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The global demand for energy has been rapidly increasing due to 

industrialization and population growth. This surge necessitates making 

energy production processes more efficient, sustainable, and predictable. In 

this context, forecasting models based on artificial intelligence and heuristic 

optimization techniques have become a crucial component of decision support 

systems in the energy sector. In this study, a forecasting model based on 

Particle Swarm Optimization (PSO) was developed by optimizing the 

hyperparameters of a Long Short-Term Memory (LSTM) network using PSO. 

Operational data from a power plant was used during the training and testing 

phases. The model’s performance was evaluated using statistical error metrics 

such as the coefficient of determination (R²), root mean square error (RMSE), 

mean squared error (MSE), and mean absolute error (MAE). The results 

indicate that the proposed PSO-based optimization approach provides high 

accuracy in energy production forecasting and offers a strong alternative to 

traditional methods. 
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Sanayileşme ve nüfus artışına bağlı olarak enerjiye olan küresel talep hızla 

artmaktadır. Bu artış, enerji üretim süreçlerinin daha verimli, sürdürülebilir ve 

öngörülebilir hale getirilmesini zorunlu kılmaktadır. Bu bağlamda, yapay zekâ 

ve sezgisel optimizasyon tekniklerine dayalı tahmin modelleri, enerji 

sektöründeki karar destek sistemlerinin önemli bir bileşeni haline gelmiştir. 

Bu çalışmada, Uzun Kısa Süreli Bellek (LSTM) modelinin hiperparametreleri 

Parçacık Sürü Optimizasyonu (PSO) algoritmasıyla optimize edilerek PSO 

tabanlı bir tahmin modeli geliştirilmiştir. Modelin eğitim ve test aşamalarında, 

bir enerji santraline ait operasyonel veriler kullanılmıştır. Model performansı, 

belirleme katsayısı (R²), kök ortalama kare hata (RMSE), ortalama kare hata 

(MSE) ve ortalama mutlak hata (MAE) gibi istatistiksel hata metrikleriyle 

değerlendirilmiştir. Sonuçlar, önerilen PSO tabanlı optimizasyon yaklaşımının 

enerji üretim tahmininde yüksek doğruluk sunduğunu ve geleneksel 

yöntemlere kıyasla güçlü bir alternatif oluşturduğunu ortaya koymaktadır. 
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1. INTRODUCTION 

Today, the rapid increase in global energy demand, driven by population growth and industrial development, 

presents significant challenges in terms of not only energy supply but also its sustainability, efficiency, and 

predictability. Power plants remain at the core of energy infrastructure due to their ability to deliver large-scale, 

uninterrupted electricity generation. However, their operational performance is highly sensitive to environmental 

parameters such as atmospheric pressure, ambient temperature, relative humidity, and condenser vacuum. These 

variables directly influence turbine behavior and subsequently affect net power output. Therefore, accurately 

modeling the impact of environmental conditions on plant performance is crucial for improving the reliability and 

operational forecasting of energy systems [1], [2]. 

The accurate forecasting of net power generation in energy plants is not only essential for production scheduling 

but also constitutes a critical factor in maintaining grid stability, managing supply-demand equilibrium, and 

optimizing operational expenditures. Nevertheless, the underlying dynamics of power generation are inherently 

complex, driven by nonlinear interactions among environmental parameters that evolve over time. As such, 

conventional statistical or regression-based models often fall short in capturing these intricacies [3]. In recent 

years, artificial intelligence techniques—particularly Long Short-Term Memory (LSTM) neural networks—have 

gained considerable traction in energy forecasting tasks due to their capacity to model sequential data and learn 

temporal dependencies [4], [5]. Unlike traditional RNNs, the LSTM architecture incorporates memory gates that 

enable the model to retain long-term temporal patterns, thereby improving its ability to reflect real-world 

operational fluctuations in predictive modeling. 

Although LSTM architectures are highly effective in modeling time series data, the overall performance of these 

models heavily depends on the proper configuration of hyperparameters. Key parameters such as the number of 

layers, the number of units per layer, learning rate, activation function, dropout rate, and batch size directly 

influence the model’s learning capacity and generalization ability [4]. 

If these parameters are selected arbitrarily or through trial-and-error methods, the model may suffer from 

overfitting or underfitting, significantly reducing its predictive performance [6]. 

To overcome these challenges, heuristic optimization algorithms have become increasingly popular for 

hyperparameter tuning. In this regard, Particle Swarm Optimization (PSO) has emerged as a powerful technique 

for improving the training process of artificial neural networks [7]. 

Studies in the literature report that LSTM models optimized with PSO achieve lower error rates, faster 

convergence, and more stable prediction outputs compared to those using conventional tuning strategies [6], [8]. 

Moreover, it has been shown that PSO not only enhances accuracy but also improves computational efficiency by 

reducing training time when integrated with LSTM models [3]. 

In the literature, numerous studies have demonstrated the effectiveness of LSTM models optimized with Particle 

Swarm Optimization (PSO) in energy forecasting and other complex predictive tasks. 

For example, in [3], a PSO-LSTM model was proposed for short-term load forecasting, where various activation 

functions and network depths were explored to improve prediction accuracy. In [8], a similar PSO-supported 

LSTM approach was employed for solar irradiance forecasting, with results showing higher R² and lower MSE 

compared to standard LSTM, particularly after applying normalization techniques. In [5], a multi-step prediction 

model for short-term electrical load was introduced, where PSO improved the performance stability in long-range 

forecasting, reducing cumulative error propagation significantly. 

In [9], a deep learning-based electric load forecasting model was implemented, in which PSO was used to optimize 

hyperparameters, leading to reduced computational cost and more stable outputs. The structure in [9] is comparable 

to that in [3] though it focuses more on training efficiency and runtime optimization. 

In [6], PSO was combined with attention-enhanced LSTM architectures, resulting in improved training 

performance and lower validation loss, and demonstrating the synergy between attention mechanisms and heuristic 

optimization.  

Two other studies, similar to the present work, focused on predicting the power output of a power plant using the 

same target variable, but applied different modeling techniques. 

In [10], the performance of several regression-based machine learning models—including linear regression, ridge 

regression, lasso, elastic net, random forest, and gradient boosting was evaluated in forecasting hourly electrical 

power output from a combined cycle power plant. Input features included ambient temperature (AT), relative 

humidity (RH), atmospheric pressure (AP), and exhaust vacuum (V). The results in [10] indicated that even 

relatively simple models can achieve acceptable accuracy when applied to clean and well-structured datasets. 

In [11], a novel metaheuristic optimization algorithm, the Waterwheel Plant Algorithm (WWPA), was proposed 

and integrated with Recurrent Neural Networks (RNN) to improve net power prediction accuracy in combined 

cycle power plants. The model was trained using key operational parameters such as ambient temperature, relative 

humidity, atmospheric pressure, and exhaust vacuum. The results revealed that optimized neural networks can 

effectively capture nonlinear dependencies in complex energy systems. 

Applications outside of energy systems have also benefited from the PSO-LSTM framework. For instance, in [12], 

PSO-optimized deep learning networks were applied to air pollution forecasting, achieving high accuracy across 

multiple urban locations. In [13], an LSTM-based prediction model was optimized using Swarm Optimization 
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(PSO) for short-term ship motion forecasting. The study emphasized the limitations of traditional gradient-based 

optimizers in escaping local minima, especially in nonlinear and noisy time series data. The hybrid LSTM-PSO 

model demonstrated superior performance in terms of prediction accuracy and mean squared error (MSE) 

compared to standard optimization techniques. 

Finally, in [14], the PSO-LSTM approach was employed for wind power bidding optimization, demonstrating 

improved decision-making efficiency and highlighting the model’s flexibility beyond traditional forecasting tasks.  

Although the studies vary in application domain and input configurations, they collectively emphasize the 

robustness of PSO in enhancing LSTM-based forecasting models. In contrast, the current study utilizes real-time 

environmental variables from a thermal power plant (AT, RH, AP, V). It evaluates prediction performance not 

only through traditional error metrics but also via a detailed analysis of training-validation loss curves. 

2. MATERIAL-METHOD 

In this section, the data preparation process, the methods employed, and the error metrics used to evaluate their 

performance are discussed. 

2.1. Dataset 

In this study, the net power generation (P) [MW] was selected as the target output variable to be predicted based 

on data obtained from a power plant. The original data used in the study are openly available in the UCI Machine 

Learning Repository. The input variables include ambient temperature (T) [°C], condenser vacuum (V) [cm Hg], 

relative humidity (RH) [%], and ambient pressure (AP) [Mbar]. Data preprocessing is a critical initial step in 

developing and training the models. First, all variables were consolidated and organized into a single Excel file in 

the appropriate format. Subsequently, the dataset was processed using the Python programming language and 

prepared for modeling. The data were then split into training (80%) and testing (20%) sets to evaluate model 

accuracy. 

In power generation systems, external environmental variables have a direct impact on plant performance. In 

particular, factors such as ambient temperature, humidity, and pressure significantly influence turbine efficiency 

and, consequently, net power output. In this study, optimization techniques were employed to model these 

variables and improve the accuracy of net power prediction. To enhance the model’s predictive performance, the 

data were normalized using the StandardScaler method, minimizing the impact of varying scales among input 

variables. The dataset used in this study comprises parameters critical to making optimal operational decisions in 

power plants. Therefore, it is anticipated that the model outputs will play a vital role in energy production 

forecasting and management [1], [8], [15]. 

The general flow diagram illustrating the applied method is presented in Figure 2.1. 

 
Figure 2.1. Flow diagram. 

2.2. Principle of the Power plant and the Impact of Data Variables on the Process 

The general energy conversion processes of a conventional thermal power plant are schematically illustrated as 

follows. The system begins with the combustion of fuel in the boiler, where the resulting thermal energy converts 

water into steam. This high-pressure steam is then directed to the steam turbine. Within the turbine, the steam 

energy is transformed into mechanical energy, which is subsequently converted into net electrical power through 

a generator. The low-pressure steam exiting the turbine is condensed back into liquid form in the condenser unit, 
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allowing the cycle to restart. This process operates based on the principles of the Rankine cycle, and the overall 

performance of the system varies significantly depending on environmental conditions [2], [16], [17]. 

In the dataset used for this study, environmental parameters such as ambient temperature (AT, °C), condenser 

vacuum (V, cm Hg), atmospheric pressure (AP, Mbar), and relative humidity (RH, %) were employed as input 

variables for the model [1], [17], [18], [19]. 

• AT variable (ambient temperature) indirectly influences heat losses in the boiler and the efficiency of the 

combustion process. 

• V variable (condenser vacuum) affects mechanical work output by determining the pressure difference 

between the turbine outlet and the condenser. 

• AP (atmospheric pressure) and RH (relative humidity) variables are critical for the condensation capacity 

of the condenser and the performance of the cooling systems. 

Net power output (PE, MW) is the target variable in the dataset, representing the overall performance of the power 

plant resulting from the combined effect of the four environmental parameters. This flow structure clearly 

illustrates the relationship established between physical processes and data variables in data-driven modeling and 

forecasting applications [1], [17], [18], [19]. 

The overall energy conversion process and the operational role of the variables mentioned above are illustrated in 

Figure 2.2 and summarized in Table 2.1, respectively. 

 
Figure 2.2. Power plant modeling. 

Table 2.1. Operational role of environmental and process variables in power generation. 

Variable Location/Stage Affected Proses 

AT Boiler Input Efficiency of combustion and 

steam generation 

V Turbine output- Condenser Turbine output power 

AP Cooling Air Condensation efficiency 

RH Cooling Air Condenser performance 

PE Generator Output Final electricity generation 

(predicted value) 

2.3. Methodology Employed 

In this study, a forecasting model based on Particle Swarm Optimization (PSO) was developed to enhance the 

accuracy of power generation prediction. Within this framework, a Long Short-Term Memory (LSTM) neural 

network was employed as the prediction tool, and its hyperparameters were optimized using the PSO algorithm. 

PSO played a central role by systematically tuning critical hyperparameters such as learning rate, batch size, 

number of epochs, and dropout rate, thereby improving the model's overall performance. The results clearly 

demonstrate that the PSO-based optimization approach, combined with the temporal modeling capabilities of 

LSTM architecture, provides an effective and reliable method for forecasting energy production in power plants. 

2.3.1. Particle Swarm Optimization (PSO) 

The Particle Swarm Optimization (PSO) algorithm was developed by Kennedy and Eberhart in 1995. This 

algorithm is a stochastic optimization technique based on the principle of swarm intelligence and has yielded 

successful results in a wide range of engineering and scientific problems. In PSO, each potential solution is 

represented as a member of a population of individuals called particles. These particles continuously update their 

positions within the solution space in pursuit of the optimal result. During this process, they determine their 

direction by drawing on both their own best experiences and the collective experience of the swarm. 

In the PSO algorithm, the position and velocity of the particles are the fundamental components of the optimization 

process. The position of a particle represents a solution point in the search space, while its velocity determines the 
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direction and magnitude of its movement in the next iteration. The updates of particle positions and velocities are 

carried out according to specific mathematical rules, which incorporate both stochastic and deterministic 

components. A particle’s new position is obtained using a velocity vector calculated based on its previous position 

and experiences. Numerous studies in the literature have demonstrated that the PSO algorithm is an effective and 

efficient method, particularly in solving complex and high-dimensional optimization problems [20], [21]. 

2.3.2. Long Short-Term Memory (LSTM) 

Long Short-Term Memory (LSTM) is a specialized architecture developed to overcome the limitations of 

traditional Recurrent Neural Networks (RNNs) in learning long-term dependencies. LSTM models are widely used 

in various domains such as speech recognition, language modeling, energy production forecasting, demand 

analysis, and financial time series modeling. 

The LSTM architecture incorporates three fundamental gating mechanisms to regulate information flow and 

preserve important past information: the forget gate, the input gate, and the output gate. These gates determine 

how much of the cell state should be retained, how much should be updated, and which information should be 

passed on as output.  

This architecture enables LSTM to more effectively capture long-term dependencies often present in time series 

data. In applications where high forecasting accuracy is essential, such as in energy production prediction, this 

capability offers a significant performance advantage, making LSTM a powerful modeling tool in complex 

temporal analyses [3], [4]. 

As illustrated in Figure 2.3, the forget gate removes irrelevant past information, while the input gate adds new 

candidate information created via a tanh activation. The updated cell state is then used to generate the output (h t) 

through the output gate. This architecture makes LSTM particularly effective in modeling sequential data, such as 

in energy production forecasting. 

 
Figure 2.3. LSTM model. 

2.4. Error Measures 

Error measures represent fundamental statistical tools for evaluating the performance of forecasting models. 

Commonly used metrics include Mean Squared Error (MSE), Mean Absolute Error (MAE), Root Mean Squared 

Error (RMSE), and the Coefficient of Determination (R²). These indicators provide insights into the model’s 

overall predictive performance and goodness of fit, enabling researchers to assess how closely the model’s 

predictions correspond to the actual observed values [3]. 

2.4.1. Mean Squared Error (MSE) 

Mean Squared Error (MSE) is a commonly used metric that quantifies the average squared difference between the 

predicted values and the actual observations [8], [22], [23]. 

It is computed by taking the mean of the squared residuals and is expressed by the following formula (Eq. 1): 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑥𝑖 − 𝑥𝑖

∗)2𝑁
𝑖=1                                                                                                                                        (1) 

• 𝑥𝑖 actual value, 

• 𝑥𝑖
∗ predicted value, 

• 𝑁 total number of samples. 

MSE squares the errors, it is more sensitive to large errors. Therefore, it should be used with caution in models 

that are likely to produce large errors [8], [22], [23]. 

2.4.2. Mean Absolute Error (MAE) 

Mean Absolute Error (MAE) represents the average of the absolute differences between the predicted and actual 

values. It is calculated using the following formula (Eq. 2): [8], [23], [24]. 
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𝑀𝐴𝐸 =
1

𝑁
∑ |𝑥𝑖 − 𝑥𝑖

∗|𝑁
𝑖=1                                                                                                                                                                            (2) 

MAE measures the closeness of predicted values to the actual values and does not penalize large errors as heavily 

as MSE. Therefore, it is often preferred in situations where a more balanced evaluation of prediction errors is 

desired [8]. 

2.4.3. Root Mean Squared Error (RMSE) 

Root Mean Squared Error (RMSE) is computed by taking the square root of the Mean Squared Error (MSE), and 

it provides a more accurate reflection of the magnitude of prediction errors (Eq. 3): [24]. 

√𝑅𝑀𝑆𝐸 =
1

𝑁
∑ (𝑥𝑖 − 𝑥𝑖

∗)2𝑁
𝑖=1                                                                                                                                       (3) 

RMSE provides a measure analogous to the standard deviation of prediction errors and is commonly used to assess 

how closely the predicted values match the actual observations [24]. 

2.4.4. Coefficient Of Determination (𝑹𝟐) 

The coefficient of determination (R-squared or R²) indicates the proportion of variance in the dependent variable 

that is explained by the independent variables. R² is used to assess the goodness of fit of a model and ranges 

between 0 and 1, with values closer to 1 indicating a better explanatory power of the model (Eq. 4): [23]. 

𝑅2 =
∑(𝑥𝑖

∗−𝑥∗)(𝑥𝑖−𝑥)

∑(𝑥𝑖
∗−𝑥∗)

2
∑(𝑥𝑖−𝑥)

2                                                                                                                                                        (4) 

• 𝑥 average of the actual values, 

• 𝑥∗ average of the predicted values. 

As the R² value approaches 1, the model demonstrates a better fit to the data and higher explanatory power. 

Conversely, an R² value close to 0 indicates weak predictive performance. 

3. EXPERIMENTAL RESULTS 

In In this study, the hyperparameter optimization of the LSTM-based prediction model was carried out using the 

Particle Swarm Optimization (PSO) algorithm. The model was implemented using the Keras library, with the 

default tanh activation function applied in the LSTM layers, and a linear activation function used in the output 

layer, which is suitable for regression problems. The Adam optimization algorithm was employed throughout the 

training process. 

Within this scope, four key hyperparameters of the LSTM model — learning rate, batch size, number of epochs, 

and dropout rate — were optimized using the PSO algorithm. The search ranges for these hyperparameters were 

defined based on both similar LSTM-based energy forecasting studies in the literature and the need to balance 

model accuracy with training efficiency. Accordingly, the following ranges were set: [0.0001–0.1] for the learning 

rate, [16–128] for the batch size, [5–10] for the number of epochs, and [0.1–0.5] for the dropout rate. These values 

were directly defined as the lower and upper bounds in the PSO algorithm, allowing it to search for the optimal 

combination within this space. This configuration aimed to improve the prediction performance of the model while 

keeping computational cost under control. 

The number of LSTM layers was comparatively evaluated using both 2-layer and 3-layer structures. In addition, 

PSO parameters such as swarm size (20 or 30) and maximum number of iterations (10 or 20) were also varied to 

analyze their impact on model performance. 

All model configurations were evaluated using commonly used error metrics including Mean Absolute Error 

(MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and the coefficient of determination (R²). 

According to the results, the best performance was achieved with a 3-layer LSTM structure, a swarm size of 20, 

and 10 iterations, where the R² score reached 0.9454. A detailed performance comparison of different 

configurations is presented in Table 3.1. 

Table 3.1. Model performance metrics. 
Layer Count Swarm Size Max Iter MAE MSE RMSE 𝑹𝟐 

3 Layer 20 10 3.1247 15.9699 3.9962 0.9454 

3 Layer 30 20 3.2616 17.5889 4.1939 0.9399 

2 Layer 20 10 3.2846 17.1567 4.1421 0.9413 

2 Layer 30 20 3.4835 20.1869 4.493 0.931 

Table 3.2 summarizes the key hyperparameters used in the PSO and LSTM models and explains how increasing 

or decreasing these values may affect model performance. 
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Table 3.2. PSO and LSTM hyperparameter effects. 
Category Parameter Description Impact Of Increase Impact Of Decrease 

PSO SwarmSize Number of particles 

simultaneously exploring 

the solution space 

Broader search space, better 

global optima chances, 

slower convergence 

Faster computation, risk of 

suboptimal solutions 

PSO MaxIter Maximum iterations More optimization attempts, 

better accuracy 

Risk of premature 

convergence, insufficient 

optimization 

LSTM Units Number of neurons in each 

LSTM layer 

Greater predictive power, 

higher computational cost 

and risk of overfitting 

Lower complexity, reduced 

accuracy but faster training 

LSTM Dropout 

Rate 

Randomly drops units 

during training to prevent 

overfitting 

Prevents overfitting; too high 

may lead to underfitting 

Higher risk of overfitting; 

model may memorize 

instead of generalizing 

Overall, it was concluded that enhancing model performance requires not only architectural depth but also careful 

tuning of the parameters of the optimization algorithm used. The findings indicate that simpler architectures, when 

combined with carefully selected PSO parameters, can provide optimal solutions in terms of both accuracy and 

computational efficiency. In this context, it can be stated that lower SwarmSize and MaxIter values contribute to 

better generalization performance by preventing overfitting. 

In this section of the study, the model configuration that achieved the highest performance was identified as the 

one with a 3-layer LSTM architecture and PSO parameters set to SwarmSize = 20 and MaxIter = 10. This 

configuration not only produced low error metric values but also demonstrated strong generalization capability, as 

evidenced by its high coefficient of determination. 

Therefore, in the subsequent stages of the study, detailed analyses were carried out using only this best-performing 

model configuration. Within the scope of these analyses: 

• In section 3.1, the changes in training and validation losses across epochs were examined to evaluate the 

model's performance during the training process. 

• In section 3.2, the predicted values were compared with the actual production data to visually assess the 

model’s forecasting capability. 

These two analytical steps allow for a comprehensive evaluation of the model not only in terms of numerical 

performance but also in terms of learning behavior and prediction stability. 

3.1. Analysis of Training and Validation Losses Across Epochs 

Figure 3.1 presents the variation of training loss and validation loss values observed during the training of the deep 

learning model, based on the number of epochs. The graph aims to illustrate how well the model performs on the 

training data throughout the learning process, as well as its generalization capability on the validation data. 

While the training loss represents the error on data directly seen by the model, the validation loss indicates how 

successfully the model generalizes to unseen data. This figure serves as an important visual tool for assessing the 

model’s dynamics and identifying potential issues such as overfitting or underfitting [3], [25]. 

An examination of the training and validation loss curves in the graph reveals that the model's learning process 

proceeded in a stable manner. The training loss, which was relatively high in the first epoch, decreased rapidly 

within the following few epochs, indicating that the model was able to learn the fundamental patterns in a short 

period of time.  Around the third epoch, the training and validation loss values converge and continue to follow a 

similar trend in subsequent epochs. This suggests that the model did not exhibit signs of overfitting, and that the 

learned patterns were successfully generalized to the validation data. 

Moreover, the low degree of fluctuation in the validation loss indicates that the model's performance on the 

validation set remained stable, and that the training process did not experience high variance learning. The absence 

of a significant increase in validation loss despite the growing number of epochs also suggests that the learning 

curve profile is well-suited for the implementation of an early stopping strategy. In conclusion, the graph presented 

in the figure demonstrates that the model achieved a sufficient level of learning, exhibited strong generalization 

capability, and with the PSO-optimized hyperparameters contributed positively to this process. 

3.2. Comparison of Actual and Predicted Values 

Figure 3.2 presents comparative plots of the actual values and the predicted values generated by the developed 

model, aiming to evaluate its prediction performance. The upper part of the figure illustrates the overall distribution 

of actual values (blue line) and predicted values (red dashed line) across all test samples. This graph provides a 

broad perspective for assessing the model’s accuracy and prediction capability. The two separate plots in the lower 

part of the figure focus on specific sample intervals (approximately 300–700 and 1100–1300), offering a closer 

examination. These zoomed-in views allow for a more detailed observation of the model’s prediction precision 

during certain time periods. Such a multi-scale visualization approach is important not only for evaluating the 

model’s overall performance but also for analyzing its behavior at a local level [8], [25]. 
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Figure 3.1. Model training and validation loss. 

 
Figure 3.2. Comparison of actual and predicted values. 

The graph presented in the figure reveals compelling results in terms of evaluating the model’s predictive 

capability. In the overall view, it can be observed that the predicted values (red dashed line) largely overlap with 

the actual values (blue line). This indicates that the model was able to successfully apply the patterns learned 

during training to the test data, demonstrating strong generalization ability. 

The zoomed-in plots in the lower section provide a more detailed perspective on the model’s performance over 

specific time intervals. In these sections, the model is shown to respond even to short-term fluctuations and produce 

values that closely follow the actual data. However, at certain points of sudden change, there are minor deviations 

between the predictions and the actual values. These discrepancies may be due to abrupt changes in the data or 

insufficient representation of such patterns in the model inputs. 

Nevertheless, the predicted curve effectively follows the overall trend, highlighting the model’s reliability in time 

series data with trend-driven structures such as electricity generation. The visual success observed in the graph is 

also supported by numerical metrics (MAE, RMSE, R²), confirming that the model’s predictive performance is 

satisfactory from a practical standpoint. 
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3.3. Model Performance Comparison 

Figure 3.3 presents a comparative analysis of the prediction performances of different model configurations, 

created using varying numbers of LSTM layers and PSO parameters (SwarmSize and MaxIter). The comparison 

is made using four different evaluation metrics: MAE, MSE, RMSE, and R². The horizontal axis represents the 

model configurations, while the vertical axis visualizes the values obtained for each metric [17]. 

 
Figure 3.3. Model performance comparison. 

An examination of the figure reveals clear differences in the prediction performance of the various model 

configurations. The configuration with the lowest error values was the 3-layer (SwarmSize=20, MaxIter=10) 

model. The fact that both MAE and RMSE values are at their minimum in this configuration indicates that the 

model is capable of producing highly accurate predictions. Additionally, the R² score being the highest among all 

configurations demonstrates that this model explains the variance in the data most effectively. 

In contrast, the 2-layer (SwarmSize=30, MaxIter=20) model exhibited significant increases in all error metrics. In 

particular, the sharp rise in the MSE value suggests an increase in prediction error magnitude and a weakened 

generalization capability. Furthermore, the drop in R² to its lowest level implies that the model struggled to capture 

the underlying nonlinear relationships in the data. 

These results indicate that model performance depends not only on the number of layers, but also directly on the 

tuning of the hyperparameters of the optimization algorithm. Configurations using fewer iterations and smaller 

swarm sizes (SwarmSize) tend to reduce the risk of overfitting, resulting in more balanced and generalizable 

models. 

4. CONCLUSIONS 

In this study, a forecasting model was developed to improve prediction accuracy in power generation processes 

by utilizing a Long Short-Term Memory (LSTM) network enhanced with hyperparameter optimization based on 

Particle Swarm Optimization (PSO). While the core structure of the model is based on the LSTM architecture, key 

hyperparameters such as the number of layers, units per layer, and learning rate were optimized using the PSO 

algorithm to enhance overall model performance. 

The model was evaluated using hourly operational data obtained from a real-world thermal power plant. Its 

performance was assessed through commonly used error metrics, including the coefficient of determination (R²), 

Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE). The results 

indicated that the PSO-based LSTM model achieved high predictive accuracy, with an R² value exceeding 0.94, 

demonstrating that the predicted net power values were closely aligned with the actual observed data. These 

findings suggest that PSO-based optimization offers a more reliable and effective alternative compared to 

conventional forecasting methods. 

For future studies, it is recommended to conduct comparative analyses using other metaheuristic algorithms (such 

as Genetic Algorithm, Artificial Bee Colony, or Simulated Annealing) to further enhance the model's performance. 

Additionally, testing the model on broader and more diverse datasets would provide insights into its 

generalizability. The integration of PSO with other machine learning techniques such as Support Vector Machines 

(SVM), Convolutional Neural Networks (CNN), or Gated Recurrent Units (GRU) may also improve prediction 

performance and represents a promising direction for further research. 
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In conclusion, this study demonstrates that hyperparameter optimization using PSO can be successfully applied to 

LSTM-based forecasting models in energy production processes, offering a robust and practical approach to 

energy management. Future research may focus on adapting this model to different types of energy sources and 

operational conditions, thereby contributing to the development of more comprehensive decision support systems 

in the energy sector. 
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