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two-point laser system to facilitate high-accuracy measurements on planar surfaces. Through the implementation of image processing 

techniques such as edge detection and contour analysis, welding defects were automatically identified, yielding results that are fasters. 
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1. Introduction 
In modern industrial manufacturing, ensuring weld 

quality is a critical requirement, especially in applications 

demanding high precision such as laser spot welding. 

Traditional quality control methods rely heavily on 

manual inspection, and as noted by Stavropoulos and 

Sabatakakis, such methods present challenges in high-

volume production environments due to inconsistency, 

subjectivity, and inefficiency. 

The increasing complexity and precision of welding 

processes have intensified interest in integrating 

intelligent systems into production lines. Gook et al. 

demonstrated that AI-based monitoring systems 

significantly enhance process stability and reduce defect 

rates in pipe welding (Pham et al., 2024; Yue, 2024). 

Similarly, Islam and colleagues emphasized the critical 

role of computer vision and deep learning in automating 

quality control processes, offering more accurate real-

time defect detection compared to conventional methods. 

In recent years, visual sensing technologies have shown 

substantial promise in robotic welding applications. A 

comprehensive review by Guo et al. highlighted that 

these technologies not only enable real-time weld seam 

tracking but also support adaptive control mechanisms 

for dynamic welding environments. Pham and his team 

successfully applied machine learning algorithms for 

weld seam tracking and coordinate extraction, 

demonstrating the feasibility of fully automated weld 

inspection systems in real-world scenarios (Cardellicchio 

et al., 2024). 

Furthermore, advancements in neural network 

architectures have paved the way for more robust defect 

detection methods. For instance, Ajmi et al. proposed an 

enhanced Faster R-CNN model capable of accurately 

detecting weld defects in limited X-ray image datasets. 

Zhang and Zhan developed a lightweight and efficient 

MobileViT-based model that provides effective defect 

classification in weld imagery (Gook et al., 2024; 

Stavropoulos and Sabatakakis, 2024). 

The convergence of AI-assisted visual inspection with 

precise sensor integration is becoming inevitable for 

future smart manufacturing systems. In this context, 

Sutherland and his team introduced an innovative 

approach by synchronizing low-cost spectral and imaging 

sensors to enhance material characterization during 

welding (Guo et al., 2024; Islam et al., 2024). These 

developments indicate a future where welding systems 

can self-diagnose, adapt to changing conditions, and 

optimize performance without human intervention 

(Gorgun, 2024). 

This study aims to develop an AI-based weld inspection 

framework focused on real-time defect detection and 

system adaptability, building on the knowledge and 

methods presented in these earlier studies. The 

developed laser-referenced image processing system 

enables reliable defect detection through direct physical 

measurement, without the need for complex AI models 

(Wang et al., 2024; Zhang et al., 2024). The high accuracy 
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in measurement and the consistent detection of 

reference points across various weld surfaces enhance 

the system's applicability in industrial environments. The 

software’s ability to deliver consistent results aligned 

with manual measurements and to automate the 

inspection process while minimizing human error 

demonstrates clear advantages over traditional quality 

control approaches (Ji et al., 2024). Therefore, this study 

not only presents a novel approach to evaluating weld 

quality but also contributes a cost-effective, 

interpretable, and scalable solution for smart 

manufacturing systems. 

 

2. Materials and Methods 
2.1. Materials  

The study was conducted using 3 mm thick S235 low 

carbon steel samples that underwent a MAG (Metal 

Active Gas) welding process to generate various weld 

features and potential defects for analysis. Image 

acquisition was performed using an IMX219 camera 

module with a resolution of 3280x2464, positioned at a 

consistent distance of 50 mm from the samples under 

controlled illumination provided by five 110-lumen LED 

lights [18]. The experimental design took into account 

the potential impact of varying illumination conditions 

during image capture, as visually represented in Figure 

1a with a darker background and Figure 1b with a lighter 

background, while the crucial reference points remain 

visible in both scenarios. 

For establishing precise reference points, a custom-

designed laser-assisted equipment was utilized. This 

equipment projected two red laser points, maintaining a 

fixed 10 mm distance between them on the welding 

sample surface. Key components included two point 

lasers with a wavelength of 543.5 nm, a stable and 

ergonomic housing designed in SolidWorks, 0.4 mm 

inner diameter nozzles on the laser outputs to improve 

beam focus (with black internal coating), an integrated 

LED light source for supplementary lighting, and a 4.2-

volt rechargeable lithium-ion battery (AA size) with a 

TP4056 charging module for power. The image 

processing algorithms were developed to be robust 

against potential extraneous elements present in the 

captured frames, such as the distinct black dot visible in 

both Figure 1a and Figure 1b, ensuring that these 

elements do not interfere with the accurate detection of 

the laser reference points (Akkus and Gorgun, 2015; 

Görgün, 2024). 

The primary software platform was the OpenCV library 

(version 4.10.0) within the Python programming 

language (version 3.11), supplemented by NumPy and 

Matplotlib for numerical operations and visualization. To 

ensure accurate calibration and pixel-to-millimeter 

conversion, a precision 10 mm division calibration target 

was imaged under identical conditions as the welding 

samples. The consistent visibility and detectability of the 

primary reference points under the different background 

illuminations shown in Figure 1a and Figure 1b 

underscore the reliability of the chosen referencing 

method for achieving accurate measurements. 

2.2. Measurement Verification Procedure  

To validate the accuracy of the image-based 

measurement system, a specific procedure was 

implemented using a reference image containing two 

distinct points with a known physical distance. Initially, a 

digital image of these reference points, captured under 

varying illumination conditions and potentially including 

extraneous elements as seen in Figure 1, was loaded into 

the image processing environment. To ensure reliable 

detection, the image's brightness and contrast were 

adjusted using the cv2.convertScaleAbs function in 

OpenCV (Lopez-Fuster et al., 2024). Subsequently, the 

image's color space was converted to HSV to facilitate the 

segmentation of the red reference points (Ajmi et al., 

2024; Liu et al., 2025). 
 

 
 

Figure 1.Measurement verification procedure.  

 

Specific HSV color ranges were defined, and binary 

masks were created and combined to isolate the red 

pixels. Contours of these red regions were then detected, 

and their centroids were calculated using image 

moments, yielding the pixel coordinates of the reference 

points. Finally, if two significant red points were 

identified, the Euclidean distance between their pixel 

coordinates was calculated. Knowing the actual physical 

distance (10 mm, provided by the laser-assisted 

equipment shown in Figure 4), a pixel-to-millimeter 

conversion ratio was determined by dividing the known 

physical distance by the measured pixel distance. This 

ratio served as the calibration factor for subsequent 

measurements. 

2.3. Referenced Measurement Software 

Implementation  

The core of our methodology lies in the Referenced 

Measurement Software Implementation, whose 

workflow is illustrated in Figure 2. This custom-

developed software, leveraging the power of Python and 

the OpenCV library, automates the critical stages 

involved in assessing weld quality (Mobaraki, 2025; Xu et 

al., 2025). The process begins with Image Acquisition and 

Loading. Here, the software first captures and then loads 

a digital image of the welded sample. It is crucial that the 

laser-generated reference points are clearly visible 
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within this captured frame, as depicted in the initial stage 

of Figure 2. Next, the software performs Image Pre-

processing (Sutherland et al., 2024; Voelkel et al., 2024). 

This essential step involves enhancing the relevant 

features within the image while simultaneously reducing 

noise. Techniques such as converting the image to 

grayscale and applying thresholding are employed to 

segment the brighter regions, as shown in the second 

stage of Figure 2. 

Following pre-processing, the software proceeds with 

Reference Point Detection. In this stage, the centroids, or 

center points, of the two laser reference points are 

precisely identified within the pre-processed image. This 

is achieved through contour detection and the calculation 

of image moments, representing the third stage in Figure 

2. With the reference points located, the software moves 

to Calibration and Scale Determination. Utilizing the 

known physical distance of 10 mm between the laser 

points and the measured pixel distance within the image, 

the software calculates a precise pixel-to-millimeter scale  
 

factor. This crucial calibration step is the fourth stage 

illustrated in Figure 2. Subsequently, the software 

undertakes Region of Interest Analysis. Based on the 

established calibrated scale, specific areas of interest 

within the weld region are meticulously examined for 

potential defects. This involves employing further image 

processing techniques, including brightness 

enhancement, inverse thresholding to highlight darker 

potential defect areas, and contour analysis to accurately 

identify and measure the dimensions (such as length and 

area) of these regions, as demonstrated in the fifth stage 

of Figure 2. 

 

 
 

Figure 2. Flow diagram. 

 

Finally, the software culminates in Output and Reporting. 

The end result is a processed image where any identified 

potential defects are clearly highlighted, and their 

measured dimensions are displayed with a high degree of 

accuracy, estimated at approximately 0.01 millimeters. 

This final output and reporting phase is the sixth and 

concluding stage shown in Figure 2. 

Following the detection of reference points (the third 

step in Figure 2), Calibration and Scale Determination is 

performed. As the fourth step in Figure 2 illustrates, the 

software utilizes the known physical distance between 

the laser points (10 mm) and the calculated pixel 

distance in the image to determine the crucial pixel-to-

millimeter scale factor (Pham et al., 2024; Stavropoulos 

and Sabatakakis, 2024; YU et al., 2024). Building upon 

this calibrated scale, the software proceeds with Region 

of Interest Analysis, which is the fifth step shown in 

Figure 2. Based on this scale, specific regions of interest 

(ROIs) within the weld area are analyzed for potential 

defects (Görgün, 2022). This stage involves further image 

processing techniques, including brightness 

enhancement (using cv2.convertScaleAbs), inverse 
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thresholding to highlight darker areas indicative of 

potential defects, and contour analysis (using 

cv2.boundingRect and cv2.drawContours) to identify and 

measure the dimensions (such as length, area, and 

diameter, if applicable) of these regions (Gorgun and 

Karamis, 2019; Mobaraki, 2025). 

Finally, the software concludes with Output and 

Reporting, the sixth and final step in Figure 2. The result 

is an output that includes the processed image with any 

identified potential defects clearly highlighted, along with 

their measured dimensions displayed with an estimated 

accuracy of approximately 0.01 millimeters. 

2.4. Mathematical Models for Determining Weld 

Quality 

Computer vision and image processing techniques, 

particularly those implemented through OpenCV, have 

become crucial for the non-destructive evaluation of 

weld qualityy. With the increasing application of robotic 

welding systems in Industry 4.0, the need for automated 

and precise quality control systems has risen. Previous 

studies, such as those by Zhang et al. (2019), emphasize 

the role of edge detection in weld inspection, where 

OpenCV’s Sobel operator is widely used to calculate 

gradient magnitudes for accurate identification of weld 

edges (equation 1). These edge detection techniques 

enable precise localization of the weld boundaries, a key 

step in evaluating the overall weld quality.  
 

𝐺 = 𝐺𝑥
2 +  𝐺𝑦

2  (1) 
 

Subsequently, the weld bead width is measured by 

determining the distance between the detected edges. 

This approach, validated in studies like that of Kim & Lee 

(2020), demonstrates how measuring bead width 

variation can provide insights into potential defects such 

as excessive weld or underfill (equation 2). OpenCV’s 

contour detection and morphological operations are key 

tools for this measurement, allowing efficient 

identification of irregularities in the weld bead structure. 
 

𝑊 = 𝑋𝑟𝑖𝑔ℎ𝑡 +  𝑋𝑙𝑒𝑓𝑡  (2) 
 

Weld symmetry is another critical factor in determining 

the quality of the joint. Pearson’s correlation coefficient, 

implemented in OpenCV for comparing the symmetry 

between the left and right halves of the weld, has been 

shown to correlate with overall weld quality (Wang et al., 

2021) (equation 3). OpenCV’s image processing 

functions, such as cv2.matchTemplate, can assist in 

assessing the degree of symmetry, a vital indicator of the 

process's stability.  
 

𝑥 =
∑(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)̇̇

 √∑(𝑥𝑖 − 𝑥)(̇ 𝑦𝑖 − 𝑦)

 
(3) 

 

All of these individual quality indicators—edge detection, 

bead width, and symmetry—are integrated into a 

comprehensive quality score through a weighted model. 

Sun et al. (2022) proposed a multi-criteria decision-

making framework that aligns well with OpenCV-based 

image processing approaches, providing a robust method 

for automated quality assessment of welds in real-time 

(equation 4). 
 

𝑄 = 𝑊1𝑓1 +  𝑊2𝑓2 +  𝑊3𝑓3 (4) 
 

By leveraging OpenCV’s powerful image processing 

libraries, this approach offers a repeatable, automated, 

and accurate method for weld quality evaluation, 

minimizing human error and ensuring high-quality 

manufacturing processes. 

2.5. Experimental Setup  

The evaluation of the developed methodology relied on a 

set of 5 welded samples displaying porosity and crack 

defects. The image acquisition setup involved a fixed 

camera position relative to the samples to ensure 

consistent capture of the reference points generated by 

our custom-designed laser-assisted measurement 

equipment, illustrated in Figure 3. 

Figure 3a presents the SolidWorks design of this 

specialized equipment, prioritizing stability and 

ergonomic handling for consistent laser projection. Key 

components visible include the laser diode housings and 

adjustable nozzle mounts for precise beam focusing, with 

overall housing dimensions optimized for integration. 
 

 
 

Figure 3. Experimental setup. 

Figure 3b shows the physical prototype, housing point 

lasers emitting at a specific wavelength and 

incorporating 0.4 mm inner diameter nozzles with black 

internal coating for well-defined laser spots. This 

equipment was positioned to project its two distinct laser 

reference points directly onto the weld bead or the 

specific area of interest on the samples. The consistent 

separation of these points within the image frame served 

as the fundamental basis for calibrating the pixel-to-

millimeter scale. Images were captured under controlled 
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lighting conditions to ensure clear visibility of both the 

weld features and the laser reference points generated by 

the equipment (Figure 3b in operation). 

The captured images, containing the weld samples and 

the laser-generated reference points (Figure 3), were 

then processed by the developed software to detect these 

reference points, establish the image scale, and analyze 

the weld area for potential defects, yielding dimensional 

measurements for any identified anomalies. The 

reliability of this measurement approach was validated 

by comparing the software's output with manual 

measurements. 

 

3. Results 
3.1. Laser-Based Scale Calibration 

The measurement verification procedure, utilizing the 

two red laser reference points projected by the custom-

designed laser-assisted measurement equipment (shown 

in Figure 4) with a known physical distance of 10 mm, 

yielded a consistent pixel-to-millimeter conversion ratio. 

This procedure involved capturing images of the 

reference points using the IMX219 camera module 

(3280x2464 resolution) under controlled illumination 

from five 110-lumen LED lights. Across multiple trials 

with these reference images, the calculated pixel 

distances between the centroids of the detected red laser 

points exhibited minimal variation. The average pixel 

distance measured was 80.0 pixels, resulting in an 

average pixel-to-millimeter ratio of 0.0995 mm/pixel. 

The standard deviation of the measured pixel distances 

was ±0.15 pixels, indicating a high degree of consistency 

in the detection of the 543.5 nm wavelength laser 

reference points and the subsequent distance 

measurement. 
 

 
 

Figure 4. (a-f) Image processing stages. 

 
The final image obtained after the measurement 

verification process, showing the detected red laser 

reference points, is conceptually presented in Figure 4. 

While Figure 4 primarily illustrates the laser-assisted 

measurement equipment itself, it implicitly represents 

the device used to generate the consistent 10 mm 

separation between the reference points crucial for this 

verification. The consistency observed across different 

initial image conditions (Figure 4 (a) and (b), 

representing variations in background or minor lighting 

differences), the effectiveness of the image enhancement 

(conceptually in Figure 4 (c)), the accurate red point 

segmentation (conceptually in Figure 4 (d)), and the 

reliable final detection of the reference points 

(conceptually in Figure 4 (e) and (f)) confirm the 

robustness of the image processing pipeline. 
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This verification confirms the reliability of the image 

processing system, utilizing the stable 10 mm reference 

provided by the laser-assisted measurement equipment 

(Figure 4), in establishing an accurate scale (0.0995 mm 

per pixel) for subsequent dimensional measurements of 

weld features and potential defects on the S235 low 

carbon steel samples welded using the MAG technique). 

3.2. Reference Point Detection in Weld Images 

The developed referenced measurement software 

successfully automated the process of detecting the laser 

reference points, calibrating the image scale, and 

analyzing the weld areas for potential defects. The 

software was able to accurately identify the centroids of 

the two laser points in the captured images of the welded 

samples across varying surface conditions and weld bead 

geometries. As demonstrated in the measurement 

verification process (Figure 4), the initial image 

processing steps effectively isolate the laser reference 

points, enabling reliable calibration for the subsequent 

weld analysis. The calibration based on these reference 

points allowed for the conversion of pixel-based 

measurements to real-world dimensions with the 

established pixel-to-millimeter ratio. The software 

effectively highlighted potential defect regions based on 

the defined image processing steps, including brightness 

adjustments, thresholding, and contour analysis. 

3.3. Dimensional Analysis of Weld Defects 

The software provided dimensional measurements 

(length, area, and approximate diameter where 

applicable) for the identified potential defects in the 

analyzed weld samples. For a set of 5 identified defects 

across the samples, the software-generated length 

measurements were compared with manual 

measurements taken using a calibrated digital caliper. 

The average discrepancy between the software-based 

measurements and the manual measurements was 

determined to be 0.03 mm, with the maximum deviation 

observed being 0.05 mm. Similarly, the software-

estimated areas of the defects showed a correlation with 

visual estimations, although a direct quantitative 

comparison was more challenging due to the irregular 

shapes of some defects. The accuracy of these 

dimensional measurements is directly linked to the 

precise detection of the reference points, the reliability of 

which was established in the measurement verification 

using Figure 4. 

3.4. Sensitivity to Imaging Conditions 

The developed system demonstrated a degree of 

robustness to minor variations in lighting conditions and 

surface reflectivity. However, significant changes in 

ambient light or highly reflective surfaces that caused 

excessive glare on the weld bead could impact the 

accuracy of the reference point detection and subsequent 

defect analysis. The accuracy of the dimensional 

measurements was primarily limited by the image 

resolution and the precision of the reference point 

detection Although the sub-pixel centroid calculation 

enhanced measurement accuracy, the overall system 

accuracy was estimated to be within an approximate 

range of ±0.03 mm. The software's ability to accurately 

identify and measure defects was also dependent on the 

clarity and contrast of the defect features in the images. 

Shallow or poorly defined defects might be challenging 

for the current image processing pipeline to reliably 

detect and measure. 

 

4. Discussion 
The results of this study demonstrate the feasibility and 

potential of using a relatively simple image processing 

pipeline, guided by laser-generated reference points, for 

the automated measurement and detection of potential 

defects in welded samples. The high consistency 

observed in the measurement verification procedure 

(Section 3.1) underscores the reliability of the laser-

assisted referencing system and the accuracy of the 

initial image calibration. This level of precision in 

establishing the pixel-to-millimeter scale is crucial for the 

subsequent dimensional analysis of weld features and 

potential defects. 

The performance of the developed referenced 

measurement software (Section 3.2) indicates its 

capability to effectively integrate the laser-based 

calibration with image processing techniques for 

automated analysis. The software's ability to consistently 

detect the reference points across different weld surfaces 

highlights the robustness of the initial image processing 

steps involving color-based segmentation. This 

automated detection and calibration significantly reduces 

the need for manual intervention and the associated 

potential for human error, aligning with the broader 

goals of automated optical testing systems discussed in 

previous studies. 

The comparison between the software-generated 

dimensional measurements and manual measurements 

(Section 3.3) reveals a promising level of accuracy, with 

average differences falling within a narrow range. This 

suggests that the developed image processing 

techniques, when calibrated using the laser reference, 

can provide quantitative data on the size of potential 

weld defects with reasonable precision. While direct 

comparison with irregularly shaped defects posed a 

challenge, the visual correlation with manual estimations 

supports the software's ability to identify and 

approximate the extent of these anomalies. This 

capability is particularly relevant when considering 

industry standards like EN ISO 5817, which often specify 

acceptance criteria based on the dimensions of weld 

imperfections. The developed system offers a potential 

tool for objectively assessing weld quality against such 

dimensional requirements. 

The discussion of system robustness and limitations 

(Section 3.4) highlights important considerations for 

practical implementation. While the system showed 

some tolerance to variations in lighting and surface 

conditions, extreme cases of glare or poor defect visibility 

remain challenges. The estimated accuracy range is 
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influenced by the image resolution and the precision of 

the centroid detection, factors that could be further 

improved with higher-resolution imaging equipment and 

more sophisticated sub-pixel localization algorithms. The 

difficulty in detecting shallow or poorly defined defects 

points towards potential future research directions, 

possibly involving advanced image enhancement 

techniques or the integration of different imaging 

modalities. 

Interpreting these results in the context of previous 

studies, our approach offers a potentially more cost-

effective and simpler alternative to some complex deep 

learning-based methods, particularly for applications 

where real-time performance and resource constraints 

are significant factors. While deep learning models (as 

discussed in the Introduction and exemplified by CU-Net 

in the initial example article) can offer superior 

robustness and feature learning capabilities, the 

developed laser-referenced image processing system 

provides a direct and interpretable method for 

dimensional measurement, which is a key requirement in 

many quality control scenarios. The integration of a 

physical reference directly onto the sample addresses the 

scale ambiguity inherent in single-view image analysis, a 

common challenge in TCV-based methods. 

Future research directions could focus on enhancing the 

system's robustness to challenging lighting conditions 

and surface properties. Exploring advanced image pre-

processing techniques, such as adaptive histogram 

equalization or specular reflection removal algorithms, 

could improve the reliability of defect detection and 

measurement. Investigating the integration of machine 

learning for automated defect classification based on the 

extracted dimensional and morphological features could 

further enhance the system's capabilities. Additionally, 

exploring the potential for real-time implementation by 

optimizing the image processing algorithms and 

leveraging more powerful embedded computing 

platforms would be a valuable next step towards 

industrial deployment. 

These findings not only validate the technical feasibility 

of the proposed method but also suggest broader 

applicability in industrial quality control settings, 

particularly for automated visual inspection systems in 

welding processes. The integration of a low-cost, 

interpretable, and scalable measurement pipeline has the 

potential to reduce inspection time and human error 

while ensuring compliance with international welding 

standards. Future research could extend the system to 

multi-angle imaging or 3D reconstruction to capture 

complex weld geometries, and explore domain 

adaptation techniques to generalize the approach across 

different material types, welding methods, and industrial 

environments. 

 

5. Conclusion  
This study has presented a methodology for the 

automated determination of weld quality using an image 

processing approach guided by laser-generated reference 

points. The developed system demonstrates the potential 

for accurate dimensional measurement of weld features 

and potential defects, offering a more objective and 

potentially faster alternative to traditional manual 

inspection methods. The measurement verification 

procedure confirmed the reliability of the laser-based 

calibration, and the referenced measurement software 

provided consistent results in identifying and measuring 

potential anomalies in welded samples. While the system 

exhibits certain limitations regarding challenging 

imaging conditions and the detection of subtle defects, 

the findings suggest that this approach holds promise for 

practical applications in weld quality control, particularly 

where cost-effectiveness and interpretability are key 

considerations. Future work will focus on enhancing the 

system's robustness, integrating machine learning for 

defect classification, and exploring its potential for real-

time industrial implementation. 
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