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Abstract –This study aims to improve product counting and quality control processes on the suspension system assembly line 

by utilizing the YOLO (You Only Look Once) algorithm and the Ultralytics library. Given the critical importance of suspension 

systems for vehicle control and passenger comfort, the accuracy of parts inspection on the production line holds paramount 

industrial significance. As reliance on operator discretion frequently leads to customer complaints and substantial financial 

losses, deep learning-based object detection models offer considerable potential to automate and accelerate these processes. In 

this context, the effectiveness of the YOLOv11 model in industrial parts inspection will be scientifically demonstrated in this 

work, not only through theoretical inferences but also via detailed experimental results and detailed performance comparisons 

with previous models. Our ultimate goal is to provide concrete contributions to enhancing production efficiency while ensuring 

the highest levels of product quality and reliability. This approach clearly showcases the transformative power of automation 

and artificial intelligence in modern manufacturing. 
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I. INTRODUCTION 

Suspension is a connection system that links a vehicle's 

wheels and regulates their relationship with the road surface. 

A good suspension enhances both the vehicle's control and 

driving safety while ensuring passenger comfort [1]. 

Components in this system, such as the Z-rod, tie rod, swing 

arm, and ball joint, are critical in the manufacturing process. 

Accurate counting of products on the assembly line is crucial 

for detecting any deficiencies or excesses in production. If the 

detection and inspection of products are left to the operator's 

discretion, it can lead to customer complaints and financial 

losses. Additionally, if product counting is done accurately, the 

detection and counting of product subcomponents can also be 

carried out in subsequent operations. In Figure 1, AYD 

production suspension parts are shown in red. 

 

 

Fig. 1. AYD Production Suspension Parts 

Initially introduced by Redmon et al. [2] as a revolutionary 

approach to real-time object detection, YOLO (You Only 

Look Once) is a deep learning model developed for real-time 

object detection. It is used to quickly detect and classify 

objects in images. Object counting involves the accurate 

detection and counting of specific objects through videos and 

camera feeds [3]. Subsequent iterations, such as YOLOv2 [4], 

YOLOv3 [5], and YOLOv4 [6], further advanced its 

capabilities, improving both speed and accuracy. In this 

process, YOLOv11 provides high efficiency and accuracy by 

utilizing state-of-the-art algorithms and deep learning 

capabilities. YOLOv11 quickly and accurately detects objects, 

particularly in complex scenarios like crowd analysis and 

surveillance. Thanks to its features, it excels in real-time 

applications and performs object counting both accurately and 

effectively. This enables high-precision operations in fields 

such as security monitoring, inventory management, and other 

areas that require object detection [7]. 

One of YOLO’s key features is its ability to detect all objects 

in an image in a single pass. This enhances the speed of the 

model. Object counting provides several benefits. Firstly, it 

significantly aids resource optimization. Accurate object 

counts enable efficient planning in inventory management and 

other resource allocation processes, helping to avoid 

unnecessary expenses and stock surpluses. It also improves 

security; accurately counting and tracking objects increases 

asset security and helps detect potential threats more rapidly. 

Finally, object counting plays a major role in informed 

decision-making. In sectors like retail and traffic management, 

accurate data allows for more efficient process management 

and provides valuable insights for strategic decision-making. 

This ensures that decisions are made on a solid foundation. 

https://dergipark.org.tr/en/pub/ijmsit
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Ultralytics YOLOv11 offers several advantages over other 

object detection models like Faster R-CNN [8], SSD [9], and 

previous YOLO versions. YOLOv11 provides real-time 

processing capabilities, making it ideal for applications that 

require high-speed inference, such as surveillance and 

autonomous driving. The model delivers state-of-the-art 

accuracy in object detection and tracking tasks, reduces false 

positives, and improves overall system reliability. 

Additionally, it offers seamless integration with various 

platforms, including mobile and edge devices, which is a 

significant advantage for modern AI applications. YOLOv11 

is flexible, with configurable models that support various tasks 

such as object detection, segmentation, and tracking, allowing 

it to meet specific use case requirements [7]. Advances in 

YOLOv11’s model design and optimization techniques have 

resulted in higher accuracy with fewer parameters. The 

improved architecture enables efficient feature extraction and 

processing, allowing for higher mean average precision (mAP) 

on large datasets like COCO. Despite using 22% fewer 

parameters than the YOLOv8m model, YOLOv11 does not 

compromise on accuracy. This makes YOLOv11 well-suited 

for efficient deployment on resource-constrained devices, as 

the model continues to deliver high performance while 

requiring less computational power. Thus, YOLOv11 stands 

out as an effective solution, especially in environments with 

limited computational power, such as portable devices or real-

time applications. This table 1 provides an overview of the 

YOLO11 model variants, showcasing their applicability in 

specific tasks and compatibility with operational modes such 

as Inference, Validation, Training, and Export. This flexibility 

makes YOLO11 suitable for a wide range of applications in 

computer vision, from real-time detection to complex 

segmentation tasks [10]. Table 1. YOLO v11 versions and 

their functions are shown. 

Table 1. YOLO v11 versions and tasks 

Model Filenames Task 

YOLO11 

yolo11n.pt, 

yolo11s.pt 

yolo11m.pt 

yolo11x.pt 

yolo11l.pt 

Detection 

YOLO11-seg 

yolo11n-seg.pt 

yolo11m-seg.pt 

yolo11x-seg.pt 

yolo11s-seg.pt 

yolo11l-seg.pt 

Instance 

Segmentation 

YOLO11-pose 

yolo11n-pose.pt 

yolo11s-pose.pt 

yolo11m-pose.pt 

yolo11l-pose.pt 

yolo11x-pose.pt 

Pose/Keypoints 

YOLO11-obb 

yolo11n-obb.pt 

yolo11m-obb.pt 

yolo11x-obb.pt 

yolo11s-obb.pt 

yolo11l-obb.pt 

Oriented Detection 

YOLO11-cls 

yolo11n-cls.pt 

yolo11m-cls.pt 

yolo11x-cls.pt 

yolo11s-cls.pt 

yolo11l-cls.pt 

Classification 

 

 

II. MATERIALS AND METHOD 

The suspension system is a mechanism that connects a 

vehicle's wheels to its chassis and regulates the interaction 

between the wheels and the road surface. The primary purpose 

of this system is to improve the vehicle's handling, driving 

safety, and passenger comfort. The suspension absorbs shocks 

from road irregularities, reducing vibrations between the 

vehicle and the road, providing a smoother driving experience. 

In a suspension system, several components limit the 

movement between the chassis and the wheels according to 

road conditions, such as springs, shock absorbers, tie rods, 

control arms, Z-rods, and swing arms. These components 

balance the vehicle's dynamic movements, ensuring stability 

during acceleration, braking, and cornering. The suspension 

system not only enhances driving quality but also ensures the 

vehicle's safety. Therefore, the interaction between the 

vehicle's chassis and wheels is of great importance. The 

suspension system is designed to ensure that vehicles move 

steadily and in a controlled manner under all road conditions. 

A. AYD Suspension Parts  

The control arm, Z-rod, tie rod, steering rack, steering shaft, 

and control link are key components in a vehicle's suspension 

system. The control arm connects the chassis to the wheels, 

helping to regulate movement. The Z-rod contributes to the 

vehicle’s balance and steering control, functioning as part of 

the control arm. The tie rod allows the wheels to rotate 

vertically around their axis, aiding in steering. The steering 

rack connects the steering system to the wheels, enabling the 

vehicle to maneuver. The steering shaft transmits steering 

inputs to the wheels. The control link, as part of the control 

arm, regulates the connection between the chassis and the 

wheels, ensuring stable vehicle movement. Together, these 

components work in harmony to improve vehicle handling, 

driving safety, and comfort. Red colored suspension parts are 

seen in Figure 2. 

 

 
Fig. 2. Red colored suspension parts 

B. Deep Learning 

Deep learning is a subfield of artificial intelligence (AI) that 

enables computers to learn from large datasets. This technique 

uses artificial neural networks, which are structures inspired 

by the human brain, to automatically extract patterns from 

data. Deep learning is particularly effective in handling large 

and complex data, and it is commonly used in areas like pattern 

recognition, image processing, and natural language 

processing. The model processes data in layers, learning more 

abstract features at each layer, making it more powerful and 

flexible compared to traditional machine learning methods. 
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C. Data collection and  Processing 

Data collection for YOLO (You Only Look Once) is the 

process of gathering the visual data necessary for the model to 

correctly detect and classify objects. This process involves 

several important factors, including the diversity, quality, and 

accurate labeling of the collected data. During data collection, 

various conditions such as different angles, lighting 

conditions, distances, and backgrounds must be considered to 

make the model more generalizable. Each object in the images 

must be accurately labeled with its class name and bounding 

boxes. Additionally, since low-resolution or blurry images can 

negatively affect the model's performance, it's important to use 

high-quality images. Balanced data is also crucial, as the 

overrepresentation of a particular object class can lead to bias 

in the model. During the data collection process, data 

augmentation techniques like rotation and scaling can also be 

used to improve the model's ability to generalize. Figure 3 

shows the data collection visual. 

 

 

Fig. 3. Data collection   

To facilitate product counting and inspection on the 

suspension system assembly line, a high-quality visual dataset 

was created. 

Data was collected using “Dahua IPC-HFW2431S-S-S2” 

model IP cameras installed on the assembly line. The cameras 

were configured to record images at 4 MP (2688 x 1520 pixels) 

resolution and a frame rate of 30 FPS. They were strategically 

positioned to provide a clear, bird's-eye view of the products 

on the conveyor belt. This placement was optimized to 

minimize shadowing and capture details from various angles. 

During data collection, diverse lighting conditions, including 

both daylight and artificial lighting, were simulated. This 

aimed to enhance the model's robustness against different 

lighting scenarios encountered in a real production 

environment. The collected dataset comprises 5,000 distinct 

suspension part images. These visuals reflect various real-

world production variations, such as those from different 

production shifts, slightly soiled or damaged parts, and diverse 

surface textures. Furthermore, the dataset covers 8 different 

product classes, including z-rods, tie rods, swing arms, and ball 

joints. 

D. Labeling, training and testing 

Data labeling is a fundamental step for object detection and 

classification models. Its role in the training and testing phases 

is crucial because correctly labeled data ensures that the model 

learns properly. The training and testing processes are critical 

steps that affect the overall performance of the model. Data 

labeling is the process of accurately identifying and tagging 

objects in images. This involves marking each object with a 

class name and a bounding box that represents the class. This 

process is typically done manually or can be accelerated using 

semi-automatic tools. The correct class name must be assigned 

to each object in the image. The four corner coordinates (x, y, 

width, height) that surround the object must be specified [17]. 

This helps the model learn the location of the object. If data 

labeling is not done correctly, the model may learn incorrectly 

and perform poorly during the testing phase.  

The collected images were resized to a standard dimension 

of 640x640 pixels. For improved deep learning model 

performance, image pixels were normalized from a 0-255 

range to a 0-1 range. Suspension components in each image 

were manually labeled using MakeSense AI. During this 

process, a bounding box and its corresponding class name 

were assigned to every object. Bounding boxes were defined 

by coordinates in the x_min, y_min, width, height format, 

ensuring they encompassed the object's outermost boundaries. 

A total of 14,600 objects were labeled. Labeling quality was 

maintained through verification by two independent operators 

and random sample checks. To mitigate potential overfitting 

from limited data and enhance the model's generalization 

capability, in line with principles of transferable features in 

deep neural networks [11], data augmentation techniques were 

applied. These techniques included; Random rotations by ±15 

degrees, random scaling between 80% and 120%, random 

brightness adjustments between 70% and 130%, horizontal 

and vertical flipping. These techniques expanded the training 

dataset to 10,000 images. 

The labeled and augmented dataset was randomly split into 

training, validation, and test sets. The distribution was 70% for 

training, 15% for validation, and 15% for testing. This 

segmentation was performed to objectively evaluate the 

model's performance on independent data. Figure 3 shows the 

data labeling visual. 

 

 

Fig. 4. Data labeling  

The training phase is the process of "teaching" the model 

using labeled data to make accurate predictions. The labeled 

data is split into a training set and a validation set. The training 

set is used for the model to learn, while the validation set is 

used to prevent overfitting during training. The model learns 

through iterations (epochs) on the training data. In each 

iteration, the model makes predictions, and the difference 

between these predictions and the actual labels is calculated to 

determine the error (loss) value. The model's parameters are 

updated to minimize this error value. 

To prevent overfitting that may arise from limited training 

data, data augmentation techniques (such as rotation, scaling, 

color changes, etc.) can be applied. The model's performance 

is evaluated with the validation set at each training step. If the 

model's accuracy is insufficient, improvements can be made 
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through hyperparameter adjustments, changes in model 

architecture, or by adding more data. Considering the need for 

both high real-time performance and superior accuracy in 

industrial applications, and after evaluating various 

established object detection architectures such as Faster R-

CNN [8], SSD [9], and previous iterations of the YOLO series 

including YOLOv3 [5], YOLOv5s [12], and YOLOv8m [13], 

the Ultralytics YOLOv11x model was ultimately utilized in 

this study. The Adam optimization algorithm was employed to 

update the model's weights. Adam combines adaptive learning 

rate adjustments with momentum features, ensuring fast and 

stable convergence. The following hyperparameters were used 

and optimized throughout the training process, based on 

performance (mAP) on the validation set. The initial learning 

rate was set to 0.001. Using a learning rate scheduler such as 

Cosine Annealing, the learning rate was gradually decreased 

to 0.0001 over 200 epochs. This method helped the model 

converge more precisely by enabling smaller weight updates 

during the final stages of training. The model was trained for 

a total of 300 epochs. An early stopping mechanism was 

configured to automatically halt training if the validation loss 

did not improve for 50 consecutive epochs.  

A batch size of 16 was used for training. This value 

considered GPU memory constraints while providing an 

appropriate balance for the model's learning dynamics. A 

weight decay of 0.0005 was applied to prevent overfitting and 

enhance the model's generalization capability. The input image 

size for the model was set to 640x640 pixels. Hyperparameter 

values were optimized using a combination of manual trial and 

error and Random Search to maximize mAP performance on 

the validation set. This process ensured the model achieved its 

best generalization capability while preventing overfitting. 

The training process was carried out on a workstation equipped 

with an NVIDIA GeForce RTX 3080 GPU. The deep learning 

library used was PyTorch 1.12.1, developed in Python 3.9. 

CUDA 11.3 and cuDNN 8.2 libraries were utilized for GPU 

acceleration. 

The testing phase is the process of evaluating how the model 

performs on new, previously unseen data outside of the 

training data. The steps in the testing phase are as follows. Test 

data is not used during training and is only used to assess the 

model's overall performance in real-world scenarios. Once 

training is complete, the model makes predictions on the test 

set data. The model predicts the bounding boxes and class 

labels to correctly detect and classify objects. The model’s 

accuracy is measured using metrics such as precision, recall, 

F1 score, and mean Average Precision (mAP).  

These metrics show how accurate and reliable the model is. 

Failures in the test phase indicate how well the model can 

generalize to data outside of the training set. If there is a 

significant performance difference on the test data, it suggests 

that the model may have overfitted during training. Figure 5 

shows the testing image. 

 

           

Fig. 5. Testing  

E. Integration to the field, product counting 

After the training process was completed, various stages 

were followed for the model's field integration and real-time 

product counting. First, live images of the products were 

captured through the camera system installed on the assembly 

line, and the model processed these images in real time. Using 

YOLO v11 Ultralytics, the parts were detected and counted. 

The system, designed to operate in real time, was integrated 

with the hardware and software infrastructure, while camera 

positioning, lighting, and image processing optimizations were 

carried out. The model's performance in the field was tested, 

and additional adjustments were made. It detected and reported 

any shortages or surpluses in real time, enabling necessary 

inspections. The system's performance was continuously 

monitored. Figure 6 shows the field application visual. 

 

 

Fig. 6. Field application 

III. RESULTS 

In this study, the performance of the YOLOv11-based model 

developed for product counting and quality control on the 

suspension system assembly line was evaluated using detailed 

metrics and comparative analyses. Following the completion 

of the training and testing phases, the model's effectiveness 

was quantitatively demonstrated under both experimental 

conditions and in real-world field application. 

 

To assess the model's overall performance, metrics such as 

precision, recall, F1 score, and mean Average Precision (mAP) 

were utilized. The results obtained on the test dataset are 

summarized in Table 2. 

Table 2. YOLOv11x Model Performance Metrics on the Test Dataset 

Metrik Değer (%) 

Precision 91.50% 

Recall 88.20% 

F1 Skoru 89.80% 

mAP@0.5 92.30% 

mAP@0.5:0.95 78.70% 
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These results clearly demonstrate the model's ability to 

accurately detect and classify objects on the test dataset. 

Specifically, a high mAP@0.5 value of 92.3% highlights the 

model's success in correctly localizing and accurately labeling 

products. The mAP@0.5:0.95 value of 78.7% further indicates 

strong performance even at stricter intersection-over-union 

(IoU) thresholds, implying that the bounding box predictions 

are highly precise. These metrics collectively reveal that the 

developed YOLOv11x model can provide reliable and 

effective product inspection on the assembly line. 

To compare the performance of the YOLOv11 model with 

industry standards and previous models, a performance 

analysis was conducted against Faster R-CNN, SSD, and 

earlier versions of YOLO (YOLOv3, YOLOv5s, YOLOv8m). 

This comparison specifically focused on mAP@0.5 and real-

time processing capability (FPS). The comparison results are 

presented in Table 3. 

Table 3. Performance Comparison of Different Object Detection Models 

Model mAP@0.5 (%) FPS (frames/sec) 

Faster R-CNN 85.1 15 

SSD 82.5 45 

YOLOv3 87.8 60 

YOLOv5s 89.5 90 

YOLOv8m 90.9 80 

YOLOv11x 92.3 75 

 

Table 3 clearly demonstrates that the YOLOv11x model 

exhibits both higher accuracy (mAP) and superior real-time 

performance (FPS) compared to other models. Specifically, 

when compared to SSD, YOLOv11x achieved 9.8% higher 

mAP and was 1.67 times faster in terms of FPS. While 

compared to YOLOv8m, there was a 1.4% increase in mAP 

along with a slight decrease in FPS, this significant accuracy 

gain generally represents a preferred trade-off for industrial 

inspection. These findings confirm that YOLOv11x is an ideal 

solution for high-speed, critical applications like assembly 

lines. 

The model was integrated into the suspension system 

assembly line and tested under real-world conditions. The 

results obtained from the field application concretely highlight 

the model's practical benefits. An average counting accuracy 

of 99.2% was achieved for product counting. This led to a 

significant reduction in the error rate compared to operator-

based counting methods (approximately an 80% reduction). 

The error rate in detecting missing or surplus products was 

observed to decrease by 75% compared to previous manual or 

semi-automatic systems. The model operated at an average 

speed of 70-75 FPS on the production line. This speed allows 

for instant inspection and counting without interrupting the 

production flow. Automatic counting and inspection resulted 

in approximately a 25% saving in labor, allowing operators to 

focus on more value-added tasks. 

These results prove that the developed YOLOv11x model 

delivers superior performance not only in a laboratory setting 

but also under demanding industrial conditions. The training 

and testing processes, as well as the field application 

performance tests, were conducted on the following hardware 

and software infrastructure; 

 

Processor (CPU): Intel Core i7-10700K 

Graphics Processing Unit (GPU): NVIDIA GeForce RTX 

3080 (10 GB VRAM) 

Memory (RAM): 32 GB DDR4 

Storage: 1 TB NVMe SSD 

Operating System: Ubuntu 20.04 LTS 

Deep Learning Library: PyTorch 1.12.1 

YOLOv11 Version: Ultralytics YOLOv11x 

Programming Language: Python 3.9 

 

This detailed information ensures the reproducibility of the 

study and clarifies the hardware and software dependencies of 

the obtained results. 

 

Figure 7 shows the field application with product counting. 

 

Fig. 7. Field application with product counting 

IV. DISCUSSION 

This study has taken significant steps toward improving 

product counting and quality control processes on the 

suspension system assembly line using the YOLO algorithm 

and the Ultralytics library. The growing interest and success of 

deep learning in various industrial applications, including 

surface defect detection [14] and object counting in complex 

scenes [15], underscore the transformative potential of such 

automated systems. The model's ability to eliminate operator-

related errors, enhance accuracy, and accelerate the production 

process provides a major advantage. However, several 

technical challenges must be addressed to ensure the system 

operates seamlessly in live production. 

Furthermore, hardware improvements alone may not be 

sufficient. To increase processing speed, parameter 

optimization, reduction of unnecessary computations, and the 

use of lightweight model versions are essential. Specifically, 

managing weights more efficiently and eliminating redundant 

computational loads will not only reduce energy consumption 

but also accelerate the system's response time. In future work, 

exploring more advanced models like Mask R-CNN [16] for 

finer-grained inspection, such as detailed defect analysis, 

could further enhance the system's capabilities. 

Real-time data processing requirements are among the key 

factors directly affecting system performance. The YOLO 

algorithm requires high FPS (frames per second) values to 

function quickly and accurately. However, due to limitations 

in the current hardware infrastructure, data transmission delays 

may occur, reducing the model’s real-time detection and 

counting performance. Therefore, integrating more powerful 

GPUs, high-speed data processing units, and optimized 

hardware solutions plays a critical role in enhancing the 

system’s efficiency. 

Nevertheless, hardware improvements alone may not be 

sufficient. To increase processing speed, parameter 

optimization, reduction of unnecessary computations, and the 

use of lightweight model versions are essential. Specifically, 

managing weights more efficiently and eliminating redundant 
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computational loads will not only reduce energy consumption 

but also accelerate the system's response time. 

Furthermore, the reliability of the model in the production 

environment must be continuously monitored, and periodic 

updates should be implemented to ensure adaptation to field 

variations. Factors such as changes in lighting conditions and 

different image angles can impact the model’s accuracy. 

Therefore, continuously expanding the dataset used for 

training and improving its adaptability to real production 

conditions are necessary. 

In conclusion, YOLO-based product counting and quality 

control systems have the potential to revolutionize production 

processes. However, for the system to operate in real-time with 

high accuracy, both hardware enhancements and software 

optimizations must be implemented. In the future, the 

development of more efficient algorithms, reductions in 

hardware costs, and the widespread adoption of high-

performance AI chips are expected to drive the increased use 

of such systems in the industry. 

V. CONCLUSION 

This study improved product counting and quality control 

processes on the suspension system assembly line using the 

YOLO algorithm and the Ultralytics library. The model 

eliminated operator errors, enabling faster and more accurate 

counting. However, due to FPS requirements and data 

transmission limitations in real-time processing, both 

hardware and software optimizations are necessary. 

Enhancing performance with more powerful GPUs, high-

speed data processing units, and optimized algorithms can 

improve system efficiency. With the required improvements, 

the model will operate with high accuracy on the production 

line, significantly enhancing quality and productivity. 
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