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ABSTRACT

The global demand for energy has been rapidly increasing due to
industrialization and population growth. This surge necessitates making
energy production processes more efficient, sustainable, and predictable. In
this context, forecasting models based on artificial intelligence and heuristic
optimization techniques have become a crucial component of decision support
systems in the energy sector. In this study, a forecasting model based on
Particle Swarm Optimization (PSO) was developed by optimizing the
hyperparameters of a Long Short-Term Memory (LSTM) network using PSO.
Operational data from a power plant was used during the training and testing
phases. The model’s performance was evaluated using statistical error metrics
such as the coefficient of determination (R?), root mean square error (RMSE),
mean squared error (MSE), and mean absolute error (MAE). The results
indicate that the proposed PSO-based optimization approach provides high
accuracy in energy production forecasting and offers a strong alternative to
traditional methods.
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OZET

Sanayilesme ve niifus artigina bagli olarak enerjiye olan kiiresel talep hizla
artmaktadir. Bu artis, enerji iiretim siireglerinin daha verimli, siirdiiriilebilir ve
ongortiilebilir hale getirilmesini zorunlu kilmaktadir. Bu baglamda, yapay zeka
ve sezgisel optimizasyon tekniklerine dayali tahmin modelleri, enerji
sektoriindeki karar destek sistemlerinin onemli bir bileseni haline gelmistir.
Bu ¢alismada, Uzun Kisa Siireli Bellek (LSTM) modelinin hiperparametreleri
Parcacik Siirii Optimizasyonu (PSO) algoritmasiyla optimize edilerek PSO
tabanli bir tahmin modeli gelistirilmistir. Modelin egitim ve test asamalarinda,
bir enerji santraline ait operasyonel veriler kullanilmistir. Model performansi,
belirleme katsayist (R?), kok ortalama kare hata (RMSE), ortalama kare hata
(MSE) ve ortalama mutlak hata (MAE) gibi istatistiksel hata metrikleriyle
degerlendirilmistir. Sonuglar, dnerilen PSO tabanli optimizasyon yaklagiminin
enerji Uretim tahmininde yiiksek dogruluk sundugunu ve geleneksel
yontemlere kiyasla giiglii bir alternatif olusturdugunu ortaya koymaktadir.

© 2025 Bandirma Onyedi Eyliil Universitesi, Miihendislik ve Doga Bilimleri Fakiiltesi. Dergi
Park tarafindan yayinlanmaktadir. Tiim Haklar1 Saklidir.

'10000-0002-8447-7847

20000-0001-6076-4166


https://orcid.org/0000-0002-8447-7847
https://orcid.org/0000-0001-6076-4166

Miih.Bil.ve Aras.Dergisi,2025;,7(2) 148-157

1. INTRODUCTION

Today, the rapid increase in global energy demand, driven by population growth and industrial development,
presents significant challenges in terms of not only energy supply but also its sustainability, efficiency, and
predictability. Power plants remain at the core of energy infrastructure due to their ability to deliver large-scale,
uninterrupted electricity generation. However, their operational performance is highly sensitive to environmental
parameters such as atmospheric pressure, ambient temperature, relative humidity, and condenser vacuum. These
variables directly influence turbine behavior and subsequently affect net power output. Therefore, accurately
modeling the impact of environmental conditions on plant performance is crucial for improving the reliability and
operational forecasting of energy systems [1], [2].

The accurate forecasting of net power generation in energy plants is not only essential for production scheduling
but also constitutes a critical factor in maintaining grid stability, managing supply-demand equilibrium, and
optimizing operational expenditures. Nevertheless, the underlying dynamics of power generation are inherently
complex, driven by nonlinear interactions among environmental parameters that evolve over time. As such,
conventional statistical or regression-based models often fall short in capturing these intricacies [3]. In recent
years, artificial intelligence techniques—particularly Long Short-Term Memory (LSTM) neural networks—have
gained considerable traction in energy forecasting tasks due to their capacity to model sequential data and learn
temporal dependencies [4], [5]. Unlike traditional RNNs, the LSTM architecture incorporates memory gates that
enable the model to retain long-term temporal patterns, thereby improving its ability to reflect real-world
operational fluctuations in predictive modeling.

Although LSTM architectures are highly effective in modeling time series data, the overall performance of these
models heavily depends on the proper configuration of hyperparameters. Key parameters such as the number of
layers, the number of units per layer, learning rate, activation function, dropout rate, and batch size directly
influence the model’s learning capacity and generalization ability [4].

If these parameters are selected arbitrarily or through trial-and-error methods, the model may suffer from
overfitting or underfitting, significantly reducing its predictive performance [6].

To overcome these challenges, heuristic optimization algorithms have become increasingly popular for
hyperparameter tuning. In this regard, Particle Swarm Optimization (PSO) has emerged as a powerful technique
for improving the training process of artificial neural networks [7].

Studies in the literature report that LSTM models optimized with PSO achieve lower error rates, faster
convergence, and more stable prediction outputs compared to those using conventional tuning strategies [6], [8].
Moreover, it has been shown that PSO not only enhances accuracy but also improves computational efficiency by
reducing training time when integrated with LSTM models [3].

In the literature, numerous studies have demonstrated the effectiveness of LSTM models optimized with Particle
Swarm Optimization (PSO) in energy forecasting and other complex predictive tasks.

For example, in [3], a PSO-LSTM model was proposed for short-term load forecasting, where various activation
functions and network depths were explored to improve prediction accuracy. In [8], a similar PSO-supported
LSTM approach was employed for solar irradiance forecasting, with results showing higher R? and lower MSE
compared to standard LSTM, particularly after applying normalization techniques. In [5], a multi-step prediction
model for short-term electrical load was introduced, where PSO improved the performance stability in long-range
forecasting, reducing cumulative error propagation significantly.

In [9], a deep learning-based electric load forecasting model was implemented, in which PSO was used to optimize
hyperparameters, leading to reduced computational cost and more stable outputs. The structure in [9] is comparable
to that in [3] though it focuses more on training efficiency and runtime optimization.

In [6], PSO was combined with attention-enhanced LSTM architectures, resulting in improved training
performance and lower validation loss, and demonstrating the synergy between attention mechanisms and heuristic
optimization.

Two other studies, similar to the present work, focused on predicting the power output of a power plant using the
same target variable, but applied different modeling techniques.

In [10], the performance of several regression-based machine learning models—including linear regression, ridge
regression, lasso, elastic net, random forest, and gradient boosting was evaluated in forecasting hourly electrical
power output from a combined cycle power plant. Input features included ambient temperature (AT), relative
humidity (RH), atmospheric pressure (AP), and exhaust vacuum (V). The results in [10] indicated that even
relatively simple models can achieve acceptable accuracy when applied to clean and well-structured datasets.

In [11], a novel metaheuristic optimization algorithm, the Waterwheel Plant Algorithm (WWPA), was proposed
and integrated with Recurrent Neural Networks (RNN) to improve net power prediction accuracy in combined
cycle power plants. The model was trained using key operational parameters such as ambient temperature, relative
humidity, atmospheric pressure, and exhaust vacuum. The results revealed that optimized neural networks can
effectively capture nonlinear dependencies in complex energy systems.

Applications outside of energy systems have also benefited from the PSO-LSTM framework. For instance, in [12],
PSO-optimized deep learning networks were applied to air pollution forecasting, achieving high accuracy across
multiple urban locations. In [13], an LSTM-based prediction model was optimized using Swarm Optimization
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(PSO) for short-term ship motion forecasting. The study emphasized the limitations of traditional gradient-based
optimizers in escaping local minima, especially in nonlinear and noisy time series data. The hybrid LSTM-PSO
model demonstrated superior performance in terms of prediction accuracy and mean squared error (MSE)
compared to standard optimization techniques.

Finally, in [14], the PSO-LSTM approach was employed for wind power bidding optimization, demonstrating
improved decision-making efficiency and highlighting the model’s flexibility beyond traditional forecasting tasks.
Although the studies vary in application domain and input configurations, they collectively emphasize the
robustness of PSO in enhancing LSTM-based forecasting models. In contrast, the current study utilizes real-time
environmental variables from a thermal power plant (AT, RH, AP, V). It evaluates prediction performance not
only through traditional error metrics but also via a detailed analysis of training-validation loss curves.

2. MATERIAL-METHOD

In this section, the data preparation process, the methods employed, and the error metrics used to evaluate their
performance are discussed.

2.1. Dataset

In this study, the net power generation (P) [MW] was selected as the target output variable to be predicted based
on data obtained from a power plant. The original data used in the study are openly available in the UCI Machine
Learning Repository. The input variables include ambient temperature (T) [°C], condenser vacuum (V) [cm Hg],
relative humidity (RH) [%], and ambient pressure (AP) [Mbar]. Data preprocessing is a critical initial step in
developing and training the models. First, all variables were consolidated and organized into a single Excel file in
the appropriate format. Subsequently, the dataset was processed using the Python programming language and
prepared for modeling. The data were then split into training (80%) and testing (20%) sets to evaluate model
accuracy.

In power generation systems, external environmental variables have a direct impact on plant performance. In
particular, factors such as ambient temperature, humidity, and pressure significantly influence turbine efficiency
and, consequently, net power output. In this study, optimization techniques were employed to model these
variables and improve the accuracy of net power prediction. To enhance the model’s predictive performance, the
data were normalized using the StandardScaler method, minimizing the impact of varying scales among input
variables. The dataset used in this study comprises parameters critical to making optimal operational decisions in
power plants. Therefore, it is anticipated that the model outputs will play a vital role in energy production
forecasting and management [1], [8], [15].

The general flow diagram illustrating the applied method is presented in Figure 2.1.
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Figure 2.1. Flow diagram.

2.2. Principle of the Power plant and the Impact of Data Variables on the Process

The general energy conversion processes of a conventional thermal power plant are schematically illustrated as
follows. The system begins with the combustion of fuel in the boiler, where the resulting thermal energy converts
water into steam. This high-pressure steam is then directed to the steam turbine. Within the turbine, the steam
energy is transformed into mechanical energy, which is subsequently converted into net electrical power through
a generator. The low-pressure steam exiting the turbine is condensed back into liquid form in the condenser unit,
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allowing the cycle to restart. This process operates based on the principles of the Rankine cycle, and the overall
performance of the system varies significantly depending on environmental conditions [2], [16], [17].
In the dataset used for this study, environmental parameters such as ambient temperature (AT, °C), condenser
vacuum (V, cm Hg), atmospheric pressure (AP, Mbar), and relative humidity (RH, %) were employed as input
variables for the model [1], [17], [18], [19].
e AT variable (ambient temperature) indirectly influences heat losses in the boiler and the efficiency of the
combustion process.
e V variable (condenser vacuum) affects mechanical work output by determining the pressure difference
between the turbine outlet and the condenser.
e AP (atmospheric pressure) and RH (relative humidity) variables are critical for the condensation capacity
of the condenser and the performance of the cooling systems.
Net power output (PE, MW) is the target variable in the dataset, representing the overall performance of the power
plant resulting from the combined effect of the four environmental parameters. This flow structure clearly
illustrates the relationship established between physical processes and data variables in data-driven modeling and
forecasting applications [1], [17], [18], [19].
The overall energy conversion process and the operational role of the variables mentioned above are illustrated in
Figure 2.2 and summarized in Table 2.1, respectively.

To Generator
A

Steam (PE)

(VrH) &

(RH)

RH (%)
Coal-Fired Power Plant
Figure 2.2. Power plant modeling.

Table 2.1. Operational role of environmental and process variables in power generation.

Variable Location/Stage Affected Proses

AT Boiler Input Efficiency of combustion and
steam generation

\ Turbine output- Condenser Turbine output power

AP Cooling Air Condensation efficiency

RH Cooling Air Condenser performance

PE Generator Output Final electricity generation
(predicted value)

2.3. Methodology Employed

In this study, a forecasting model based on Particle Swarm Optimization (PSO) was developed to enhance the
accuracy of power generation prediction. Within this framework, a Long Short-Term Memory (LSTM) neural
network was employed as the prediction tool, and its hyperparameters were optimized using the PSO algorithm.
PSO played a central role by systematically tuning critical hyperparameters such as learning rate, batch size,
number of epochs, and dropout rate, thereby improving the model's overall performance. The results clearly
demonstrate that the PSO-based optimization approach, combined with the temporal modeling capabilities of
LSTM architecture, provides an effective and reliable method for forecasting energy production in power plants.

2.3.1. Particle Swarm Optimization (PSO)

The Particle Swarm Optimization (PSO) algorithm was developed by Kennedy and Eberhart in 1995. This
algorithm is a stochastic optimization technique based on the principle of swarm intelligence and has yielded
successful results in a wide range of engineering and scientific problems. In PSO, each potential solution is
represented as a member of a population of individuals called particles. These particles continuously update their
positions within the solution space in pursuit of the optimal result. During this process, they determine their
direction by drawing on both their own best experiences and the collective experience of the swarm.
In the PSO algorithm, the position and velocity of the particles are the fundamental components of the optimization
process. The position of a particle represents a solution point in the search space, while its velocity determines the
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direction and magnitude of its movement in the next iteration. The updates of particle positions and velocities are
carried out according to specific mathematical rules, which incorporate both stochastic and deterministic
components. A particle’s new position is obtained using a velocity vector calculated based on its previous position
and experiences. Numerous studies in the literature have demonstrated that the PSO algorithm is an effective and
efficient method, particularly in solving complex and high-dimensional optimization problems [20], [21].

2.3.2. Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) is a specialized architecture developed to overcome the limitations of
traditional Recurrent Neural Networks (RNNs) in learning long-term dependencies. LSTM models are widely used
in various domains such as speech recognition, language modeling, energy production forecasting, demand
analysis, and financial time series modeling.

The LSTM architecture incorporates three fundamental gating mechanisms to regulate information flow and
preserve important past information: the forget gate, the input gate, and the output gate. These gates determine
how much of the cell state should be retained, how much should be updated, and which information should be
passed on as output.

This architecture enables LSTM to more effectively capture long-term dependencies often present in time series
data. In applications where high forecasting accuracy is essential, such as in energy production prediction, this
capability offers a significant performance advantage, making LSTM a powerful modeling tool in complex
temporal analyses [3], [4].

As illustrated in Figure 2.3, the forget gate removes irrelevant past information, while the input gate adds new
candidate information created via a tanh activation. The updated cell state is then used to generate the output (hy)
through the output gate. This architecture makes LSTM particularly effective in modeling sequential data, such as
in energy production forecasting.

(VI-I
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g

Figure 2.3. LSTM model.

2.4. Error Measures

Error measures represent fundamental statistical tools for evaluating the performance of forecasting models.
Commonly used metrics include Mean Squared Error (MSE), Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), and the Coefficient of Determination (R?). These indicators provide insights into the model’s
overall predictive performance and goodness of fit, enabling researchers to assess how closely the model’s
predictions correspond to the actual observed values [3].

2.4.1. Mean Squared Error (MSE)

Mean Squared Error (MSE) is a commonly used metric that quantifies the average squared difference between the
predicted values and the actual observations [8], [22], [23].
It is computed by taking the mean of the squared residuals and is expressed by the following formula (Eq. 1):

1 *
MSE = 3 X0z (6 — ) Q)

e  x; actual value,

e x; predicted value,

e N total number of samples.
MSE squares the errors, it is more sensitive to large errors. Therefore, it should be used with caution in models
that are likely to produce large errors [8], [22], [23].

2.4.2. Mean Absolute Error (MAE)

Mean Absolute Error (MAE) represents the average of the absolute differences between the predicted and actual
values. It is calculated using the following formula (Eq. 2): [8], [23], [24].
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1 *
MAE = 251 x| @)

MAE measures the closeness of predicted values to the actual values and does not penalize large errors as heavily
as MSE. Therefore, it is often preferred in situations where a more balanced evaluation of prediction errors is
desired [8].

2.4.3. Root Mean Squared Error (RMSE)

Root Mean Squared Error (RMSE) is computed by taking the square root of the Mean Squared Error (MSE), and
it provides a more accurate reflection of the magnitude of prediction errors (Eq. 3): [24].

1 *
\/RMSE == NG —x)? 3)

RMSE provides a measure analogous to the standard deviation of prediction errors and is commonly used to assess
how closely the predicted values match the actual observations [24].

2.4.4. Coefficient Of Determination (R?)

The coefficient of determination (R-squared or R?) indicates the proportion of variance in the dependent variable
that is explained by the independent variables. R? is used to assess the goodness of fit of a model and ranges
between 0 and 1, with values closer to 1 indicating a better explanatory power of the model (Eq. 4): [23].

R? = 20 F)em 0) 4
2xi- ) 2 ) @

. x average of the actual values,

. x* average of the predicted values.
As the R? value approaches 1, the model demonstrates a better fit to the data and higher explanatory power.
Conversely, an R? value close to 0 indicates weak predictive performance.

3. EXPERIMENTAL RESULTS

In In this study, the hyperparameter optimization of the LSTM-based prediction model was carried out using the
Particle Swarm Optimization (PSO) algorithm. The model was implemented using the Keras library, with the
default tanh activation function applied in the LSTM layers, and a linear activation function used in the output
layer, which is suitable for regression problems. The Adam optimization algorithm was employed throughout the
training process.

Within this scope, four key hyperparameters of the LSTM model — learning rate, batch size, number of epochs,
and dropout rate — were optimized using the PSO algorithm. The search ranges for these hyperparameters were
defined based on both similar LSTM-based energy forecasting studies in the literature and the need to balance
model accuracy with training efficiency. Accordingly, the following ranges were set: [0.0001-0.1] for the learning
rate, [16—128] for the batch size, [5—10] for the number of epochs, and [0.1-0.5] for the dropout rate. These values
were directly defined as the lower and upper bounds in the PSO algorithm, allowing it to search for the optimal
combination within this space. This configuration aimed to improve the prediction performance of the model while
keeping computational cost under control.

The number of LSTM layers was comparatively evaluated using both 2-layer and 3-layer structures. In addition,
PSO parameters such as swarm size (20 or 30) and maximum number of iterations (10 or 20) were also varied to
analyze their impact on model performance.

All model configurations were evaluated using commonly used error metrics including Mean Absolute Error
(MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and the coefficient of determination (R?).
According to the results, the best performance was achieved with a 3-layer LSTM structure, a swarm size of 20,
and 10 iterations, where the R? score reached 0.9454. A detailed performance comparison of different
configurations is presented in Table 3.1.

Table 3.1. Model performance metrics.

Layer Count  Swarm Size Max Iter MAE MSE RMSE R?
3 Layer 20 10 3.1247 15.9699 3.9962 0.9454
3 Layer 30 20 3.2616 17.5889 4.1939 0.9399
2 Layer 20 10 3.2846 17.1567 4.1421 0.9413
2 Layer 30 20 3.4835 20.1869 4.493 0.931

Table 3.2 summarizes the key hyperparameters used in the PSO and LSTM models and explains how increasing
or decreasing these values may affect model performance.
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Table 3.2. PSO and LSTM hyperparameter effects.

Category Parameter Description Impact Of Increase Impact Of Decrease
PSO SwarmSize Number of particles Broader search space, better Faster computation, risk of
simultaneously exploring global optima chances, suboptimal solutions
the solution space slower convergence
PSO Maxlter Maximum iterations More optimization attempts, Risk of premature
better accuracy convergence, insufficient
optimization
LSTM Units Number of neurons in each Greater predictive power, Lower complexity, reduced
LSTM layer higher computational cost accuracy but faster training
and risk of overfitting
LSTM Dropout Randomly drops units Prevents overfitting; too high ~ Higher risk of overfitting;
Rate during training to prevent may lead to underfitting model may memorize
overfitting instead of generalizing

Overall, it was concluded that enhancing model performance requires not only architectural depth but also careful
tuning of the parameters of the optimization algorithm used. The findings indicate that simpler architectures, when
combined with carefully selected PSO parameters, can provide optimal solutions in terms of both accuracy and
computational efficiency. In this context, it can be stated that lower SwarmSize and MaxIter values contribute to
better generalization performance by preventing overfitting.
In this section of the study, the model configuration that achieved the highest performance was identified as the
one with a 3-layer LSTM architecture and PSO parameters set to SwarmSize = 20 and MaxIter = 10. This
configuration not only produced low error metric values but also demonstrated strong generalization capability, as
evidenced by its high coefficient of determination.
Therefore, in the subsequent stages of the study, detailed analyses were carried out using only this best-performing
model configuration. Within the scope of these analyses:
e In section 3.1, the changes in training and validation losses across epochs were examined to evaluate the
model's performance during the training process.
e Insection 3.2, the predicted values were compared with the actual production data to visually assess the
model’s forecasting capability.
These two analytical steps allow for a comprehensive evaluation of the model not only in terms of numerical
performance but also in terms of learning behavior and prediction stability.

3.1. Analysis of Training and Validation Losses Across Epochs

Figure 3.1 presents the variation of training loss and validation loss values observed during the training of the deep
learning model, based on the number of epochs. The graph aims to illustrate how well the model performs on the
training data throughout the learning process, as well as its generalization capability on the validation data.
While the training loss represents the error on data directly seen by the model, the validation loss indicates how
successfully the model generalizes to unseen data. This figure serves as an important visual tool for assessing the
model’s dynamics and identifying potential issues such as overfitting or underfitting [3], [25].

An examination of the training and validation loss curves in the graph reveals that the model's learning process
proceeded in a stable manner. The training loss, which was relatively high in the first epoch, decreased rapidly
within the following few epochs, indicating that the model was able to learn the fundamental patterns in a short
period of time. Around the third epoch, the training and validation loss values converge and continue to follow a
similar trend in subsequent epochs. This suggests that the model did not exhibit signs of overfitting, and that the
learned patterns were successfully generalized to the validation data.

Moreover, the low degree of fluctuation in the validation loss indicates that the model's performance on the
validation set remained stable, and that the training process did not experience high variance learning. The absence
of a significant increase in validation loss despite the growing number of epochs also suggests that the learning
curve profile is well-suited for the implementation of an early stopping strategy. In conclusion, the graph presented
in the figure demonstrates that the model achieved a sufficient level of learning, exhibited strong generalization
capability, and with the PSO-optimized hyperparameters contributed positively to this process.

3.2. Comparison of Actual and Predicted Values

Figure 3.2 presents comparative plots of the actual values and the predicted values generated by the developed
model, aiming to evaluate its prediction performance. The upper part of the figure illustrates the overall distribution
of actual values (blue line) and predicted values (red dashed line) across all test samples. This graph provides a
broad perspective for assessing the model’s accuracy and prediction capability. The two separate plots in the lower
part of the figure focus on specific sample intervals (approximately 300-700 and 1100-1300), offering a closer
examination. These zoomed-in views allow for a more detailed observation of the model’s prediction precision
during certain time periods. Such a multi-scale visualization approach is important not only for evaluating the
model’s overall performance but also for analyzing its behavior at a local level [8], [25].
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Figure 3.2. Comparison of actual and predicted values.

The graph presented in the figure reveals compelling results in terms of evaluating the model’s predictive
capability. In the overall view, it can be observed that the predicted values (red dashed line) largely overlap with
the actual values (blue line). This indicates that the model was able to successfully apply the patterns learned
during training to the test data, demonstrating strong generalization ability.

The zoomed-in plots in the lower section provide a more detailed perspective on the model’s performance over
specific time intervals. In these sections, the model is shown to respond even to short-term fluctuations and produce
values that closely follow the actual data. However, at certain points of sudden change, there are minor deviations
between the predictions and the actual values. These discrepancies may be due to abrupt changes in the data or
insufficient representation of such patterns in the model inputs.

Nevertheless, the predicted curve effectively follows the overall trend, highlighting the model’s reliability in time
series data with trend-driven structures such as electricity generation. The visual success observed in the graph is
also supported by numerical metrics (MAE, RMSE, R?), confirming that the model’s predictive performance is
satisfactory from a practical standpoint.
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3.3. Model Performance Comparison

Figure 3.3 presents a comparative analysis of the prediction performances of different model configurations,
created using varying numbers of LSTM layers and PSO parameters (SwarmSize and MaxlIter). The comparison
is made using four different evaluation metrics: MAE, MSE, RMSE, and R?. The horizontal axis represents the
model configurations, while the vertical axis visualizes the values obtained for each metric [17].

Model Performance Comparison
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Figure 3.3. Model performance comparison.

An examination of the figure reveals clear differences in the prediction performance of the various model
configurations. The configuration with the lowest error values was the 3-layer (SwarmSize=20, MaxIter=10)
model. The fact that both MAE and RMSE values are at their minimum in this configuration indicates that the
model is capable of producing highly accurate predictions. Additionally, the R? score being the highest among all
configurations demonstrates that this model explains the variance in the data most effectively.

In contrast, the 2-layer (SwarmSize=30, MaxIter=20) model exhibited significant increases in all error metrics. In
particular, the sharp rise in the MSE value suggests an increase in prediction error magnitude and a weakened
generalization capability. Furthermore, the drop in R? to its lowest level implies that the model struggled to capture
the underlying nonlinear relationships in the data.

These results indicate that model performance depends not only on the number of layers, but also directly on the
tuning of the hyperparameters of the optimization algorithm. Configurations using fewer iterations and smaller
swarm sizes (SwarmSize) tend to reduce the risk of overfitting, resulting in more balanced and generalizable
models.

4. CONCLUSIONS

In this study, a forecasting model was developed to improve prediction accuracy in power generation processes
by utilizing a Long Short-Term Memory (LSTM) network enhanced with hyperparameter optimization based on
Particle Swarm Optimization (PSO). While the core structure of the model is based on the LSTM architecture, key
hyperparameters such as the number of layers, units per layer, and learning rate were optimized using the PSO
algorithm to enhance overall model performance.

The model was evaluated using hourly operational data obtained from a real-world thermal power plant. Its
performance was assessed through commonly used error metrics, including the coefficient of determination (R?),
Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE). The results
indicated that the PSO-based LSTM model achieved high predictive accuracy, with an R? value exceeding 0.94,
demonstrating that the predicted net power values were closely aligned with the actual observed data. These
findings suggest that PSO-based optimization offers a more reliable and effective alternative compared to
conventional forecasting methods.

For future studies, it is recommended to conduct comparative analyses using other metaheuristic algorithms (such
as Genetic Algorithm, Artificial Bee Colony, or Simulated Annealing) to further enhance the model's performance.
Additionally, testing the model on broader and more diverse datasets would provide insights into its
generalizability. The integration of PSO with other machine learning techniques such as Support Vector Machines
(SVM), Convolutional Neural Networks (CNN), or Gated Recurrent Units (GRU) may also improve prediction
performance and represents a promising direction for further research.
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In conclusion, this study demonstrates that hyperparameter optimization using PSO can be successfully applied to
LSTM-based forecasting models in energy production processes, offering a robust and practical approach to
energy management. Future research may focus on adapting this model to different types of energy sources and
operational conditions, thereby contributing to the development of more comprehensive decision support systems
in the energy sector.
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