

Araştırma Makalesi • Research Article

DOI: 10.21547/jss.1686129

The Animation Structure of Atari Games According to Animation's Twelve Principles

Animasyonun On İki Prensibine Göre Atari Oyunlarının Animasyon Yapısı

Volkan Davut MENGİ^{a*}

^aDr. Öğr. Üyesi, Mimar Sinan Güzel Sanatlar Üniversitesi, Çizgi Film ve Animasyon Bölümü, İstanbul / TÜRKİYE
ORCID: 0000-0003-4803-7999

ARTICLE INFO

Article History:

Received: April 28, 2025

Accepted: January 11, 2026

Key Words:

Digital Games,
Animation,
Game Design,
Atari Games,
Game Art.

ABSTRACT

The use of the traditional Twelve Principles of Animation in Atari-era video games and their transformation under the influence of interactive digital environments have been thoroughly examined in this article. Using in-depth analyses of classic games like Pac-Man, Space Invaders, Asteroids, and Donkey Kong, the research finds that certain concepts, like Appeal and Staging, remained in altered versions, while others, like Anticipation, Follow-Through, and Squash and Stretch, were mostly dropped. The research examines the creation of new animation principles particularly designed for early video games, going beyond just evaluating the survival or loss of old concepts. As creative responses to extreme technological limitations, especially low resolution and low frame rates, concepts like Frame Economy and Looping, Immediate Action, Visual Flashing Feedback, Silhouette Clarity, Iconic Abstraction, and Algorithmic Movement are put forth. These guidelines demonstrate how early developers overcame technology constraints to produce engaging interactive experiences. The study concludes that rather than being permanent universals, animation principles should be viewed as dynamic frameworks that adjust to the structural and experiential circumstances of their mediums. Thus, video games from the Atari period are positioned as creative starting points for the creation of interactive visual narrative aesthetics rather than only as transitory technology artefacts. Consequently, this study contributes to the fields of game studies and animation history by establishing a specific theoretical framework to analyze how interactive constraints reshape visual aesthetics, bridging the gap between classical animation theory and digital game design.

MAKALE BİLGİSİ

Makale Geçmişti:

Başvuru tarihi: 28 Nisan 2025

Kabul tarihi: 11 Ocak 2026

Anahtar Kelimeler:

Dijital Oyunlar,
Animasyon,
Oyun Tasarımı,
Atari Oyunları,
Oyun Sanatı.

ÖZ

Geleneksel on iki animasyon ilkesinin Atari dönemi video oyunlarındaki kullanımı ve etkileşimli dijital ortamların etkisiyle geçirdiği dönüşüm bu makalede ayrıntılı şekilde incelemiştir. Pac-Man, Space Invaders, Asteroids ve Donkey Kong gibi klasik oyunların derinlemesine analiziyle yapılan araştırma, Appeal (Çekicilik) ve Staging (Sahneleme) gibi bazı kavramların değişmiş versiyonlarla varlığını sürdürdüğünü, buna karşılık Anticipation (Beklenti), Follow-Through (Devamlılık) ve Squash and Stretch (Sıkıştırma ve Germe) gibi kavramların büyük ölçüde terk edildiğini ortaya koymuyor. Araştırma, sadece eski kavramların korunup korunmadığını değerlendirmekle kalmıyor, aynı zamanda erken dönem video oyunları için özel olarak geliştirilen yeni animasyon ilkelarının oluşturulmasını da inceleyyor. Özellikle düşük çözünürlük ve düşük kare hızları gibi aşırı teknolojik kısıtlamaları yaratıcı tepkiler olarak, Frame Economy (Kare Ekonomisi), Looping (Döngüleme), Immediate Action (Anında Tepki), Visual Flashing Feedback (Görsel Yanıp Sönme Geri Bildirim), Silhouette Clarity (Siluet Netliği), Iconic Abstraction (İkonik Suyutlama) ve Algorithmic Movement (Algoritmik Hareket) gibi kavramlar öneriliyor. Bu öneriler erken dönem geliştiricilerin teknolojik sınırlamaları aşarak farklı etkileşimli deneyimler ürettiğini gösteriyor. Çalışma ek olarak animasyon ilkelarının kalıcı evrenseller değil, bulundukları mevcuların yapısal ve deneyimsel koşullarına uyum sağlayarak dinamik çerçeveler olarak görülmesi gerektiğini sonucuna varıyor. Böylece Atari dönemi bilgisayar oyunları, yalnızca geçici teknolojik ürünler olarak değil, etkileşimli görsel anlatım estetiğinin yaratıcı noktaları olarak konumlandırılıyor. Sonuçta çalışma etkileşimli kısıtlamaların görsel estetiği nasıl yeniden şekillendirdiğini analiz etmek için özel bir teorik çerçeve oluşturarak oyun çalışmaları ve animasyon tarihi alanlarına katkıda bulunmakta; klasik animasyon teorisi ile dijital oyun tasarımları arasındaki boşluğu doldurmaktadır.

* Sorumlu yazar/Corresponding author.
e-posta: volkan.mengi@msgsu.edu.tr

Introduction

Art is one of the most important forms of human being's relationship with existence, understanding and making sense of it (İşik, 2025). Art, as a means of interpreting and reshaping existence, does not operate independently of its material and technological conditions. Each historical period imposes specific constraints on artistic production, shaping not only aesthetic choices but also modes of expression. Within this context, early digital games emerged as a distinct artistic form, where meaning and visual identity had to be constructed under severe technical limitations. Despite facing significant technical limitations, the iconic and captivating images of the legendary Atari and early arcade games from the late 1970s and early 1980s, like Pac-Man, Space Invaders, Asteroids, and Donkey Kong, were nonetheless produced. These games have simplistic, low frame-rate animations and low-resolution, pixelated images since they were played on devices with extremely little memory and processing capacity. Despite these constraints, game creators came up with inventive methods to add personality and motion. This begs the question of whether a distinct set of "Twelve Principles of Animation" that were especially appropriate for early video games developed, and how conventional animation principles appeared (or were modified) in such an environment.

Disney animators Frank Thomas and Ollie Johnston are renowned for having established the Twelve Principles of Animation in traditional hand-drawn animation. In animations, these principles, which include ideas like squash and stretch, anticipation, staging, and timing, among others, act as guides to provide the appearance of life and appeal. The 12 principles of animation, originally formulated by Walt Disney animators in the 1930s to enhance the quality of animation through the analysis of real action (Peguet, 2022; Bishko, 2014), are foundational to traditional animation aesthetics. Some scholars suggest that these principles may have drawn inspiration from the expressive movement language of Wayang Kulit shadow puppetry (Ghani & Ishak, 2012). Although the principles have historically centered around the illusion of motion and image recording techniques (Suyadi et al., 2023), contemporary practices such as hand-drawn digital animation, stop-motion, and experimental media require their refinement and expansion (Thesen, 2020). Applications of these principles continue today, as seen in the Indonesian animated series "Adit & Sopo Jarwo," where they contribute to creating natural and engaging movement (Widadijo, 2020). Animating for interactive games, however, is very different from animating for movies or cartoons. Real-time player input response is a need for games, and early games in particular were limited by simple visuals. Because of this, not all of the twelve principles could be used exactly as they were in games from the Atari period. Instead, many vintage games created their own methods to make up for the absence of smooth, intricate animation.

This article examines the ways in which animation concepts appear in vintage Atari games and suggests a set of guidelines specifically designed for the pixel-based, low-frame-rate environment of early video games. Using examples and academic or industry sources, we first identify and describe a set of animation principles unique to Atari that were distilled from observations of classic games. We then critically examine how these Atari-era rules differ from the classic Twelve rules of Animation, pointing out which original ideas apply differently or aren't applicable in the setting of early games and why. For clarity, both sets of principles are listed side by side in comprehensive tables. Lastly, we provide updated and new concepts that are better suited to the particular requirements of pixel graphics and low frame rates in early video game animation based on this examination. We can better understand the inventive methods early game creators employed to give a few pixels on the screen life by looking at these ideas. This enhances our comprehension of the artistry of vintage games and contributes to current debates over minimalist design and "game feel" in independent games that frequently imitate vintage styles. However, a comprehensive theoretical framework that systematically

maps the transformation of classical animation principles within the restrictive environment of early arcade games remains largely underexplored. This study addresses this gap by redefining technical constraints not as mere limitations, but as the foundation of a distinct aesthetic language unique to interactive media. In this context, as Goethe stated, if the first chapter of history began with the invention of writing and the second with the printing press, the third chapter definitely began with the digital revolution (Izer et al., 2025), and Atari games constitute the first lines of this third chapter.

Methodology

In order to thoroughly investigate how classical animation concepts were adapted to the technological and artistic limitations of early Atari-era video games, this research uses a qualitative and comparative technique. The research uses a multi-stage, interpretive framework that includes the following elements because of the historical and artistic aspect of the subject matter:

Selection of Case Studies

A representative selection of vintage Atari and early arcade games, such as Pac-Man (1980), Space Invaders (1978), Asteroids (1979), and Donkey Kong (1981), was chosen using a purposive sampling technique. These games were picked because of their technical impact, cultural relevance, and regular mention in the literature on animation and gaming studies. Under technical limitations like low memory, restricted frame rates, and poor pixel resolution, each game serves as an example of important elements of early video game animation techniques.

Identification of Animation Techniques

To record the precise animation methods and visual techniques used, each chosen game was thoroughly examined. This required examining sprite animations, movement patterns, visual feedback systems (such as flashing effects), and background design components frame by frame. Finding recurring design decisions that addressed technological constraints and communicated dynamic motion, character identity, or gameplay feedback was emphasised. To ensure technical accuracy, the games were run via high-fidelity emulators (e.g., MAME for arcade titles, Stella for console ports) to replicate the original frame rates. The gameplay was recorded using high-resolution screen capture software (OBS Studio) and subsequently analyzed in video editing software to isolate and examine specific movements on a frame-by-frame basis. This allowed for the precise identification of sprite changes, loop durations, and algorithmic transitions that are imperceptible to the naked eye during real-time play.

Comparative Framework

A comparison framework was developed after the gathering of game-specific animation techniques in order to methodically compare the results with the conventional Twelve Principles of Animation as stated by Thomas and Johnston (1981). The existence, modification, adaptation, and absence of each classical principle in the context of early video game animation were assessed. Equivalent or emerging concepts specific to the video game medium were discovered when appropriate.

Synthesis of New Animation Principles

The study developed a set of updated or completely new animation principles that are appropriate for pixel-based, low-frame-rate video game animation by building on the comparative analysis. These guidelines were derived from patterns seen in the case studies and compared to current evaluations of game design in terms of player feedback, visual clarity, and interactive responsiveness.

Analytical Lens

The study used an interdisciplinary lens that included semiotics, animation theory, and game design ideas throughout the examination. The semiotic role of early game images as symbolic communication aids rather than mimetic depictions of actual reality received special emphasis. In order to take into account the particular interactive demands imposed on animation in games, factors from generative animation scholarship and game feel theory (Swink, 2008) were also incorporated. The findings of this study regarding the symbolic nature of early game graphics can be effectively contextualized through C.S. Peirce's semiotic theory (1931–1958). Within this theoretical framework, early game sprites function not merely as low-resolution images but as 'icons' that rely on resemblance (e.g., a pixelated blob representing a ghost) and 'indices' that signal game states (e.g., flashing colors indicating vulnerability). This perspective aligns with Jesper Juul's (2005) concept of 'half-real,' where visual abstraction allows players to project fictional importance onto symbolic rules. Furthermore, Ian Bogost's (2007) notion of 'procedural rhetoric' offers a theoretical foundation for the concept of 'Algorithmic Movement,' suggesting that the meaning of animation in these games is constructed through rule-based processes rather than just visual representation.

Limitations

It is recognised that the research does not provide a comprehensive overview of all Atari-era games, but rather concentrates on a small number of significant titles. Furthermore, because aesthetic analysis is fundamentally interpretative, subjectivity is included even when the analysis draws from well recognised theoretical frameworks. To improve the findings' dependability and scholarly rigour, the comparative framework is consistently applied, and primary observations are triangulated with scholarly sources. By using this technique, the research aims to theorise how distinct creative principles arose within the interactive, technological, and aesthetic context of early video games, rather than just documenting the distinctions between traditional animation and early game animation.

Findings

Animation Principles in Classic Atari Games

When creating animations for early video games, animators and developers had to prioritise efficiency, clarity, and gameplay input. I've included a few essential animation concepts that appeared or gained particular significance in vintage Atari games below. Examples from popular titles are used to define and illustrate each concept, showing how it was used in real-world situations. Both technological need and creative inventiveness are the sources of these concepts.

Frame Economy and Looping

Definition: The term "frame economy" describes the effective representation of a certain action using a relatively minimal number of animation frames. Due to strict memory limitations, animations in early games were sometimes restricted to only two to three frames per character or item. A similar concern for expressive efficiency can be observed in traditional animation practices, where minimizing frame count while preserving motion clarity has long been emphasized (Williams, 2009). Developers mostly used looping cycles, which repeat a brief series of frames again, to portray continuous motion with a limited number of frames. According to this idea, each frame had to be as informative as possible, recording a distinct stance or change so that the player could read the motion when it was looped. This reliance on condensed visual information parallels Bordwell's concept of narrative economy, where limited expressive means demand heightened informational density (Bordwell, 1985).

Role and Examples: Each alien invader in Space Invaders (1978) is depicted in just two different stances, and the animation merely quickly switches between these two frames. The aliens appear to be writhing as they march across the screen thanks to this little loop, which is frequently only a few pixels different in the alien's "legs" or form. Similar to this, Pac-Man (1980) used a brief looping animation for its protagonist, whose mouth alternates between being open and closed in a cyclical "chomping" action as he navigates the maze. To provide the impression of constant chewing, Pac-Man's eating motion really just uses a small number of different sprites, one with the mouth open, one half open, one closed, etc., that are cycled. To effectively convey the concept of biting and devouring pellets, the creators used only eight sprite frames to cover the whole range of Pac-Man's mouth movements, then looped them back in. Very few frame cycles were also employed for character motions in early platform games, such as Donkey Kong (1981). For example, Mario's running is shown with a few alternate leg positions in a run loop, and there is basically just one static stance for leaping. Every additional frame was a luxury, as "*each frame [of animation] cost valuable storage*", so loops and minimal frame counts were the norm.

Immediate Action (No Anticipation)

Definition: When game animations are described as "immediate action," they usually start and stop instantly in reaction to player input or game events, with little to no foreshadowing or smoothing of transitions. Anticipation is a notion in classical animation where a little preliminary movement (such as a crouch or wind-up) comes before a large action to cue the viewer and give the motion a more natural feel. However, responsiveness frequently came at the expense of any delay or additional frames before an action in Atari games. The idea was that the on-screen figure should respond instantly when the player clicks a button. Characters frequently go from a stationary position to full action in a single frame, resulting in little to no anticipating motions.

Role and Examples: Take Donkey Kong (1981), where Mario essentially teleports from sprinting into a jumping stance without first crouching or bending his knees when the user commands him to do so. Mario runs one frame and is in mid-air the next; there is no specific "pre-jump" sequence. In a fast-paced arcade game where input lag might result in death, this instantaneous transition makes sure that the controls seem quick and sharp. Another example is Pac-Man shifting direction. When the player tilts the joystick at an intersection, Pac-Man just turns his circular form to the new orientation, pivoting to the new direction without any progressive turning motion. Any hesitation in turning could have frustrated players or caused a collision with a ghost, so the animation (such as it is) happens instantly. The ghosts in Pac-Man likewise flip their direction on a dime when their AI targets a new direction – their eyes instantly point the other way without any slow rotation.

Visual Feedback through Flashing and Color

Definition: Flashing, blinking, or colour changes were common animation feedback techniques in early games. Due to frame constraints, developers had to use quickly changing graphics to indicate events or state changes when sprites couldn't be properly drawn into intricate motions. To draw the player's attention and indicate that something has happened, for example, an opponent suffering damage, a character briefly becoming invincible, or an impending danger, this concept calls for the use of brief flashes, inversions, or palette switches. Blinking basically evolved into a "cheap, eye-catching form of pseudo-animation" in the style of arcade games.

Role and Examples: One well-known example is Pac-Man, where the ghost adversaries become blue (signalling vulnerability) when the player consumes a power pellet. In quick succession, the ghosts glow blue and white as the power-up's effect is set to fade. This flashing

gives the player an immediate notice that the ghosts are going to transform back into their hazardous form. Such consistent visual cues satisfy the player's psychological need for 'safety' and predictability, ensuring that the game environment responds logically to game states (Mengi, 2025). The flashing animation effectively conveys a suspenseful countdown without using any additional sprites, it just alternates the current blue sprite with the white sprite. Flashing became a go-to device to depict events that animators in film might show with complex motions (like a character recoiling or changing appearance); here a rapid blink does the communicative work.

Silhouette Clarity and Contrast

Definition: In order to make moving parts visually appealing and easily discernible, early game animators prioritised great colour contrast and silhouette clarity due to the limited pixel count and poor resolution. Condensed into a very practical guideline, this idea is similar to the classic staging and appeal principles: a character or object's shape and contour should be instantly identifiable against the background, and the colours used should help it stand out to the audience. Arnheim's theory of visual perception supports this emphasis on simplified form, arguing that clarity often increases as visual elements are reduced to their essential structures (Arnheim, 1954). Because they cannot afford fine details, little pixel sprites are characterised by their general silhouette, or outline form. This necessity aligns with broader character design principles where visual elements like silhouette, posture, and color palette constitute the fundamental components defining a character's personality and function (Dervişoğlu, 2025). This emphasis on clear visual presentation echoes the staging principle articulated by Thomas and Johnston, adapted here to the constraints of low-resolution interactive environments (Thomas & Johnston, 1981). Similarly, backgrounds were frequently kept simple or black to avoid obstructing the moving sprites' appearance. In effect, this was *staging through contrast* – arranging the scene (or designing the characters) to maximize clarity.

Role and Examples: This idea is evident in Pac-Man's bleak persona and maze designs. The bright yellow circle that represents Pac-Man is a straightforward, striking form that contrasts sharply with the black labyrinth background. In addition to setting them out from Pac-Man and the maze walls (blue), the ghosts' solid pastel renderings of red, pink, cyan, and orange also help to set each one apart from the others. The ghosts are notable for having a definite silhouette shape, which is a roughly circular form with "legs" (a repetitive scalloped pattern) and a flat bottom border. Their vivid colours and silhouette make them readable on screen, even at 16x16 pixels.

Iconic Abstraction (Symbolic Animation)

Definition: Early games used an iconic or abstract approach to animation since their images lacked realism. Developers employed visual shortcuts and symbolic representations that players could understand rather than attempting to capture motions precisely as they occur in reality. Essentially, rather of being realistic, the animation in Atari games is frequently more abstract and iconified. The player's imagination filled in the blanks with simple images. According to this theory, a few pixels can evoke a feeling or action if they use well-known symbols or clichés (a skull flashing to represent death, or a heart icon floating up to represent love, for example). Early games communicated complicated concepts with little detail by expanding and recombining such visual idioms.

Role and Examples: The way Pac-Man "dies" is an obvious instance of symbolic animation. The game plays a brief animation of Pac-Man folding in on himself, his mouth opening all the way till he vanishes into nothing, rather than displaying Pac-Man being physically hurt by a ghost (something that is outside the graphics capabilities). In keeping with the game's whimsical tone, this abstract death scene feels like a humorous depiction of failure

rather than a genuine death (Pac-Man sort of implodes into a disappearing triangle). It's a classic method of saying "Pac-Man is gone" without using graphic or intricate animation.

Algorithmic Movement (Programmatic Animation)

Definition: Many of the motions in early video games were produced algorithmically by the game's physics and programming rather than being animated frame-by-frame by an artist. When an object's trajectory or behaviour is calculated in real-time instead of being drawn out as a series of sprite pictures, we refer to this as the Algorithmic Movement principle. This marks a significant shift from traditional animation, in which each frame of each movement, whether straight-ahead or pose-to-pose, is manually created. Once a sprite was produced, the program's ability to move it about the screen gave the game a lot of "animation"; in other words, the sprite was treated as a moving actor. In other words, the game engine itself contributes to animation via motion algorithms.

Role and Examples: Asteroids are a classic example. Each asteroid's rotation and the pieces' drift upon destruction are completely controlled by programming. The game's asteroids are vector forms, or line drawings, that rotate continually. However, unlike subsequent games, this rotation is determined by the software, which redraws the vector lines at each stage rather than using a collection of pre-drawn rotating sprites. Similarly, rather than an animator manually defining each piece's journey, a basic physics algorithm (conservation of momentum, basically) determines the outward trajectories of giant asteroids when they split into smaller ones. Because the outcomes might change based on the precise collision, they seem dynamic and "alive."

After outlining the fundamental animation concepts that characterised the Atari and early arcade era, Iconic Abstraction, Frame Economy and Looping, Immediate Action, Visual Flashing Feedback, Silhouette Clarity, and Algorithmic Movement, we can observe how they made it possible for complex, intelligible action to arise from straightforward visuals. Each of these guidelines is designed to help overcome the medium's drawbacks, such as poor resolution, frame memory constraints, or interaction requirements. We will contrast these Atari-specific guidelines with the traditional Twelve Principles of Animation in the following section. This comparison will show which classical ideas were implemented in early video games, which were essentially changed, and which were completely inapplicable. We will also identify gaps that led to the new or revised principles we have proposed, thereby directly addressing how the principles for pixel-based, low-frame-rate animation diverge from the classical canon of animation principles.

Comparison to the Twelve Principles of Animation

Originally presented by Disney's Frank Thomas and Ollie Johnston in *The Illusion of Life* (1981), the Twelve Principles of Animation are frequently regarded as universal rules for improving the realism and attractiveness of animations. These consist of: Arcs, Secondary Action, Timing, Exaggeration, Solid Drawing, Appeal, Straight Ahead Action & Pose-to-Pose, Follow-Through & Overlapping Action, Squash and Stretch, and Anticipation. Using these principles to analyse ancient Atari games reveals that some of them are still valid or relevant, while others have been purposefully compromised owing to design and technology limitations. In many instances, a concept had to be reformulated specifically for the interactive medium or its spirit had to be attained by quite different ways in games.

The mapping in Table 1 was constructed through a deductive gap analysis, where each observed game mechanic was cross-referenced against Thomas and Johnston's (1981) original definitions. If a mechanical equivalent existed (e.g., 'Appeal'), it was retained; if the technical constraints rendered a principle impossible (e.g., 'Squash and Stretch'), it was categorized as

'absent' or 'modified.' Consequently, Table 2 was derived inductively by synthesizing the recurring design solutions that filled these gaps, thereby establishing a medium-specific set of principles. Below, we present a thorough side-by-side analysis of how the classic twelve principles are applied, or not, in Atari games. Each Disney principle's mapping to the Atari environment is summed up in Table 1, along with information on whether it was used, modified, or left out and why. A discussion of the main distinctions and their justifications follows.

Table 1: Traditional Animation Principles vs. Atari-Era Game Animation

Disney's Original Principle	Presence in Classic Atari Games	Atari Adaptation or Equivalent
1. Squash and Stretch <i>Objects change shape (squash flat or stretch long) to show weight and flexibility.</i>	Not applicable / Rarely used. Early games' sprites lacked the fine resolution necessary to display subtle stretching or squashing. Because hardware could neither scale or distort, an object's form was virtually fixed until a fresh sprite was used. Discrete frames were employed instead of continuous stretch in character death animations, such as Pac-Man. There was hardly any mention of elastic deformations for expressiveness.	No direct equivalent. Games employed several techniques to suggest impact or alteration in place of actual squash or stretch, such as flashing the sprite or utilising distinct "broken" sprites to suggest an impact (as in Asteroids pieces). Squash was frequently described by sound rather than visuals, or left to the player's imagination.
2. Anticipation <i>A small preparatory action precedes a major action, cueing the audience.</i>	Intentionally kept to a minimum. In Atari games, the majority of activities start as soon as you enter them. Since a delay would impair responsiveness, there are essentially no anticipation frames before leaps, movements, or strikes. Mario in Donkey Kong, for instance, does not squat before jumping; instead, the move is instantaneous. Players accepted this absence as the standard in games, even if it sometimes make acts seem sudden.	Swapped out for "Immediate Action." The antithesis of anticipation, game animators made sure the character responded on the same frame as the input. With this Immediate Action method, player control takes precedence above visual reality. Galloway's conception of gaming as an action-based medium further reinforces this prioritization of performative responsiveness over representational fidelity (Galloway, 2006). Typically, non-movement signals like flashing or sound were used to express any "anticipation" required for gameplay (such as warning before an enemy assault) instead of a character winding up.
3. Staging <i>Clear presentation of an idea; ensure each action is readable, via composition, lighting, etc.</i>	In games, staging is accomplished by using separate sprite designs, strong contrast, and basic backgrounds instead of dramatic camera angles (traditional games had a fixed perspective). The screen serves as the "stage," and visual clutter must be avoided to preserve clarity. For clarity, Pac-Man's labyrinth, for instance, has bright characters on a dark background. Design time staging was crucial because there isn't much dynamic staging (no cuts or zooms).	Atari games use colour contrast and distinct silhouettes to set the scene. As level designers make sure crucial components are high contrast and centred where necessary, the staging concept endures (e.g., Donkey Kong's level layouts attract the attention to the ape and Pauline at the top). Because of the immobile camera, creators had to "stage" their work using backdrop and sprite design decisions.

<p>4. Straight Ahead & Pose-to-Pose <i>Two approaches to crafting animation: straight-ahead (drawing frame by frame sequentially) vs. pose-to-pose (drawing key poses and then in-betweens).</i></p>	<p>Pose-to-Pose (Keyframes only) dominant. Due to memory constraints, game animations were made in a pose-to-pose manner, meaning that just the important postures were depicted. Frequently, there were no in-between frames. For instance, a running sequence may have both "left foot forward" and "right foot forward" positions, with no in between.</p>	<p>Key Frame Economy. The Frame Economy idea is essentially this: indicate motion with the fewest feasible key positions. When the game engine interpolates movement, it offers something similar to straight-ahead motion (for example, moving a sprite a few pixels every frame might be seen as the computer performing straight-ahead animation). Artists, meanwhile, worked almost exclusively pose-to-pose, looping and defining just the crucial frames of a movement.</p>
<p>5. Follow-Through & Overlapping Action <i>Parts of the body or secondary elements continue moving after the main action stops (e.g., a coat swishes after a stop).</i></p>	<p>Largely absent. Characters in early games typically lacked following attachments that could continue motion or independent limb mechanics. In games, motions tend to halt abruptly when they finish (for gaming accuracy). Pac-Man's sprite, for instance, instantly comes to a closed-mouth halt when he stops moving, no overshoot or bounce.</p>	<p>No direct equivalent. The concept of follow-through was sacrificed for responsiveness and simplicity. Nonetheless, there was some overlapping action that happened subtly through game mechanics, such as in Asteroids, where debris keeps drifting after a ship explodes, a form of physics-governed follow-through. However, the images usually reset rapidly. Games employed distinct effects instead of overlapping animations. For example, an adversary may vanish and trigger an explosion animation, which serves as a follow-through sequence.</p>
<p>6. Slow In and Slow Out <i>Objects gradually accelerate into motion and decelerate out of motion (easing).</i></p>	<p>Sprite animation seldom exhibits this. There are no painted easing frames in Atari games, therefore movements often begin and terminate suddenly at a steady pace. In Space Invaders, for instance, an invader walks in predetermined steps without accelerating. Some games did, however, replicate acceleration through game mechanics; for example, in Asteroids, the longer you push drive, the quicker the spacecraft flies; this is a physics simulation rather than an animated ease.</p>	<p>If at all, handled by game logic. Easing was a result of mechanics rather than an animation technique in and of itself in early games. The sprite's motion displayed slow in/out if the game had gravity or momentum (for example, a rolling barrel may progressively slow on a flat surface because of friction programmed in).</p>
<p>7. Arcs <i>Natural actions tend to follow arched trajectories rather than straight lines (e.g., arm swing).</i></p>	<p>Through movement pathways, partially existent. In early games, characters and missiles frequently travelled in arcs, but these arcs weren't rendered frame-by-frame; instead, they were produced by physics or pre-programmed pathways. For example, the barrels roll down in arcing trajectories (they fall from ledges in a parabolic trajectory) and Mario's leap in Donkey Kong follows a rough arc</p>	<p>Physics makes it implicit. Although animators did not specifically apply the arcs theory, game physics systems did offer arcs in movement when appropriate (gravity for leaps, etc.). Arcs were purposefully avoided when motion has to be strictly linear for gameplay (such as a laser fired in a straight path).</p>

	since gravity affects his vertical location each frame.	
8. Secondary Action <i>An additional action that complements the main action, adding more life (e.g., a character's hair blows while they run).</i>	Minimum to none. Characters in Atari games usually only have one action at a time due to sprite constraints. Rarely were there additional moving pieces to animate in a secondary manner. For instance, there are no additional actions in Pac-Man; he only moves; there is no distinct animation for a prop or an emotion.	No exact counterpart. Much of the depth that secondary acts bring to a picture was lost. In a few instances, secondary action manifested as distinct, basic animations. For instance, the character Donkey Kong occasionally stops to pound his chest as barrels continue to roll; this is a secondary action to the continuous danger. However, it is not a continuous overlapping animation; rather, it is programmed independently.
9. Timing <i>The number of frames and the speed of action, which affects weight and mood.</i>	Present, but dictated by gameplay and hardware. In games, timing is important, but it also affects gaming complexity and aesthetics. In animation, timing is used to evoke emotion or weight; in video games, timing is frequently determined by technological constraints or physics. For instance, the game's loop speed is closely related to how quickly the aliens in Space Invaders move and animation; notably, as aliens are eliminated, the processor may update more quickly, causing the remaining aliens to move more quickly.	Timing is driven by gameplay. Timing in Atari games is mostly determined by the system clock and game rules. An opponent could update its sprite every two game ticks, for example, although the actual timing may vary depending on the game state (like in Space Invaders). Animators (or programmers) specify a basic frame rate for animations.
10. Exaggeration <i>Amplifying movements or features for cartoon effect; make actions more extreme for clarity or emotion.</i>	Limited in mobility, present in design. Early game art was heavily influenced by exaggeration; due to the lack of detail, characters' characteristics (such as Pac-Man's enormous mouth, Mario's broad nose and moustache, and the ghosts' wide eyes) were exaggerated to convey individuality and emotion. However, due of the limited number of frames, movements could not be excessively emphasised in a drawn sense.	Highlighted with visuals and effects. Exaggeration was accomplished in various ways because the animation frames themselves were constrained. As said, one way to highlight a character's core (appeal and recognisability) is by giving them bigger or simpler characteristics.
11. Solid Drawing <i>Applying fundamental drawing skills, giving objects volume and weight, avoiding distortions.</i>	Not literally relevant. Making 2D drawings appear consistent and three-dimensional is known as "solid drawing." It was very difficult to achieve genuine volume or perspective in the pixel graphics of Atari games.	An iconic portrayal. The Iconic Abstraction concept effectively takes its place. Atari games used straightforward, understandable shapes in place of strong, realistic drawings. The objective was to develop an emblem that embodies the persona rather than to replicate reality.
12. Appeal <i>Quality that makes a character design and movements interesting and likable.</i>	Highly prevalent. Characters from Atari games are frequently quite appealing despite (or because of) their simplicity. Clean, appealing designs that would be endearing at	Appeal through Simplicity. Bright colours, recognisable characters, and strong, straightforward forms were used to make early games appealing. Abstract forms were

	low resolution were the designers' main concern. For example, Pac-Man was purposefully designed to be a charming, spherical critter that appeals to people because it is straightforward and amiable.	frequently anthropomorphised by them (Pac-Man is just a circle with a wedge mouth, but it's cute).
--	---	--

Discussion

From the above comparison, it's clear that many of Disney's classic principles had to be reinterpreted for early video games. The technological realities of animation during the Atari period were essentially incompatible with concepts like Squash and Stretch, Anticipation, Follow-through, Slow In/Out, and Secondary Action. Rather than being a result of animators' inattention, these concepts were intentionally adapted to the constraints of the technology and the interactive medium. Developers overcame the issue of not being able to incorporate intricate overlapping motions or squash and stretch by employing other techniques, including sound effects or screen shake, to suggest impact in areas that were visually impossible to compress.

On the other hand, certain values persisted or even gained more significance. Because a player had to be able to quickly analyse the game screen in order to make judgements, staging and clarity were crucial, maybe even more so than in a movie. As seen by our Atari principles like Silhouette Clarity, this resulted in a strong emphasis on high contrast, silhouette clarity, and simple visual design in Atari games. Timing was still crucial, but it was adjusted more for gaming difficulty and feedback than for expressing the nuances of weight. One notable example of how timing shifts may produce emotional intensity is the Space Invaders speed-up, which originated as a technical oddity and evolved into a game mechanic. Wolf similarly notes that increasing tempo in early arcade games functioned as a rhythmic device that heightened tension and player anxiety over time (Wolf, 2001). This is similar to how an animator would utilise timing to generate drama. In that sense, the game inadvertently followed the principle of using timing to heighten excitement, albeit through code rather than drawn frames.

Exaggeration and Appeal also persisted, demonstrating that it was advantageous to make things a little gaudy or endearing in terms of design, even with a little number of pixels. Just as packaging design operates as a visual proxy for scent to shape consumer expectations (Torun, 2025), early game sprites served as visual proxies for complex actions and personalities. For example, the ghosts in Pac-Man have exaggerated eye movements (their pupils always look in the direction they're moving, a simple trick, but it gives them a bit of personality and informs gameplay). They also have unique colours and names that convey exaggerated traits (fast, shy, etc.), which add appeal without requiring complex animation. This shows that early games still adhered to certain classic animation principles, such as giving characters a distinct personality and an eye-catching appearance, although in a more understated way.

Therefore, it is possible to see the principles we particularly specified for Atari games in the preceding section as either new principles required by the new medium or modifications of classic concepts. For example, Immediate Action, which is designed for interaction, is basically Anticipation's opposite. Frame Economy & Looping is a novel concept that was only inspired by memory limitations and the notion of continually cycling frames in gameplay; it has no direct Disney equivalent. Flashing Visuals Feedback is essentially a new method of expressing state changes in the video game medium, however it shares similarities with staging (attracting attention) and exaggeration (dramatic impact). Another new paradigm is Algorithmic Movement, where some "animation" is left to physics and programming while in traditional animation, movements are created by artists.

To clearly enumerate the revised/new principles suited for pixel-based, low-frame-rate animation, we summarize the set of Atari-era principles and how they contrast with or replace

the classical principles (see Table 2). Our suggested framework for comprehending early video game animation is this new set, which takes into consideration the results of the previous comparison.

Table 2: Revised/New Animation Principles for Early Video Games vs. Classical Principles

Atari-Era Principle (Proposed)	Relation to Classical Principle	Description (Early Game Context)
Frame Economy & Looping (New)	<i>(No direct classical equivalent)</i>	For continuous activity, use as few frames as feasible and repeat them in loops. Results from memory constraints; in contrast, traditional animation may make use of a large number of original drawings. Motion cycles are produced by looping 2–8 frames in games like <i>Pac-Man</i> and <i>Space Invaders</i> .
Immediate Action (No Anticipation) (Revised Anticipation)	<i>Anticipation (inverted)</i>	Eliminate or drastically cut down on expectation to enable a prompt reaction to input. Actions (such instant leaps or orientation changes) happen instantly instead than waiting for a wind-up. guarantees responsive gaming, whereas anticipation in a movie guarantees genuine weight.
Visual Flashing Feedback (New)	<i>Staging/Exaggeration (alternative method)</i>	Use blinking or flashing colours or sprites to draw attention to events and convey messages. used for hits, power-ups, and cautions (like the flashing blue/white ghosts in <i>Pac-Man</i>). compensates for the lack of complex motion by using high-frequency visual shifts to indicate state changes.
Silhouette & Contrast Clarity (Revised Staging/Appeal)	<i>Staging & Appeal (refined)</i>	Make characters and settings as readable as possible by using vivid colours and sharp outlines against backgrounds with a lot of contrast. This guarantees that on low-resolution screens, the activity is visible. It is an adaption of appeal (simple, appealing design) and staging (clear presentation) for pixel art.
Iconic Abstraction Solid Drawing/Exaggeration (Revised Drawing/Exaggeration)	<i>Solid Drawing (opposite approach); also Exaggeration</i>	Give up actual detail in favour of flat, symbolic, and straightforward images. Motions and characters are abstracted (for example, the explosion of Asteroids or <i>Pac-Man</i> 's demise are symbolic sequences). This emphasises iconic 2D representation in place of the requirement for solid 3D drawing.
Algorithmic Movement (New)	<i>Straight Ahead/Pose-to-Pose (new dimension)</i>	Use physics and game code to create movement between important stances. Instead of animators creating each frame, the computer moves sprites along straight or curved trajectories in real time (e.g., projectile arcs,

			gravity, and invasion pace). gives animation a procedural component in contrast to classical animation's entirely hand-crafted frames.
Gameplay-Driven (Revised Timing)	Timing	<i>Timing (recontextualized)</i>	Adapt animation durations and speeds to technological limitations and gameplay needs. For example, tying character animation speed to movement speed (Pac-Man) or raising animation tempo as difficulty rises (Space Invaders). In the context of the game, timing is important for difficulty and feedback in addition to weight and expressiveness.
Audio-Visual (Supplementary new)	Synergy	<i>Secondary Action (in a broad sense)</i>	(Sound is frequently utilised to enhance limited animation; for example, the "waka-waka" sound synchronised with Pac-Man's mouth frames gives the motion a more complete impression.) Early games handle sound effects almost as an extension of animation, even though they are not strictly a visual principle. This provides an audio "animation" of events to make up for the absence of secondary visible actions. (The upbeat chomping sound of Pac-Man or the soaring beat of Space Invaders provide emotional clues that are absent from pictures.)

On the right, they are contrasted with similar classical principles. Some are completely new (Frame Economy, Flashing Feedback, Algorithmic Movement), while others are inversions or refocuses (Anticipation → Immediate Action, Timing → Gameplay timing). When combined, they meet the requirements of pixel-based, low-frame-rate animation that are not entirely met by the conventional Twelve Principles. This research makes it clear that early game animation is a special fusion of algorithm and art. While game developers created a new set of rules to make sure their works were entertaining, useful, and understandable within strict guidelines, traditional animators would have blanched at the idea of breaching conventions like anticipation or overlapping action. These Atari-era ideas foreshadowed contemporary minimalism and pixel-art game design in many respects, when developers purposefully operate within constrained parameters to create a unique look and feel. The ideas mentioned above are still relevant today. For instance, independent game creators still discuss "game feel," which is strongly tied to Immediate Action and Gameplay Timing, and pixel art readability, which is basically Silhouette Clarity, as crucial components of a successful retro-style game. The originality of this research lies in its formulation of a distinct theoretical framework that categorizes these unique constraints not as technical deficits, but as a deliberate aesthetic system. By systematically defining concepts such as 'Algorithmic Movement' and 'Immediate Action,' this study provides a novel vocabulary for analyzing early game history, bridging a specific gap between classical animation theory and interactive game design.

Conclusion

Classic Atari games demonstrate that compelling animation can arise from remarkably limited resources by adhering to a set of principles adapted to their medium. Our analysis

identified several core principles of early video game animation – including Frame Economy, Immediate Action, Flashing Feedback, Silhouette Clarity, Iconic Abstraction, and Algorithmic Movement – which allowed games like *Pac-Man*, *Space Invaders*, *Asteroids*, and *Donkey Kong* to convey action and personality far beyond what their pixel count might suggest. These principles ensured that every pixel was used purposefully: characters were instantly recognizable, motions were clear and responsive, and feedback was immediate. We discovered that, although some of Disney's original Twelve Principles of Animation were still valid in spirit (such Timing and Appeal), many of them were either completely different or inapplicable in the context of interactive 8-bit graphics. Importantly, the limitations of early hardware and the needs of real-time gaming gave rise to new principles, a "grammar" of game animation, that gave priority to responsiveness, clarity, and astute visual communication above the entire spectrum of traditional animation approaches.

The distinctions highlight how interactive animation and linear animation vary from one another. Interactivity was paramount in early video games. The Immediate Action concept, which superseded the more dramatic build-ups preferred in movies, was born out of the necessity for the game to recognise player input quickly. Game makers' inability to create intricate frames led to the adoption of flashing colours and basic loops to indicate events, demonstrating how necessity became the mother of innovation. It's interesting to see that some of these early game strategies have held up over time. The visual appeal of chiptune-era effects and pixel graphics is still praised today, and contemporary game designers frequently purposefully use the Atari era's guiding principles to create a "retro feel." For instance, a modern indie platformer might enforce limited animation frames and snappy, anticipation-free controls to capture the spirit of an old arcade game – essentially applying the very principles we discussed, but by choice rather than necessity.

This study also reveals that the Twelve Principles of Animation are not a one-size-fits-all doctrine. Animators must carefully choose which principles to adhere to, which to alter, and which to disregard while creating video games, particularly ones that are limited by technological constraints. For instance, we saw that Atari games lacked Squash, Stretch, and Follow-through, but these were mostly accounted for by other design features (sound, screen shaking, etc.) to guarantee that the core of contact or motion was still communicated. However, Appeal proven to be universal, demonstrating that even a little number of pixels placed correctly may produce an attractive character, proving the timeless nature of that specific idea.

Analysing Atari game animation principles enhances our knowledge of animation and game design from an academic standpoint. It emphasises how contextual animation is, with the best practices for expressing motion and emotion relying on the affordances and constraints of the medium. Instead of being completely pre-scripted and refined, animation in early games had to be systematic and modular, working in real time. Both historical appreciation and modern practice in limited settings (such as information displays that prioritise speed and clarity or mobile games with basic visuals or icon design) might benefit from the concepts summarised here.

To sum up, animators learnt new techniques to "cheat" the eye and keep the player interested from vintage Atari games. They demonstrated how to effectively use repetition, contrast, player creativity, and even music to create dynamic animation without sacrificing accuracy. The pixel-era animation concepts are an example of inventiveness in the face of limitations. This shift exemplifies Manovich's (2001) principle of 'numerical representation,' where the underlying mathematical structure of the code is not just a technicality, but the primary force shaping the visual language of the medium. By showing that the illusion of life in interactive media is produced not just by the way an item is drawn but also by how it reacts to the player and the game's rules, they broaden the body of knowledge in animation. By

creating their own playbook of animation principles that still have an impact on game artists and designers today, early game developers were able to provide visually comprehensible, expressive, and enjoyable experiences while working with kilobytes and pixels. Future research could expand this theoretical framework to analyze how these specific animation principles evolved during the transition to the 16-bit era and early 3D gaming. Additionally, empirical studies investigating the psychological impact of 'Immediate Action' and 'Algorithmic Movement' on player immersion and game feel would provide valuable insights for both game historians and modern designers.

References

- Arnheim, R. (1954). *Art and visual perception*. University of California Press.
- Bishko, L. (2014). *Animation principles and Laban movement analysis: Movement frameworks for creating empathic character performances*.
- Bogost, I. (2007). *Persuasive games: The expressive power of videogames*. MIT Press.
- Bordwell, D. (1985). *Narration in the fiction film*. University of Wisconsin Press.
- Dervişoğlu, B. (2025). Dijital oyun geliştirilmesinde karakter tasarım sürecinde yapay zekâ kullanımına ilişkin bir öneri. *ARTS*, 15, 215-237. <https://doi.org/10.46372/arts.1715063>
- Galloway, A. R. (2006). *Gaming: Essays on algorithmic culture*. University of Minnesota Press.
- Ghani, D. B., Ishak, S. B. (2012). Relationship between the art of Wayang Kulit and Disney's twelve principles of animation (English version). *Revista de Cercetare si Interventie Sociala*, 37, 162–179.
- İşik, S. (2025). Sanat, Gelenek ve Geleneksel Sanat(lar)ın Metafiziği. *Gaziantep University Journal of Social Sciences*, 24(2), 493–507. doi:10.21547/jss.1626222
- İzer, A., Ürkmez, B., Başer Nejat, S. ve İşçi, T. (2025). *Tipo baskının Türkiye serüveni üzerine bir araştırma*. PA Paradigma Akademi Yayınları.
- Juul, J. (2005). *Half-real: Video games between real rules and fictional worlds*. MIT Press.
- Manovich, L. (2001). *The language of new media*. MIT Press.
- Mengi, V. D. (2025). Reimagining game design through Maslow's hierarchy of needs. *Manas Sosyal Araştırmalar Dergisi*, 14 (Educational sciences supplementary issue), 98-112. <https://doi.org/10.33206/mjss.1669819>
- Peguet, J. (2022). *Secrets of the animator* (1st ed.). CRC Press. <https://doi.org/10.1201/9780429330605>
- Peirce, C. S. (1931–1958). *Collected papers of Charles Sanders Peirce*. Harvard University Press.
- Suyadi, N., Zaki, A., Sitepu, A., Andrea, K., Ikhwan, A. (2023). Penerapan 12 prinsip animasi dan motion graphics dalam multimedia. *Jurnal Sains dan Teknologi (JSIT)*, 3(1), 1–13. <https://doi.org/10.47233/jsit.v3i1.446>
- Swink, S. (2008). *Game feel: A game designer's guide to virtual sensation* (1st ed.). CRC Press. <https://doi.org/10.1201/9781482267334>
- Thesen, T. (2020). *Reviewing and Updating the 12 Principles of Animation*, 15, 276-296. <https://doi.org/10.1177/1746847720969919>.
- Thomas, F., & Johnston, O. (1981). *The illusion of life: Disney animation*. Disney Editions.
- Torun, İ. (2025). The visual scent: Graphic and typographic representations in Turkish cologne packaging. *Sanat ve Tasarım Dergisi*, (15-Özel sayı), 74–98. <https://doi.org/10.20488/sanattasarim.1803569>
- Widadijo, W. (2020). 12 prinsip animasi dalam serial "Adit & Sopo Jarwo". *Aksa: Jurnal Seni dan Desain*, 1(1), 70–85. <https://doi.org/10.37505/aksa.v1i1.7>
- Williams, R. (2009). *The animator's survival kit*. Expanded edition, First American expanded paperback edition. Faber and Faber.
- Wolf, M. J. P. (2001). *The medium of the video game*. University of Texas Press.