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Özet: Uçak motorlarından kaynaklanan emisyonların azaltılması, çevresel sürdürülebilirlik ve hava 

kalitesinin korunması açısından kritik bir öneme sahiptir. Özellikle kalkış safhasında yayılan Smoke 

Number ( SN), havaalanı çevresindeki hava kirliliğini artıran önemli bir parametredir. Bu çalışmada, 

SN değerini tahmin etmek amacıyla yenilikçi bir yapay sinir ağı (YSA) modeli geliştirilmiştir. 

Modelleme sürecinde, Uluslararası Sivil Havacılık Örgütü’ne (ICAO) ait Aircraft Engine Emissions 

Databank (EEDB) veri seti kullanılmıştır. En iyi tahmin performansını elde etmek amacıyla üç farklı 

eğitim algoritması uygulanmıştır: Bayesian Regularization (trainbr), Levenberg-Marquardt (trainlm) ve 

Scaled Conjugate Gradient (trainscg). Geliştirilen modellerin performansı, ortalama karesel hata (MSE), 

ortalama mutlak hata (MAE), kök ortalama kare hata (RMSE), korelasyon katsayısı (R) ve 

determinasyon katsayısı (R²) gibi istatistiksel kriterlerle değerlendirilmiştir. Sonuçlara göre, trainbr 

algoritmasıyla eğitilen model en yüksek doğruluk oranına ulaşmış ve SN değerini 98% üzerinde 

doğrulukla (R = 0.98761) tahmin etmiştir. Bu çalışmada geliştirilen model, sürdürülebilir havacılık 

uygulamalarına katkı sunmakta ve emisyon yönetiminin optimize edilmesi açısından önemli bir 

potansiyel taşımaktadır. 

Anahtar Kelimeler: Uçak emisyonları; yapay sinir ağları; görsel duman yoğunluğu; sürdürülebilirlik; 

EEDB 

 

 

Prediction of the smoke number from aircraft engines during the takeoff phase 

using artificial neural networks 

 
Abstract: Reducing emissions from aircraft engines is critically important for environmental 

sustainability and the preservation of air quality In particular, the Smoke Number (SN) emitted during 

the take-off phase is an important parameter that increases air pollution around airports. In this study, 

an innovative artificial neural network (ANN) model was developed to predict the SN value. The 

modeling process utilized the Aircraft Engine Emissions Databank (EEDB) provided by the 

International Civil Aviation Organization (ICAO). To achieve the best prediction performance, three 

different training algorithms were applied: Bayesian Regularization (trainbr), Levenberg–Marquardt 

(trainlm), and Scaled Conjugate Gradient (trainscg). The performance of the developed models was 

evaluated using statistical criteria such as mean squared error (MSE), mean absolute error (MAE), root 

mean square error (RMSE), correlation coefficient (R), and coefficient of determination (R²). The results 

indicated that the model trained with the trainbr algorithm achieved the highest accuracy, predicting the 

SN value with 98% accuracy (R = 0.98761). The proposed model contributes to sustainable aviation 

practices and holds significant potential for optimizing emission management. 

Keywords: Aircraft emissions; artificial neural networks; smoke number; sustainability; EEDB
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1. Giriş 

Ulaştırma sektörü, günümüzde hava kirliliğinin temel kaynaklarından biri olarak öne çıkmaktadır 

(Kodak, 2024). Özellikle hava trafiğinde gözlenen artış ve operasyon ölçeğindeki büyüme, havacılık 

sektörünün hızlı bir şekilde gelişmesine neden olmaktadır. Bu büyüme, özellikle uçak motorlarından 

kaynaklanan egzoz emisyonları nedeniyle önemli çevresel sorunlara yol açmaktadır. Bu emisyonlar 

arasında yer alan is partikülleri ve görsel duman yoğunluğu (Smoke Number, SN), yerel hava kalitesini 

olumsuz etkilemekte ve uzun vadede iklim değişikliğine katkıda bulunmaktadır. 

Uluslararası Sivil Havacılık Örgütü (ICAO), motor egzozundan çıkan dumanın görünürlüğünü ölçmek 

için SN parametresini tanımlamıştır. Bu ölçüm, egzoz gazları üzerine yerleştirilen filtreler aracılığıyla 

yapılır ve yüksek SN değerleri, egzozda daha fazla kurum partikülü bulunduğunu gösterir (Martini, 

2008). ICAO’nun Çevresel Koruma Komitesi (CAEP), 2010 yılında uçucu olmayan partikül madde 

(nvPM) emisyonlarının ölçümü için kavramsal bir sistem önermiş, 2016 yılında ise ilk nvPM standardını 

kabul etmiştir. Bu standart, SN ile nvPM kütle yoğunluğu arasındaki istatistiksel ilişkiye dayandırılmış 

olup, 1 Ocak 2020 itibarıyla 26.7 kN minimum itme gücüne sahip tüm motorlar için zorunlu hale 

gelmiştir (Brink, 2020). 

SN ve partikül emisyonlarının modellenmesi üzerine pek çok çalışma yapılmıştır. Stettler ve arkadaşları 

(2013), modern uçak motorlarından yayılan kara karbon (BC) emisyonlarının SN ile ilişkisini 

güncelleyerek tahmin doğruluğunu artırmıştır. Martini (2008), mevcut motorlar için kurum 

emisyonlarını tahmin eden ve gelecekteki tasarımlar için performans öngören bir model geliştirilmiştir. 

Wayson ve arkadaşları (2009) ise FOA3.0 metodolojisi ile ticari uçak motorlarından kaynaklanan ince 

partikül madde emisyonlarını tahmin ederek havaalanı çevresindeki hava kirliliği etkilerini incelemiştir. 

Yakıt bileşiminin emisyonlar üzerindeki etkisine yönelik çalışmalar da literatürde yer almaktadır. Brink 

(2020), CFM56-7B motoru üzerinde farklı yakıt senaryoları ile NOₓ, CO ve kurum emisyonlarını Pycaso 

modeliyle değerlendirmiştir. Christie ve arkadaşları (2017), Jet A-1 ve alternatif yakıt karışımlarında 

SN ile nvPM kütle konsantrasyonu arasındaki ilişkiyi analiz etmiştir. Qasem ve arkadaşları (2023) ise 

yakıtların moleküler bileşimine dayalı olarak duman noktası değerini yapay sinir ağları ile yüksek 

doğrulukla tahmin etmiştir. 

Son yıllarda makine öğrenmesi temelli yaklaşımlar da önem kazanmıştır. Agarwal ve arkadaşları (2019), 

SCOPE11 yöntemini geliştirerek motor çıkışında BC ve SN tahminleri yapmıştır. Ge ve arkadaşları 

(2022), nvPM emisyonlarını tahmin eden APMEP-CNN adlı bir yapay sinir ağı modeli geliştirilmiştir. 

Zou ve arkadaşları (2025), uçak yakıt tüketimini modellemek üzere makine öğrenmesi teknikleri 

kullanmıştır. Ma ve arkadaşları (2025) ise uçaklarda emisyon tahmini için gelişmiş veri odaklı 

yaklaşımlar geliştirmiştir. Oruc (2025), uçak motorlarının havalimanı cevresindeki emisyon değerlerini 

cuckoo search algorithm (CSA) ve support vector regression (SVR) yöntemiyle tahmin etmektedir. 

Diğer taraftan, emisyonların iklim ve hava kalitesi üzerindeki etkilerini değerlendiren çalışmalar da 

literatürde önemlidir. Trivanovic ve Pratsinis (2023), uçak motorlarından kaynaklanan kurum 

emisyonlarının iklim ve hava kalitesi üzerindeki etkilerini incelemiştir. Deng ve arkadaşları (2021), sivil 

uçak kargo bölmelerinde erken yangın tespiti için kızılötesi görüntü işleme tabanlı yeni bir duman 

algılama yöntemi geliştirmiştir. Jagtap ve arkadaşları (2024) ise sıvı hidrojenle çalışan turbofan motoru 

ile testler yapmıştır. Kurt (2024a), yakıt akışı parametresi değeri ile uçak motorlarında performans 

değerlendirmesi yapmıştır. 

Uçakların güvenirliğini ve güvenliğini artırmak için uçak motorlarının ölçümleri yapılır ve kaydedilir. 

ICAO’nun Aircraft Engine Emissions Databank (EEDB) verileri, kalkış safhasında motor 

performansının ve çevresel etkilerin değerlendirilmesi için güvenilir bir temel sunmaktadır. Uçak 

motorları yüksek sıcaklık ve devirlerde çalıştığı için performans bozulması meydana gelebilir. 

Performans bozulması uçaklarda arızalara ve kazalara neden olabilir. Kalkış safhası, uçak motorlarının 

en yüksek anlık yakıt tüketimine ulaştığı uçuş evresidir; bu durum, motorların maksimum itki üretmesi 

nedeniyle gerçekleşir. Uçak motorları kalkış safhasında yüksek sıcaklık ve devirlerde çalıştığı için, uçak 

güvenliği açısından incelenmesi gereken bir süreçtir (Kurt, 2024b). Kalkış sırasında oluşan SN değeri, 

hem hava kalitesi hem de görsel kirlilik açısından kritik bir göstergedir. Literatürde uçağın sadece kalkış 

safhasında oluşan SN değerini tahmin eden bir yapay sinir ağı modeli bulunmamaktadır.  
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Bu çalışmada, kalkış safhasında uçak motorlarından kaynaklanan görsel duman yoğunluğunu tahmin 

etmeye yönelik yenilikçi bir yapay sinir ağı (YSA) modeli geliştirilmiştir. Model, Uluslararası Sivil 

Havacılık Örgütü’nün (ICAO) Aircraft Engine Emissions Databank (EEDB) kapsamında yer alan 447 

farklı motor verisi kullanılarak eğitilmiş ve SN tahmininde %97’nin üzerinde doğruluk oranı elde 

etmiştir. Geliştirilen bu yaklaşım, uçak motorlarının kalkış anındaki performansını uzman görüşüne 

veya fiziksel test sistemlerine ihtiyaç duymaksızın değerlendirebilecek bir altyapı sunmaktadır. 

Literatürde kalkış safhasına özgü SN tahminine odaklanan bir YSA modelinin bulunmaması, çalışmanın 

özgün katkısını ve bilimsel değerini ortaya koymaktadır. 

2. Veri ve yöntemler 

2.1. Veri seti 

Bu çalışmada görsel duman yoğunluğunu tahmin etmek için eğitim, test ve doğrulama verilerine ihtiyaç 

duyulmaktadır. Geliştirilecek model de kullanmak için ICAO uçak motorları egzoz emisyon veri seti 

seçilmiştir (ICAO, 2024). EEDB veri seti, ICAO Annex 16, Volume II'de belirtilen prosedürlere göre 

ölçülen ve motor üreticileri tarafından sağlanan emisyon bilgilerini içerir. Veri seti, özellikle 26.7 

kilonewton üzeri statik itiş gücüne sahip turbojet ve turbofan motorlar için düzenlenmiş emisyon 

verilerini kapsamaktadır. Tablo 1’de gösterildiği gibi ICAO tarafından belirlenmiş safhalar, süre ve 

itki ayarı ile ölçümler yapılarak bu veriler elde edilmektedir. 

Tablo 1.  Referans emisyonlarının LTO (İniş ve Kalkış) döngüsü (ICAO, 2020) 

Safhalar Süre (sn) İtki ayarı (kN) 

Kalkış 0,7 100 % 

Tırmanma 2,2 85 % 

Yaklaşma 4,0 30 % 

Taksi 26,0 7 % 

Tablo 2’de görsel duman yoğunluğunu tahmin etmek için eğitimde kullanacağımız parametreler ve bu 

parametrelerin istatiksel özellikleri sunulmuştur. Çalışma da kullanılan veri setinin 70 % i eğitim, 15 

% doğrulama ve 15 % test aşamasında kullanılmak için Matlab ortamında rastgele ayrılmıştır. Veri 

setinden yanlılığı (bias) önlemek, temsil gücünü artırmak ve istatistiksel olarak güvenilir sonuçlar elde 

etmek için rastgele veri seçimi yapılmıştır.  

Tablo 2.  Kalkış safhasında uçak motoruna ait veri setindeki parametrelerin değerleri (ICAO, 2024) 

Parametreler Örnek En az En çok Ortalama Std. sapma 

Motor tipi 313 1,00 2,00 1,1917 ,39426 

Baypas oranı 313 0,64 12,72 6,2846 2,30511 

Basınç oranı 313 11,40 49,40 30,6284 7,78073 

Motorun maksimum nominal itme 

gücü (kN) 
313 28,49 504,90 187,2748 114,63808 

Çevresel barometrik basınç (kPa) 313 0,00 1019394,50 10802,0715 99831,59139 

Ortam sıcaklığı (T) 313 144,00 308,50 287,1121 11,24516 

Ortam nemi (kg/kg) 313 0,00 0,02 0,0073 0,00371 

Yakıttaki hidrojen atomlarının 

karbon atomlarına oranı 
313 0,00 13,89 2,2060 1,86219 

Yakıttaki aromatik 

hidrokarbonların yüzdesi (%) 
313 0,00 21,85 16,9228 2,22131 

Kalkış safhasında görsel duman 

yoğunluğu 
313 0,00 46,30 7,3685 5,93241 

Doğrulama ve test grupları modelin doğruluğunu değerlendirmek için kullanılacaktır. Veri setindeki 

farklı ölçeklerdeki değişkenleri ortak bir ölçeğe getirerek modelin daha doğru ve dengeli öğrenmesini 

sağlamak için normalizasyon işlemi yapılmıştır. Normalizasyon işlemi denklem (1) de gösterildiği gibi 

minimum-maksimum ölçekleme yöntemi kullanılmıştır. 
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𝑋′ =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
                                                       (1) 

2.2. Yapay sinir ağı yöntemi 

Yapay sinir ağları (YSA), doğrusal ve doğrusal olmayan problemlerin çözümünde iyi sonuçlar veren, 

insan beynindeki nöronların çalışma sistemini örnek alan bir modeldir (Ateş, 2022). YSA modellerinin 

en önemli avantajı bir sistem hakkında tahmin yapabilmek için herhangi bir matematiksel bir modele 

ihtiyaç duymamaktadır. YSA modellerinde amaç, eğitilen modelin giriş parametreleriyle çıkış 

parametresi arasındaki ilişkiyi veri kümesi üzerinden öğrenmesidir (Kılıç vd., 2024). Ayrıca eğitilen 

modelin, daha önce hiç görmediği girdilere karşılık doğru tahminler yapabilmesi istenmektedir.  

YSA içerisinde en çok kullanılan ağ yapısı, hataların geriye yayılma ilkesine göre çalışan geriye 

beslemeli ağ mimarisidir. Bir YSA hücresi, girdi katmanı, değişken ağırlık çarpanları, toplam 

fonksiyonu, tanımlama (aktivasyon) fonksiyonu ve çıktı katmanı olmak üzere beş ana bölümden oluşur 

(Taşar vd., 2018). Bu ağ yapısının genel mimari yapısı Şekil 1’de gösterilmiştir. 

 

Şekil 1. Temel bir YSA hücresi modeli 

Şekil 1’de giriş parametre değerleri Xi sembolüyle gösterilmiştir. Her bir giriş parametresi değeri 

ağırlıklarla çarpıldıktan sonra eşik değeri (bias) ile toplanarak aktivasyon fonksiyonuna iletilir. 

Aktivasyon fonksiyonu aracılığıyla işlem gerçekleştirilerek modelin tahmin çıktısı olan yi değeri elde 

edilir (Yavuz ve Deveci, 2012). Eğitim aşamasında, başlangıçta rastgele belirlenen ağırlıklar, modelin 

tahmin çıktıları ile gerçek değerler arasındaki fark doğrultusunda optimize edilir. Geliştirilen modelin 

eğitim aşamasında en küçük hata elde edilene kadar bu süreç sürer. YSA modelleri farklı problemlerde 

etkili sonuçlar verebilmektedir. Bu nedenle YSA modelleri, tahmin, sınıflandırma, kümeleme, 

optimizasyon ve doğal dil işleme gibi çeşitli problemlerin çözümünde kullanılmaktadır. 

3. Model sonuçları ve değerlendirmeler  

Bu çalışmada, uçak motorlarından kaynaklanan görsel duman yoğunluğunu tahmin etmede YSA 

modelinin performansı araştırılmıştır. Uçak motorlarına ait ölçüm verileri ICAO kurumunun web 

sayfasından elde edilmiştir. Elde verilerin ham hali, analiz edilmeden verimli kullanılamaz (Mumcu & 

Meşhur, 2025). Uçak motorları kalkış aşamasında en yüksek performansı gösterdiği için kalkış 

safhasındaki veriler seçilmiştir. Veri setinde toplam 447 uçak motoruna ait ölçüm verileri modeli 

geliştirmek için kullanılmıştır. Çalışmada, tüm veriler 70 % eğitim, 15 % doğrulama ve 15 % test için 

ayrılmıştır. Eğitim için 313 uçak motoruna ait veri, test ve doğrulama için 67 uçak motor verisi 

kullanılmıştır.  

Modelin geliştirilmesi için EEDB veri setinden; motor tipi, baypas oranı, basınç oranı, motorun 

maksimum nominal itme gücü, çevresel barometrik basınç, ortam sıcaklığı, ortam nemi, yakıttaki 

hidrojen atomlarının karbon atomlarına oranı, yakıttaki aromatik hidrokarbonların yüzdesi ölçüm 

değerleri giriş parametresi olarak belirlenmiştir. Bu parametreler modelin giriş katmanına 
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uygulandığında çıkışından kalkış safhasında SN tahmin edilecektir. Görsel duman yoğunluğunu tahmin 

eden modeli geliştirmek için Bayesian Regularization (trainbr), Levenberg-Marquardt (trainlm), ve 

Scaled Conjugate Gradient (trainscg) eğitim algoritması kullanılmıştır. Bayesian Regularization 

(trainbr), yapay sinir ağlarının eğitiminde kullanılan gelişmiş bir algoritmadır ve modelin genelleme 

yeteneğini artırmak amacıyla ağırlıklara ceza terimi ekleyerek aşırı öğrenmeyi (overfitting) engeller. 

Levenberg-Marquardt (trainlm) algoritması ise, Newton türevli optimizasyon yöntemleri ile gradyan 

iniş yönteminin birleşimi olarak çalışır ve ikinci dereceden hata yüzeylerine karşı hassasiyeti sayesinde 

hızlı yakınsama sağlar. Scaled Conjugate Gradient (trainscg) algoritması, belleği verimli kullanan bir 

eğitim algoritmasıdır. Bu üç algoritma ile eğitilen modeller arasında en iyi modeli seçmek için hata 

performans kriterlerine göre sonuçların karşılaştırılması gerekmektedir. Bu karşılaştırma için beş ayrı 

hata performans kriteri seçilmiştir. 

Geliştirilen modeller için ortalama karesel hata (MSE), ortalama mutlak hata (MAE), kök ortalama kare 

hata (RMSE), korelasyon katsayısı (R) ve determinasyon katsayısı (R2) hesaplanmıştır. Elde edilen 

sonuçlar model tahmini ve gözlem verilerinin performanslarını karşılaştırmak için kullanılmıştır. MSE, 

MAE ve RMSE hata performans modellerinin matematiksel ifadeleri sırasıyla Denklem (2)-(4) de 

verilmiştir. Burada N veri sayılarını, 𝑆𝑁ö𝑙çü𝑚 kalkış safhasında görsel duman yoğunluğunu ve 𝑆𝑁𝑡𝑎ℎ𝑚𝑖𝑛 

tahmin edilen kalkış safhasında görsel duman yoğunluğunu göstermektedir.  

𝑀𝑆𝐸 =
1

𝑁
∑(𝑆𝑁ö𝑙çü𝑚 − 𝑆𝑁𝑡𝑎ℎ𝑚𝑖𝑛)2                              (2)

𝑁

𝑖=1

 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑆𝑁ö𝑙çü𝑚 − 𝑆𝑁𝑡𝑎ℎ𝑚𝑖𝑛|                                (3)

𝑁

𝑖=1

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑆𝑁ö𝑙çü𝑚 − 𝑆𝑁𝑡𝑎ℎ𝑚𝑖𝑛)2𝑁

𝑖=1                        (4) 

Tablo 3, üç farklı eğitim algoritmasının (Bayesian Regularization - trainbr, Levenberg-Marquardt - 

trainlm, ve Scaled Conjugate Gradient - trainscg) hata performanslarını istatistiksel hata ölçütlerine göre 

karşılaştırmalı olarak sonuçları sunmaktadır. Kalkış safhasında görsel duman yoğunluğunu en iyi tahmin 

eden YSA modelini seçmek için karşılaştırmalı analiz, korelasyon katsayısı (R), ortalama kare hata 

(MSE), ortalama mutlak hata (MAE), kök ortalama kare hata (RMSE), determinasyon katsayısı (R²) 

kriterleri üzerinden gerçekleştirilmiştir.  

Tablo 3.  Kalkış safhasında görsel duman yoğunluğunu tahmin eden YSA modellerinin performans 

sonuçları. 

 

Hata kriterleri ve aşamalar 

Eğitim algoritmaları 

trainbr trainlm trainscg 

 

R 

Eğitim 0,9876122 0,9586146 0,5963826 

Doğrulama 0,9752393 0,8991308 0,6253009 

Test 0,9735947 0,8456342 0,5841275 

 

MSE 

Eğitim 0,0003922 0,0013880 0,0103469 

Doğrulama 0,0005581 0,0021312 0,0084362 

Test 0,0008268 0,0037914 0,0081150 

 

MAE 

Eğitim 0,0120051 0,0241384 0,0763758 

Doğrulama 0,0131773 0,0292867 0,0742715 

Test 0,0131660 0,0338459 0,0703092 

 

RMSE 

Eğitim 0,0198040 0,0372563 0,1017198 

Doğrulama 0,0236252 0,0461650 0,0918489 

Test 0,0287557 0,0615748 0,0900836 

 

R2 

Eğitim 0,9753385 0,9188281 0,3550606 

Doğrulama 0,9444440 0,7968889 0,3864445 

Test 0,9478341 0,6308348 0,3063163 

Eğitim süresi (saniye) 4,838655 4,761117 4,479625 



Kurt, B. (2025)   Akıllı Ulaşım Sistemleri ve Uygulamaları Dergisi Cilt:8 – Sayı:2 

152 

 

Trainbr algoritması, tüm metriklerde en düşük hata oranlarını ve en yüksek korelasyon katsayılarını 

sağlamıştır. Özellikle eğitim, doğrulama ve test setleri için R değerleri sırasıyla 0.9876, 0.9752 ve 

0.9735 düzeyindedir. Bu değerler, modelin verilerle yüksek doğrusal ilişki kurduğunu ve genelleme 

yeteneğinin güçlü olduğunu göstermektedir. Benzer şekilde, R² değerleri de eğitim ve test aşamalarında 

sırasıyla 0.9753 ve 0.9478 gibi yüksek seviyelerdedir. Ayrıca, trainbr algoritmasının MSE (eğitimde 

0.0003922) ve RMSE (eğitimde 0.0198) değerleri, modelin hata miktarını minimum düzeyde tuttuğunu 

göstermektedir. Bu sonuçlar, overfitting eğilimi olmaksızın yüksek doğrulukla öğrenme başarısı elde 

edildiğine işaret etmektedir. 

Trainlm algoritması, trainbr’ye kıyasla daha yüksek hata oranları ve daha düşük R-R² değerleri 

üretmiştir. Eğitim seti için R değeri 0.9586, test seti için ise 0.8456 olarak ölçülmüştür. MSE 

değerlerinin daha yüksek (örneğin test aşamasında 0.0037914) olması, modelin doğruluk açısından daha 

sınırlı performans sergilediğini göstermektedir. Bununla birlikte, eğitim süresi açısından en hızlı 

algoritma olmasa da 4.76 saniye ile düşük süreli bir hesaplama gerektirmiştir. 

Trainscg algoritması ise performans açısından en zayıf sonucu vermiştir. Eğitim ve test için R değerleri 

sırasıyla 0.5963 ve 0.5841 seviyesindedir ve bu durum, modelin tahmin başarısının oldukça düşük 

olduğunu ve doğrusal ilişkinin zayıf kaldığını göstermektedir. Ayrıca MSE ve MAE gibi hata metrikleri, 

diğer algoritmalara kıyasla oldukça yüksektir. Bu durum, özellikle küçük veri setleri veya karmaşık 

doğrusal olmayan problemlerde trainscg algoritmasının yetersiz kalabileceğini göstermektedir. 

Sonuç olarak, tüm kriterler dikkate alındığında trainbr algoritması, hem öğrenme doğruluğu hem de 

genelleme başarısı açısından en iyi sonuçları sunmaktadır. Düşük hata metrikleri, trainbr algoritması ile 

eğitilen modeli SN parametresini tahmin eden en iyi model olduğunu göstermektedir. Geliştirilen en iyi 

modelin detayları Tablo 4’de ve yapısını gösteren ekran alıntısı Şekil 2’de sunulmuştur. Kalkış 

safhasında görsel duman yoğunluğunu tahmin eden modelin hata performans grafikleri Şekil 3-5’de 

gösterilmiştir. 

Tablo 4.  Kalkış Trainlm eğitim algoritması ile geliştirilen YSA modelinin ayrıntıları. 
Ağın parametreleri Detaylar 

Mimarisi 9 giriş, 1 çıkış, 2 gizli katman nöron sayısı (15-1) 

Aktivasyon fonksiyonu Gizli katman: ‘tansig’ – ‘purelin’ 

Çıkış katmanı: “Linear” 

Eğitim algoritması Bayesian Regularization – ‘trainbr’ 

Performans fonksiyonu kriterleri Minimum MSE 

Durdurma kriterleri Doğrulama hatası artmaya başladığında eğitim durdurulur 

Veri seti Eğitim Doğrulama Test 

313 tane 67 tane 67 tane 

 

 

Şekil 2. Matlab ortamında geliştirilen YSA modelinin yapısı 
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Şekil 3. Geliştirilen en iyi YSA modelinin eğitim veri setindeki performans grafikleri 
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Şekil 4. Geliştirilen en iyi YSA modelinin doğrulama veri setindeki performans grafikleri 
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Şekil 5. Geliştirilen en iyi YSA modelinin test veri setindeki performans grafikleri 
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4. Sonuçlar 

Bu çalışma kapsamında, uçak motorlarının kalkış safhasında görsel duman yoğunluğunu yüksek 

doğrulukla tahmin edebilen, YSA tabanlı bir model geliştirilmiştir. Literatürde EEDB veri setini 

kullanarak görsel duman yoğunluğunu tahmin eden bir çalışma bulunmamaktadır. ICAO’nun EEDB 

veri setinden elde edilen motor ve çevresel parametreler, modelin giriş verileri olarak kullanılmış; farklı 

eğitim algoritmalarının karşılaştırıldığı analiz sonucunda, Bayesian Regularization  (trainbr) algoritması 

en başarılı tahmin performansını göstermiştir. Model, eğitim, doğrulama ve test aşamalarında yüksek 

korelasyon katsayısı (R) ve düşük hata oranları (MSE, MAE, RMSE) ile dikkat çekmiştir. 

Geliştirilen model, sadece teorik bir başarı değil, aynı zamanda uygulama açısından da önemli 

kazanımlar sunmaktadır. Bu model motor tasarım süreçlerinde çevresel etki değerlendirmeleri ve uçak 

motorlarının performans bozulmasını tespit etme potansiyeli taşımaktadır. Ayrıca, görsel duman 

yoğunluğu ile nvPM emisyonları arasındaki istatistiksel ilişkiler göz önünde bulundurulduğunda, 

geliştirilen bu tahmin modeli, dolaylı olarak yeni nesil regülasyonlara (örneğin nvPM standartları) 

uyumluluk analizlerinde de kullanılabilecek potansiyele sahiptir. Gelecekte yeni sensörler ve sistemler 

geliştirilmesi ile uçakların test sistemlerine gereksinim duymadan uçak motorlarının performansı anlık 

olarak değerlendirilebilecektir. Havacılık otoritesi bu sistemlerin uygulanmasına izin verdiğinde, 

uçakların güvenliği ve güvenirliği artacaktır. Gerçek uçuş verileriyle doğrulama yapılmadığından 

modelin saha koşullarındaki geçerliliği henüz gösterilememiştir. Sonuç olarak, bu araştırma, YSA ile 

görsel duman yoğunluğunun tahmini konusunda literatüre yenilikçi ve uygulanabilir bir katkı sunmakta; 

sürdürülebilir ve çevreci havacılık teknolojilerinin geliştirilmesine temel oluşturmaktadır.  

Destek ve Teşekkür Beyanı 

Çalışma herhangi bir destek almamıştır. Teşekkür edilecek bir kurum veya kişi bulunmamaktadır. 

Çıkar Çatışması Beyanı 

Çalışma kapsamında herhangi bir kurum veya kişi ile çıkar çatışması bulunmamaktadır. 
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