A comparision of absolute errors for = 0.00001, =1.4,1.6t   and =10,20N  

   ,x t  

     VRM       [7]  

        Present   method 

     =10N                  = 20N  

 

 0.1,0.1  

39.2852 10  

48.4385 10  

 

64.5158 10   

77.484 10  

 

 0.2,0.2  

22.2201 10  

31.1433 10  

 

65.4722 10   

61.2260 10  

 

 0.3,0.3  

23.5651 10  

45.3780 10  

 

51.75791 10  

64.5398 10  

1.4   0.4,0.4  

24.9628 10  

41.5545 10  

 

56.16598 10  

51.52821 10  

 

 0.5,0.5  

26.4449 10  

45.3227 10  

 

41.487415 10  

53.61098 10  

 

 0.6,0.6  

27.9514 10  

31.3268 10  

 

42.808198 10  

56.71903 10  

 

 0.7,0.7  

29.1443 10  

31.9159 10  

 

44.465890 10  

41.056595 10  

 

 0.8,0.8  

28.7942 10  

32.0414 10  

 

46.226345 10  

61.457116 10  

 

 0.9,0.9  

49.2321 10  

31.8996 10  

 

47.445275 10  

41.719402 10  

       

       
 

 0.1,0.1  

34.1518 10  

31.1685 10  

 

56.93424 10  

51.50576 10  

 

 0.2,0.2  

21.0319 10  

32.5887 10  

 

54.24945 10  

68.8257 10  

 

 0.3,0.3  

21.7757 10  

32.8863 10  

 

53.96546 10  

68.6607 10  

1.6   0.4,0.4  

22.6987 10  

32.3912 10  

 

55.38836 10  

51.26185 10  

 

 0.5,0.5  

23.8327 10  

31.7692 10  

 

41.316628 10  

53.09618 10  

 

 0.6,0.6  

25.0993 10  

31.4174 10  

 

42.538026 10  

56.06844 10  

 

 0.7,0.7  

26.1379 10  

31.4334 10  

 

44.144158 10  

59.79853 10  

 

 0.8,0.8  

25.6577 10  

31.6653 10  

 

45.952975 10  

41.395405 10  

 

 0.9,0.9  

23.8618 10  

31.7449 10  

 

47.282169 10  

41.685685 10  
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3.2  Example 2: 

In our second example, weassume that 

1, 0, 2.5 , 3 / 2xa b c e      and the forced term is  

 
 

 

 

 

33 2

4 3 2 2

4.54.5 3 1.5

3
, 1

2

30 60 36 6

2.5 1x

f x t x x t

x x x x t

e x x t











 
 

   

 

 

with the  boundary conditions and the exact solution is  

Table 7. A comparision of absolute errors for = 0.00001, =1.6t   and = 20N . 

                                                                                            = 1.6  
                           [7] (m=9)                 Present Method 

t
 

x    Absolute error Relative error  Absolute   error Relative error 

 0.4  49.3726 10  
21.3286 10   51.26185 10  

41.789 10  

 0.6  49.4592 10  
23.6950 10   53.02423 10  

31.1813 10  

0.4  0.8  46.5448 10  
11.4462 10   54.52139 10  

39.9910 10  

       

 0.4  41.7359 10  
48.6999 10   57.66008 10  

43.839 10  

0.8  0.6  41.2080 10  
31.6683 10   41.075323 10  

31.4851 10  

 0.8  42.4657 10  
21.9263 10   41.395405 10  

21.09016 10  

 

Table 8. A comparision of absolute errors for = 0.00001, =1.8t   and = 20N  

                                                                                            = 1.8  
                           [7] (m=9)                 Present Method 

t
 

x    Absolute error Relative error  Absolute   error Relative error 

 0.4  33.4329 10  
24.8663 10   21.22000031 10  

217.29385 10  

 0.6  33.4391 10  
11.3434 10   37.7639662 10  

230.32794 10  

0.4  0.8  32.1582 10  
14.7690 10   32.8061378 10  

262.00712 10  

       

 0.4  46.9075 10  
33.4618 10   21.22414817 10  

26.13509 10  

0.8  0.6  46.5491 10  
39.0448 10   21.22552370 10  

216.92529 10  

 0.8  45.7248 10  
24.4725 10   38.1618789 10  

263.76431 10  

 
 

Figure  1. The numerical solutions of Time Fractional Klein Gordon equation for =1.3  and 1.5 . 

 
Figure  2. The numerical solutions of Time Fractional Klein Gordon equation for = 1.8  and 1.9 . 
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   

   
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33 2
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, 1

tu x u x

u t u t

u x t x x t  

 

In the considering numerical experiment, we present a 

series of table according to error norms 2L  and L . 

Table 6- 9 consist of error norms results for various 

values of time step t . and space step h  for =1.3  and 

1.5 , respectively. It can be seen from the tables, the most 

convergent results are found for the values = 0.01h  and 

= 0.00001t . 

Numerical results have same behaviour as first example 

i.e decreasing in time and space step size ends up with 

decreasing in the error norms. At the end of this part, 

numerical simulations of example 2 are depicted for the 

various choosing of   parameters in Figures 1 and 2. 

 

 

Table 9. A representation of the 3

2 10L   norm for various values of t  and h  for =1.3 . 

t         0.01        0.005  0.001 0.0005  0.0001  0.00005  0.00001 
h        

0.25  0.916627  0.916267  0.916166  0.916172  0.916182 0.916184 0.942900 

0.125  0.271518  0.271585  0.271579  0.271572  0.271566 0.275610 0.275609 

0.1  0.175499  0.175609  0.175612  0.175604  0.175596 0.175594 0.187200 

0.05  0.044173  0.044332  0.044348  0.044338  0.044327 0.045241 0.062025 

0.025  0.010973  0.011106  0.011124  0.011113  0.030162 0.011342 0.011340 

0.0125  0.002817  0.002784  0.002801  0.002789  0.002777 0.002837 0.002835 

0.01  0.001940 0.001788 0.001803 0.175604  0.001778 0.001817 0.032412 

Table 10. A representation of the 310L   norm for various values of t  and h  for =1.3 . 

t         0.01        0.005  0.001 0.0005  0.0001  0.00005  0.00001 
h        

0.25  1.178927  1.177854  1.177550  1.177568  1.177597 1.177603 1.236302 

0.125  0.416998  0.416427  0.416247  0.416252  0.416265 0.419592 0.419595 

0.1  0.256970  0.256507  0.256359  0.256363  0.256373 0.256375 0.282494 

0.05  0.062948  0.062482  0.062332  0.062336  0.062346 0.063598 0.111092 

0.025  0.016361  0.015783  0.015599  0.015604  0.053928 0.016170 0.016159 

0.0125  0.004637  0.004063  0.003995  0.003950  0.003910 0.004070 0.004059 

0.01  0.003248  0.002660  0.002603  0.002558  0.002500 0.002612 0.051111 

Table 11. A representation of the 3

2 10L   norm for various values of t  and h  for = 1.5 . 

t         0.01        0.005  0.001 0.0005  0.0001  0.00005  0.00001 
h        

0.25  0.933111  0.933327  0.933555  0.916172  0.916182  0.916184  0.916186  

0.125  0.281918  0.281729  0.281544  0.271572  0.271566  0.271565  0.271564  

0.1  0.187800  0.187536  0.187273  0.175604  0.175596  0.175594  0.175593  

0.05  0.063206  0.062689  0.062171  0.044338  0.044327  0.044325  0.044323  

0.025  0.038371  0.037691  0.036999  0.011113  0.011102  0.011100  0.011098  

0.0125  0.034415  0.033709  0.032989  0.002789  0.002777  0.002775  0.002773  

0.01  0.002590  0.001788  0.032617  0.001791  0.001778  0.001776  0.001775  

Table 12.  A representation of the 310L   norm for various values of t  and h  for = 1.5 . 

t         0.01        0.005    0.001 0.0005  0.0001  0.00005  0.00001 
h        

0.25  1.213214  1.213791  1.214409  1.177568  1.177597  1.177603  1.177608  

0.125  0.406493  0.406761  0.407052  0.416252  0.416265  0.416267  0.416270  

0.1  0.284914  0.283863  0.282795  0.256363  0.256373  0.256375  0.256377  

0.05  0.113572  0.112493  0.111400  0.062336  0.062346  0.062348  0.062349  

0.025  0.066852  0.065765  0.064665  0.015604  0.015616  0.015619  0.015621  

0.0125  0.055051  0.053957  0.052853  0.003950  0.003910  0.003912  0.003914  

0.01  0.004670  0.002660  0.051422  0.002558  0.002500  0.002501  0.002503  
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4. CONCLUSION 

In conclusion, this study has introduced to obtain 

numerical approximations using the finite element 

method. We have started with the application of the 

method to the time fractional Klein Gordon equation. 

Then, the problem has converted into ordinary 

differential equation system with the help of cubic B-

spline basis and element shape parameters. Using 

mathematical coding, the newly obtained numerical 

scheme is solved with an iterative method uses an initial 

vector to purpose of generate approximate solution for 

two test problem. Additionally, the newly numerical 

results with the calculation have shown that has a 

reasonable agreement with exact ones. After all the 

numerical experiments examined in this paper, we can 

conclude that finite element collocation method and L2 

algorithm can be a useful tool for obtaining numerical 

solutions of wide variety problems on fractional order 

partial differential equations. 
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Figure 3. The numerical solutions of Time Fractional Klein Gordon equation given in example 2 for =1.3  and 1.5 . 
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