	Gazi University	
	Journal of Science	
	http://dergipark.gov.tr/gujs	

On the Order of Approximation of Unbounded Functions by the Modified Rational type Baskakov Operators

Çiğdem ATAKUT ${ }^{1}$, İbrahim BÜYÜKYAZICI ${ }^{2, *}$
${ }^{1}$ Ankara University, Faculty of Science, Department of Mathematics, Tandogan 06100, Ankara, Turkey.
${ }^{2}$ Ankara University, Faculty of Science, Department of Mathematics, Tandogan 06100 , Ankara, Turkey.

Article Info

Received: 25/07/2017
Accepted: 14/03/2018

Keywords

Baskakov type operators Modulus of continuity Order of approximation

Abstract

In the present paper, we give a generalization of rational type Baskakov operators. We obtain the order of approximation of continuous functions having polynomials growth at infinity by using the modulus of continuity and prove the theorem on weighted approximation on all positive semi-axis for these operators.

$$
L_{n}^{\alpha_{n}, \beta_{n}}(f ; x)=\frac{1}{\varphi_{n}\left(\alpha_{n} x\right)} \sum_{k=0}^{\infty} \frac{\varphi_{n}^{(k)}(0)}{k!}\left(\alpha_{n} x\right)^{k} f\left(\frac{k}{\beta_{n}}\right), x \geq 0
$$

and by simple calculation one have,

$$
\begin{aligned}
L_{n}^{\alpha_{n}, \beta_{n}}(1 ; x) & =1, \\
L_{n}^{\alpha_{n}, \beta_{n}}(t ; 1) & =\frac{\alpha_{n}}{\beta_{n}} x \frac{\varphi_{n}^{\prime}\left(\alpha_{n} x\right)}{\varphi_{n}\left(\alpha_{n} x\right)}, \\
L_{n}^{\alpha_{n}, \beta_{n}}\left(t^{2} ; x\right) & =\frac{\alpha_{n}^{2}}{\beta_{n}^{2}} x^{2} \frac{\varphi_{n}^{\prime \prime}\left(\alpha_{n} x\right)}{\varphi_{n}\left(\alpha_{n} x\right)}+\frac{\alpha_{n}}{\beta_{n}^{2}} x \frac{\varphi_{n}^{\prime}\left(\alpha_{n} x\right)}{\varphi_{n}\left(\alpha_{n} x\right)} .
\end{aligned}
$$

Baskakov type operators and their generalizations were investigated by many author (see, [1,2-7]). In [1], the authors estimated the order of approximation for the operators defined by (1) and obtained a Voronovskaja type asymptotic formula and pointwise convergence in simultaneous approximation in the case $b_{n}=b$. In the present paper we study convergence properties of the of the operators $L_{n}^{\alpha_{n}, \beta_{n}}$ in polynomial weighted spaces when the interval of convergence grows as $n \rightarrow \infty$. We will obtain an estimate for these operators on any finite interval by using the modulus of continuity of function f and will prove the theorem on weighted approximation on all positive semi-axis.

Note that, as the classical Korovkin theorem [8], the weighted Korovkin theorem(Theorem 1.) proved by A. D. Gadjiev in $[9,10]$ plays an important role for weighted approximation in the weighted spaces and we will use special case of this theorem.

Let $\sigma_{m}(x)=\left(1+x^{2 m}\right)^{-1}(m \in \mathrm{~N})$ and $B_{2 m}[0, \infty)$ be the space of all functions, satisfying the inequality $\sigma_{m}(x)|f(x)| \leq M_{f}, \quad x \geq 0$
where M_{f} is a constant depending on function f. We denote by $C_{2 m}[0, \infty)$ the spaces of all continuous functions belonging to $B_{2 m}[0, \infty)$ and denote by $C_{2 m}^{*}[0, \infty)$ the spaces of functions belonging to $C_{2 m}[0, \infty)$ such that $\lim _{x \rightarrow \infty} \sigma_{m}(x) f(x)<\infty$.
Theorem 1.([9,10]) Let the sequences of linear positive operators L_{n}, acting from $C_{2 m}[0, \infty)$ to
$B_{2 m}[0, \infty)$ satisfy the conditions:
$\lim _{n \rightarrow \infty}\left\|L_{n}\left(t^{\nu} ; x\right)-x^{\nu}\right\|_{C_{2 m}[0, \infty)}=0, \quad v=0, m, 2 m$
where
$\|f\|_{C_{2 m}[0, \infty)}=\sup _{x \geq 0} \sigma_{m}(x)|f(x)|$
then for any function $f \in C_{2 m}^{*}[0, \infty)$

$$
\lim _{n \rightarrow \infty}\left\|L_{n}(f)-f\right\|_{C_{2 m}[0, \infty)}=0
$$

and there exists a function $f^{*} \in C_{2 m}[0, \infty) / C_{2 m}^{*}[0, \infty)$ such that

$$
\lim _{n \rightarrow \infty}\left\|L_{n}\left(f^{*}\right)-f^{*}\right\|_{C_{2 m[0, \infty)}}>1
$$

holds.
As we shall see in the next section, we will obtain approximation properties for the operators (1) on whole positive semi-axis by using this theorem and the order of approximation on any finite interval will be given by the modulus of continuity denote by: for $f \in C_{2 m}[0, \infty)$
$\omega_{\lambda}(f ; \delta)=\sup _{t, x \in[0, \lambda]}\{|f(t)-f(x)|:|t-x| \leq \delta\}$.
A well-known properties of modulus of continuity is: if f is uniformly continuous on $[0, \lambda]$, then $\lim _{\delta \rightarrow 0} \omega_{\lambda}(f ; \delta)=0$.

2. AUXILIARY RESULTS

To obtain approximation properties of the operators defined by (1), we need some useful properties of these operators given by following Lemmas.
Lemma 1. For any $m \in \mathrm{~N}$ and $x \in\left[0, b_{n}\right]$, one have
$L_{n}^{\alpha_{n}, \beta_{n}}\left(t^{m} ; x\right)=\phi\left(m, \alpha_{n}\right) x^{m}+\sum_{k=1}^{m-1} \frac{\psi_{k, m}(x)}{\beta_{n}^{k}}$
where $\psi_{k, m}(x) \quad(k=1,2, \ldots, m)$ is bounded function on any finite closed interval and $\lim _{n \rightarrow \infty} \phi\left(m, \alpha_{n}\right)=1$
Proof. We prove by using the induction method. It is easily seen that the result is true when $m=1$.
Now, suppose that (2) hold for any positive integer m. We shall show that the result (2) is true for $m+1$. For each m, choose an constant $a_{i}(i=1,2, \ldots, m)$ such that the equality

$$
\begin{equation*}
\left(\frac{k}{\beta_{n}}\right)^{m+1}=\frac{k(k-1) \ldots(k-m)}{\beta_{n}^{m+1}}+\sum_{i=1}^{m} \frac{a_{i}}{\beta_{n}^{m+1-i}}\left(\frac{k}{\beta_{n}}\right)^{i} \tag{3}
\end{equation*}
$$

holds. Therefore, by using (ii), (iv), (v) and (3) we obtain

$$
\begin{aligned}
L_{n}^{\alpha_{n}, \beta_{n}}\left(t^{m+1} ; x\right)= & \frac{1}{\varphi_{n}\left(\alpha_{n} x\right)} \sum_{k=0}^{\infty} \frac{\varphi_{n}^{(k)}(0)}{k!}\left(\alpha_{n} x\right)^{k}\left(\frac{k}{\beta_{n}}\right)^{m+1} \\
= & \frac{1}{\varphi_{n}\left(\alpha_{n} x\right)} \sum_{k=0}^{\infty} \frac{\varphi_{n}^{(k)}(0)}{k!}\left(\alpha_{n} x\right)^{k}\left\{\frac{k(k-1) \ldots(k-m)}{\beta_{n}^{m+1}}+\sum_{i=1}^{m} \frac{a_{i}}{\beta_{n}^{m+1-i}}\left(\frac{k}{\beta_{n}}\right)^{i}\right\} \\
= & \frac{1}{\beta_{n}^{m+1}} \frac{1}{\varphi_{n}\left(\alpha_{n} x\right)} \sum_{k=0}^{\infty} \frac{\varphi_{n}^{(k)}(0)}{k!}\left(\alpha_{n} x\right)^{k} k(k-1) \ldots(k-m) \\
& +\sum_{i=1}^{m} \frac{a_{i}}{\beta_{n}^{m+1-i}} \frac{1}{\varphi_{n}\left(\alpha_{n} x\right)} \sum_{k=0}^{\infty} \frac{\varphi_{n}^{(k)}(0)}{k!}\left(\alpha_{n} x\right)^{k}\left(\frac{k}{\beta_{n}}\right)^{i} \\
= & \frac{1}{\beta_{n}^{m+1}} \frac{1}{\varphi_{n}\left(\alpha_{n} x\right)} \sum_{k=0}^{\infty} \frac{\varphi_{n}^{(k+m+1)}(0)}{k!}\left(\alpha_{n} x\right)^{k+m+1}+\sum_{i=1}^{m} \frac{a_{i}}{\beta_{n}^{m+1-i}} L_{n}^{\alpha_{n}, \beta_{n}}\left(t^{i} ; x\right) \\
= & \left(\frac{\alpha_{n}}{\beta_{n}} x\right)^{m+1} \frac{\varphi_{n}{ }^{(m+1)}\left(\alpha_{n} x\right)}{\varphi_{n}\left(\alpha_{n} x\right)}+\sum_{i=1}^{m} \frac{a_{i}}{\beta_{n}^{m+1-i}} L_{n}^{\alpha_{n}, \beta_{n}}\left(t^{i} ; x\right) .
\end{aligned}
$$

setting $\alpha_{n}=\frac{\beta_{n}}{n}$ and using condition (v) we have

$$
\begin{aligned}
\phi\left(m+1, \alpha_{n}\right) & =\left(\frac{\alpha_{n}}{\beta_{n}}\right)^{m+1} \frac{\varphi_{n}{ }^{(m+1)}\left(\alpha_{n} x\right)}{\varphi_{n}\left(\alpha_{n} x\right)} \\
& =\frac{\varphi_{n}{ }^{(m+1)}\left(\alpha_{n} x\right)}{n^{m+1} \varphi_{n}\left(\alpha_{n} x\right)} \\
& =1+O\left(\frac{1}{n \alpha_{n}}\right) .
\end{aligned}
$$

so we can write,

$$
\begin{aligned}
L_{n}^{\alpha_{n}, \beta_{n}}\left(t^{m+1} ; x\right) & =\phi\left(m+1, \alpha_{n}\right) x^{m+1}+\sum_{i=1}^{m} \frac{a_{i}}{\beta_{n}^{m+1-i}} L_{n}^{\alpha_{n}, \beta_{n}}\left(t^{i} ; x\right) \\
& =\phi\left(m+1, \alpha_{n}\right) x^{m+1}+\sum_{i=1}^{m} \frac{a_{i}}{\beta_{n}^{m+1-i}}\left[\phi\left(i, \alpha_{n}\right) x^{i}+\sum_{k=1}^{i-1} \frac{\psi_{k, i}(x)}{\beta_{n}^{k}}\right]
\end{aligned}
$$

where each $\psi_{k, i}(x)(k=1, \ldots, i-1 ; i=1, \ldots, m)$ is bounded function. Since $\phi\left(i, \alpha_{n}\right) x^{i}$ is also a bounded function on any finite interval, we can also denote $\psi_{0, i}(x)=\phi\left(i, \alpha_{n}\right) x^{i}$. Then we have $L_{n}^{\alpha_{n}, \beta_{n}}\left(t^{m+1} ; x\right)=\phi\left(m+1, \alpha_{n}\right) x^{m+1}+\sum_{i=1}^{m} \frac{a_{i}}{\beta_{n}^{m+1-i}} \sum_{k=0}^{i-1} \frac{\psi_{k, i}(x)}{\beta_{n}^{k}}$.
On the other hand, by expanding the sum in the last equality, we get the following form:

$$
\begin{aligned}
L_{n}^{\alpha_{n}, \beta_{n}}\left(t^{m+1} ; x\right)= & \phi\left(m+1, \alpha_{n}\right) x^{m+1}+\frac{a_{1}}{\beta_{n}^{m}} \psi_{0,1}(x)+\frac{a_{2}}{\beta_{n}^{m-1}}\left(\psi_{0,2}(x)+\frac{\psi_{1,2}(x)}{\beta_{n}}\right)+\ldots+ \\
& +\frac{a_{m-1}}{\beta_{n}^{2}}\left(\psi_{0, m-1}(x)+\frac{\psi_{1, m-1}(x)}{\beta_{n}}+\ldots+\frac{\psi_{m-2, m-1}(x)}{\beta_{n}^{m-2}}\right) \\
& +\frac{a_{m}}{\beta_{n}}\left(\psi_{0, m}(x)+\frac{\psi_{1, m}(x)}{\beta_{n}}+\ldots+\frac{\psi_{m-1, m}(x)}{\beta_{n}^{m-1}}\right) \\
= & \phi\left(m+1, \alpha_{n}\right) x^{m+1}+\frac{a_{m} \psi_{0, m}(x)}{\beta_{n}}+\frac{a_{m-1} \psi_{0, m-1}(x)+a_{m} \psi_{1, m}(x)}{\beta_{n}^{2}}+\ldots+ \\
& +\frac{a_{1} \psi_{0,1}(x)+a_{2} \psi_{1,2}(x)+\ldots+a_{m} \psi_{m-1, m}(x)}{\beta_{n}^{m}}
\end{aligned}
$$

if we denote,

$$
\begin{aligned}
& \psi_{1, m+1}(x)=a_{m} \psi_{0, m}(x), \\
& \psi_{2, m+1}(x)=a_{m-1} \psi_{0, m-1}(x)+a_{m} \psi_{1, m}(x),
\end{aligned}
$$

$\psi_{m, m+1}(x)=a_{1} \psi_{0,1}(x)+a_{2} \psi_{1,2}(x)+\ldots+a_{m} \psi_{m-1, m}(x)$,
then we have
$L_{n}^{\alpha_{n}, \beta_{n}}\left(t^{m+1} ; x\right)=\phi\left(m+1, \alpha_{n}\right) x^{m+1}+\sum_{k=1}^{m} \frac{\psi_{k, m}(x)}{\beta_{n}^{k}}$
this establishes desired result and completes the proof of the lemma.

Lemma 2. The operator $L_{n}^{\alpha_{n}, \beta_{n}}$ maps from $C_{2 m}\left[0, b_{n}\right]$ to $B_{2 m}\left[0, b_{n}\right]$.
Proof. Let $f \in C_{2 m}\left[0, b_{n}\right]$ Then

$$
\begin{aligned}
\left\|L_{n}^{\alpha_{n}, \beta_{n}}(f)\right\|_{B\left[0, b_{n}\right]} & =\sup _{0 \leq x \leq b_{n}} \sigma_{m}(x)\left|L_{n}^{\alpha_{n}, \beta_{n}}(f ; x)\right| \\
& \leq \sup _{0 \leq x \leq b_{n}} \sigma_{m}(x) L_{n}^{\alpha_{n}, \beta_{n}}(|f| ; x) \\
& \leq M_{f} \sup _{0 \leq x \leq b_{n}} \sigma_{m}(x) L_{n}^{\alpha_{n}, \beta_{n}}\left(\left(1+t^{2 m}\right) ; x\right) \\
& \leq M_{f}\left[1+\sup _{0 \leq x \leq b_{n}} \sigma_{m}(x) L_{n}^{\alpha_{n}, \beta_{n}}\left(t^{2 m} ; x\right)\right] .
\end{aligned}
$$

Since $\psi_{k, m}(x)$ is bounded function, it can be shown easily that for all $k=1, \ldots, m-1$ the following inequality
$\left|\psi_{k, m}(x)\right| \leq C_{\psi}\left(1+x^{k}\right)$
where C_{ψ} is a constant depending on function $\psi_{k, m}$, holds. Then there exists an constant C such that $\sup _{0 \leq x \leq b_{n}} \sigma_{m}(x) L_{n}^{\alpha_{n}, \beta_{n}}\left(t^{2 m} ; x\right) \leq C$.
Therefore, we have
$\left\|L_{n}^{\alpha_{n}, \beta_{n}}(f)\right\|_{B\left[0, b_{n}\right]} \leq M_{f}(1+C)$.
This completes the proof of the lemma.

3. MAIN RESULTS

In this section, firstly we investigate the order of approximation of continuous function by the operator $L_{n}^{\alpha_{n}, \beta_{n}}$ defined by (1) on any finite interval of positive semi-axis.
Theorem 2. Let $f \in C_{2 m}\left[0, b_{n}\right]$. Then for all sufficiently large n, the inequality

$$
\left\|L_{n}^{\alpha_{n}, \beta_{n}}(f)-f\right\|_{C[0, \lambda]} \leq c_{f}(\lambda) \omega_{\lambda+1}(f ; \gamma(n, m))
$$

holds, where $\gamma(n, m)=\max \left\{\alpha(2 m, n)-2 \alpha(m, n)+\left.1\right|^{1 / 2 m}, \frac{1}{2 m \sqrt{n}}\right\}$
$c_{f}(\lambda)=6 M_{f}\left(1+\lambda^{m}\right)^{2} \frac{C_{f}^{2 m}(\lambda)}{\omega_{\lambda+1}(f ; 1)}+2$
and

$$
C_{f}^{2 m}(\lambda)=\max \left\{\sup _{0 \leq x \leq \lambda}\left(\sum_{k=1}^{m-1}\left|\psi_{k, 2 m}(x)-2 x^{m} \psi_{k, m}(x)\right|+\sum_{k=m}^{2 m-1}\left|\psi_{k, 2 m}(x)\right|\right)^{1 / 2 m}, \lambda\right\} .
$$

Proof. Clearly, for $x \in[0, \lambda]$ and $t \in(0, \infty)$ we can divide the $[0, \lambda] \times(0, \infty)$ into the two subsets as follows:

$$
\left.\left.\begin{array}{rl}
B_{1} & =\{(x, t): \\
B_{2} & =\{(x, t):
\end{array} 0 \leq x \leq \lambda, \lambda+1<t<\infty\right\}, 0<t \leq \lambda+1\right\} .
$$

Firstly, we consider $(x, t) \in B_{1}$. It is easily seen that

$$
\begin{aligned}
|f(t)-f(x)| & \leq|f(t)|+|f(x)| \\
& \leq M_{f}\left(2+t^{2 m}+x^{2 m}\right) \\
& \leq M_{f}\left(2+\left(t^{m}-x^{m}\right)^{2}+2 \lambda^{m}\left(t^{m}-x^{m}\right)+2 \lambda^{2 m}\right)
\end{aligned}
$$

since $x \leq \lambda$ and $t>\lambda+1$, we have $x^{m} \leq \lambda^{m}$ and $t^{m}>(\lambda+1)^{m}$, thus we get $t^{m}-x^{m}>1$. Using the this conclusion, we obtain

$$
\begin{align*}
|f(t)-f(x)| & \leq M_{f}\left(\left(1+\lambda^{m}\right)^{2}\left(t^{m}-x^{m}\right)^{2}+2\left(1+\lambda^{m}\right)^{2}\left(t^{m}-x^{m}\right)^{2}\right) \\
& \leq 3 M_{f}\left(1+\lambda^{m}\right)^{2}\left(t^{m}-x^{m}\right)^{2} \tag{4}
\end{align*}
$$

If $(x, t) \in B_{2}$, we get

$$
\begin{align*}
|f(t)-f(x)| & \leq \omega_{\lambda+1}(f ;|t-x|) \\
& \leq\left(1+\frac{|t-x|}{\delta_{n}}\right) \omega_{\lambda+1}\left(f ; \delta_{n}\right) . \tag{5}
\end{align*}
$$

by using (4) and (5), we have

$$
\begin{equation*}
|f(t)-f(x)| \leq 3 M_{f}\left(1+\lambda^{m}\right)^{2}\left(t^{m}-x^{m}\right)^{2}+\left(1+\frac{|t-x|}{\delta_{n}}\right) \omega_{\lambda+1}\left(f ; \delta_{n}\right) \tag{6}
\end{equation*}
$$

for any $t \geq 0$ and $0 \leq x \leq \lambda$. Now, by applying the operator $L_{n}^{\alpha_{n}, \beta_{n}}$ to both sides of (6) and, use Hölder's inequality to get

$$
\begin{aligned}
L_{n}^{\alpha_{n}, \beta_{n}}(|f(t)-f(x)| ; x) \leq & 3 M_{f}\left(1+\lambda^{m}\right)^{2} L_{n}^{\alpha_{n}, \beta_{n}}\left(\left(t^{m}-x^{m}\right)^{2} ; x\right) \\
& +\omega_{\lambda+1}\left(f ; \delta_{n}\right)\left(1+\frac{1}{\delta_{n}}\left[L_{n}^{\alpha_{n}, \beta_{n}}\left((t-x)^{2 m}\right)\right]^{1 / 2 m}\right)
\end{aligned}
$$

and using the inequality $(t-x)^{2 m} \leq\left(t^{m}-x^{m}\right)^{2}$, we have

$$
\begin{align*}
\left.L_{n}^{\alpha_{n}, \beta_{n}}| | f(t)-f(x) ; x\right) \leq & 3 M_{f}\left(1+\lambda^{m}\right)^{2} L_{n}^{\alpha_{n}, \beta_{n}}\left(\left(t^{m}-x^{m}\right)^{2} ; x\right) \\
& +\omega_{\lambda+1}\left(f ; \delta_{n}\right)\left(1+\frac{1}{\delta_{n}}\left[L_{n}^{\alpha_{n}, \beta_{n}}\left(\left(t^{m}-x^{m}\right)^{2}\right)\right]^{1 / 2 m}\right) \tag{7}
\end{align*}
$$

Now, we consider the term $L_{n}^{\alpha_{n}, \beta_{n}}\left(\left(t^{m}-x^{m}\right)^{2}\right)$. Using (2), one get

$$
\begin{aligned}
L_{n}^{\alpha_{n}, \beta_{n}}\left(\left(t^{m}-x^{m}\right)^{2}\right)= & \phi\left(2 m, \alpha_{n}\right) x^{2 m}+\sum_{k=1}^{2 m-1} \frac{\psi_{k, 2 m}(x)}{\beta_{n}^{k}} \\
& -2 x^{m}\left(\phi\left(m, \alpha_{n}\right) x^{m}+\sum_{k=1}^{m-1} \frac{\psi_{k, m}(x)}{\beta_{n}^{k}}\right)+x^{2 m} \\
\leq & \left|\phi\left(2 m, \alpha_{n}\right)-2 \phi\left(m, \alpha_{n}\right)+1\right| x^{2 m} \\
& +\frac{1}{\beta_{n}}\left[\left|\sum_{k=1}^{m-1} \psi_{k, 2 m}(x)-2 x^{m} \psi_{k, m}(x)\right|+\sum_{k=m}^{m-1}\left|\psi_{k, m}(x)\right|\right]
\end{aligned}
$$

hence,

$$
\sup _{0 \leq x \leq \lambda} L_{n}^{\alpha_{n}, \beta_{n}}\left(\left(t^{m}-x^{m}\right)^{2}\right) \leq\left|\phi\left(2 m, \alpha_{n}\right)-2 \phi\left(m, \alpha_{n}\right)+1\right| \lambda^{2 m}
$$

$$
+\frac{1}{\beta_{n}} \sup _{0 \leq x \leq \lambda}\left[\left|\sum_{k=1}^{m-1} \psi_{k, 2 m}(x)-2 x^{m} \psi_{k, m}(x)\right|+\sum_{k=m}^{m-1}\left|\psi_{k, m}(x)\right|\right]
$$

therefore,
$\left(\sup _{0 \leq x \leq \lambda} L_{n}^{\alpha_{n}, \beta_{n}}\left(\left(t^{m}-x^{m}\right)^{2}\right)\right)^{1 / 2 m} \leq C_{f}(\lambda)\left(\left|\phi\left(2 m, \alpha_{n}\right)-2 \phi\left(m, \alpha_{n}\right)+1\right|^{1 / 2 m}+\left(\frac{1}{\beta_{n}}\right)^{1 / 2 m}\right)$
where $C_{f}(\lambda)$ given as above. Setting $\delta_{n}=\max \left\{\phi\left(2 m, \alpha_{n}\right)-2 \phi\left(m, \alpha_{n}\right)+\left.1\right|^{1 / 2 m},\left(\frac{1}{\beta_{n}}\right)^{1 / 2 m}\right\}$, we see that $L_{n}^{\alpha_{n}, \beta_{n}}\left(\left(t^{m}-x^{m}\right)^{2}\right) \leq\left(\delta_{n} C_{f}(\lambda)\right)^{2 m}$ and $\lim _{n \rightarrow \infty} \delta_{n}=0$.
Using this result in (7),
$L_{n}^{\alpha_{n}, \beta_{n}}(\mid f(t)-f(x) ; x) \leq 3 M_{f}\left(1+\lambda^{m}\right)^{2}\left(\delta_{n} C_{f}(\lambda)\right)^{2 m}+2 \omega_{\lambda+1}\left(f ; \delta_{n}\right)$
and we have
$\left\|L_{n}^{\alpha_{n}, \beta_{n}}(f)-f\right\|_{C[0, \lambda]} \leq 3 M_{f}\left(1+\lambda^{m}\right)^{2}\left(\delta_{n} C_{f}(\lambda)\right)^{2 m}+2 \omega_{\lambda+1}\left(f ; \delta_{n}\right)$.
Since $\delta_{n} \rightarrow 0$ as $n \rightarrow \infty$, for sufficiently large n, we have $\delta_{n}^{2 m} \leq \delta_{n}$ and by using properties of the modulus of continuity $\delta_{n} \leq \frac{2}{\omega_{\lambda+1}(f ; 1)} \omega_{\lambda+1}\left(f ; \delta_{n}\right)$. Thus, from (8) we obtain the desired result which gives the proof.

In order to result on weighted approximation by operators (1) in whole semi-axis $[0, \infty)$, we have the following theorem:
Theorem 3. For any function $f \in C_{2 m}^{*}[0, \infty)$, we have
$\lim _{n \rightarrow \infty} \sup _{0 \leq x \leq b_{n}} \sigma_{m}(x)\left|L_{n}^{\alpha_{n}, \beta_{n}}(f ; x)-f(x)\right|=0$.
Proof. Recall that according to the theorem 1., we have to show that the conditions
$\lim _{n \rightarrow \infty}\left\|L_{n}^{\alpha_{n}, \beta_{n}}\left(t^{\nu} ; x\right)-x^{\nu}\right\|_{C_{2 m}[0, \infty)}=0, \quad v=0, m, 2 m$
hold. Obviously, the result is true for $v=0$. We will prove only for $v=m$, since the other case, for $v=2 m$, can be proven easily in a similar manner. Using (2) we can write

$$
\begin{aligned}
\left\|L_{n}^{\alpha_{n}, \beta_{n}}\left(t^{\nu} ; x\right)-x^{\nu}\right\|_{C_{2 m}\left[0, b_{n}\right]} & \leq\left|\phi\left(m, \alpha_{n}\right)-1\right| \sup _{0 \leq x \leq b_{n}} \sigma_{m}(x) x^{m}+\sup _{0 \leq x \leq b_{n}} \sum_{k=1}^{m-1} \sigma_{m}(x) \frac{\psi_{k, m}(x)}{\beta_{n}^{k}} \\
& \leq\left|\phi\left(m, \alpha_{n}\right)-1\right|+\frac{1}{\beta_{n}} \sup _{0 \leq x \leq b_{n}}^{m-1} \sum_{k=1}^{m} \sigma_{m}(x) \psi_{k, m}(x) .
\end{aligned}
$$

Since for all $k=1,2, \ldots, m-1,\left|\psi_{k, m}(x)\right| \leq C_{\psi}\left(1+x^{k}\right)$, we have $\sum_{k=1}^{m-1} \sigma_{m}(x) \psi_{k, m}(x) \leq C$. Therefore, we get

$$
\left\|L_{n}^{\alpha_{n}, \beta_{n}}\left(t^{\nu} ; x\right)-x^{\nu}\right\|_{C_{2 m}\left[0, b_{n}\right]} \leq\left|\phi\left(m, \alpha_{n}\right)-1\right|+\frac{C}{\beta_{n}}
$$

and this gives desired result.

CONFLICTS OF INTEREST

No conflict of interest was declared by the authors.

REFERENCES

[1] İspir, N. and Atakut, Ç., "Approximation by generalized Balazs type rational functions", Int. J. Comput. Numer. Anal., 4(3): 297-316, (2003).
[2] Gadjiev, A.D. and Atakut, Ç., "On approximation of unbounded functions by the generalized Baskakov operators", Trans. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 23(1): 33-42, (2003).
[3] Gairola, A.R., Deepmala and Mishra, L.N., "On the q- derivatives of a certain linear positive operators", Iranian Journal of Science \& Technology, Transactions A: Science, DOI 10.1007/s40995-017-0227-8, (2017).
[4] Gupta,V. and İspir N., "On the Bezier variant of generalized Kantorovich type Balazs operators", Appl. Math. Lett., 18(9): 1053-1061, (2005).
[5] İspir, N., "Rate of convergence of generalized rational type Baskakov operators", Mathematical and Computer Modelling, 46: 625-631, (2007).
[6] Mishra, V.N., Khatri, K., Mishra, L.N. and Deepmala, "Inverse result in simultaneous approximation by Baskakov-Durrmeyer-Stancu operators", 2013:586, 11 pages, (2013).
[7] Mishra, V.N., Sharma, P. and Mishra, L.N., "On statistical approximation properties of q-Baskakov-Szasz-Stancu operators, Journal of Egyptian Mathematical Society, 24(3): 396-401, (2016).
[8] Altomare, F. and Campiti, M., Korovkin-type approximation theory and its applications, De Gruyter; Reprint 2011 ed. Edition, New York, 640 pages, (1994).
[9] Gadjiev, A.D., "A problem on the convergence of a sequence of positive linear operators on unbounded sets, and theorems that are analogous to P. P. Korovkin's theorem." (Russian), Dokl. Akad. Nauk SSSR, 218: 1001-1004, (1974).
[10] Gadjiev, A. D., "Weighted approximation of continuous functions by positive linear operators on the whole real axis." (Russian), Izv. Akad. Nauk Azerb. SSR Ser. Fiz.-Tehn. Mat. Nauk, 5: 41-45, (1975).

