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ABSTRACT 
Vision-Language Models (VLMs) have introduced a new paradigm shift in image classification by 
integrating visual and textual modalities. While these models have demonstrated strong performance on 
multimodal tasks, their effectiveness in purely visual classification remains underexplored. This study 
presents a comprehensive, metric-driven comparative analysis of eight state-of-the-art VLMs—GPT-
4o-latest, GPT-4o-mini, Gemini-flash-1.5-8b, LLaMA-3.2-90B-vision-instruct, Grok-2-vision-1212, 
Qwen2.5-vl-7b-instruct, Claude-3.5-sonnet, and Pixtral-large-2411—across four datasets: CIFAR-10, 
ImageNet, COCO, and the domain-specific New Plant Diseases dataset. Model performance was 
evaluated using accuracy, precision, recall, F1-score, and robustness under zero-shot and few-shot 
settings. Quantitative results indicate that GPT-4o-latest consistently achieves the highest performance 
on typical benchmarks (accuracy: 0.91, F1-score: 0.91 on CIFAR-10), substantially surpassing 
lightweight models such as Pixtral-large-2411 (accuracy: 0.13, F1-score: 0.13). Near-perfect results on 
ImageNet and COCO likely reflect pre-training overlap, whereas notable performance degradation on 
the New Plant Diseases dataset underscores domain adaptation challenges. Our findings emphasize the 
need for robust, parameter-efficient, and domain-adaptive fine-tuning strategies to advance VLMs in 
real-world image classification. 
 
Keywords: Vision-Language Models, Image Classification, Multimodal Learning, Zero-Shot 
Classification, Few-Shot Learning, Model Generalization. 
 

 
1. INTRODUCTION 
The field of computer vision has advanced 
rapidly, driven by breakthroughs in deep 
learning, resulting in outstanding achievements 
in tasks such as object detection, segmentation, 
and classification. Traditionally, Convolutional 
Neural Networks (CNNs) have dominated 
image classification, using hierarchical feature 
extraction to achieve high accuracy across 
diverse datasets [1-4]. In recent years, Vision 
Transformers (ViTs) have emerged, utilizing 
self-attention mechanism to capture long-range 
dependencies and enhance robustness to 
complex visual patterns [5]. These architectures 
have established new benchmarks on various 
datasets such as CIFAR-10 [6], ImageNet [7], 
MNIST [8], CelebA [9], and COCO [10], 

solidifying their position as the standard for 
image classification tasks. 
 
The emergence of VLMs marks a significant 
paradigm shift by integrating both visual and 
textual modalities, thereby offering a novel 
approach to image understanding. Trained on 
large-scale datasets comprising image-text 
pairs, these models utilize cross-modal learning 
to generate enriched semantic representations. 
Unlike traditional vision-only architectures, 
VLMs augment visual information with 
linguistic context, enabling enhanced reasoning 
in multimodal tasks such as image captioning, 
visual question answering (VQA), and scene 
understanding. However, their effectiveness in 
pure image classification—where explicit 
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textual context is absent—remains an open 
research question [11-14]. 
 
Despite their potential, VLMs encounter several 
challenges when applied to image classification 
tasks. Unlike CNNs and ViTs, which are 
optimized for extracting discriminative features 
from visual inputs, VLMs often rely on 
multimodal embeddings that may not be fully 
utilized in vision-only tasks. Typically, VLMs 
exhibit higher computational and memory 
requirements, resulting in increased inference 
latency compared to deep learning models, 
raising concerns about their efficiency for high-
performance classification tasks. In addition, 
their reliance on pretraining corpora comprising 
image-text pairs poses risks of biases, domain 
dependencies, and reduced generalization when 
applied to vision-only tasks. Therefore, rigorous 
comparative analyses of VLMs and unimodal 
vision models are crucial to understand their 
advantages and limitations in image 
classification. 
 
Traditional image classification models operate 
exclusively within the visual domain, extracting 
features from pixel-level data to identify 
patterns, textures, and object structures. CNN-
based architectures, such as VGG [15], 
Inception [16], ResNet [17], DenseNet [18-20], 
and EfficientNet [21], have demonstrated 
remarkable success in large-scale image 
classification due to their use of local receptive 
fields, parameter sharing, and deep hierarchical 
structures. ViTs have further advanced the field 
by leveraging the self-attention mechanism that 
allow models to capture long-range 
dependencies and improve feature learning 
across entire images, achieving significant 
performance on diverse benchmark datasets and 
proving their robustness in various real-world 
applications [22-33]. In contrast, VLMs use a 
fundamentally different method by integrating 
both visual and textual inputs to learn 
multimodal representations [34-37]. Prominent 
examples include GPT-4V (OpenAI), Gemini 
1.5 (Google DeepMind), LLaVA-Next (Meta), 
Claude 3 (Anthropic), and Qwen-VL (Alibaba 
Cloud), all of which have achieved notable 
success in multimodal tasks such as image 
captioning, VQA, and cross-modal retrieval. 
Despite their advantages in semantic reasoning, 
the application of VLMs to classification tasks 
that lack explicit textual context remains a 
critical area of research. Unlike tasks that 

require joint vision-language understanding, 
image classification relies primarily on intrinsic 
visual characteristics, such as color, shape, 
texture, and spatial relationships, raising the 
critical questions about whether VLMs can 
outperform (or even match) established single-
modality models without fully leveraging their 
linguistic capabilities. While VLMs present 
advantages such as zero-shot classification, 
transfer learning, and improved generalization, 
they also pose notable challenges. Their 
reliance on large-scale multimodal pretraining 
corpora increases the risk of domain biases, 
limiting their effectiveness in exclusively visual 
tasks. Additionally, VLMs require substantial 
computational resources, making them less 
efficient and scalable compared to traditional 
CNNs and ViTs for high-throughput image 
classification scenarios. Consequently, 
evaluating their performance on standard and 
domain-specific classification benchmarks is 
crucial to understanding the feasibility and 
limitations of VLMs in vision-centric 
applications. 
 
In this study, we address the following research 
questions: 

- How do VLMs perform in terms of 
classification accuracy, precision, recall, and 
F1-score across diverse datasets? 

- Can VLMs generalize effectively to visual 
domains without textual context, or do they 
exhibit limitations in such settings? 

- What computational trade-offs arise when 
using VLMs for large-scale classification 
tasks? 

- How robust are these models to data 
variations, including domain shifts and input 
noise? 

 
To answer these questions, we conduct 
extensive evaluations on eight state-of-the-art 
VLMs—GPT-4o-latest, GPT-4o-mini, Gemini-
flash-1.5-8b, LLaMA-3.2-90B-vision-instruct, 
Grok-2-vision-1212, Qwen2.5-vl-7b-instruct, 
Claude-3.5-sonnet, and Pixtral-large-2411—
across four benchmark datasets: CIFAR-10, 
ImageNet, COCO, and New Plant Diseases [38] 
(as a domain-specific dataset). Our comparative 
analysis focuses on performance metrics such as 
accuracy, precision, recall, F1-score, 
robustness, and computational efficiency in 
zero-shot and few-shot classification settings. 
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In summary, this study presents a 
comprehensive and quantitative benchmarking 
analysis of various VLMs across multiple 
standard and domain-specific image 
classification datasets. The key contributions of 
this research are as follows: 

- Comprehensive Benchmarking of VLMs: We 
systematically evaluate eight state-of-the-art 
VLMs across four diverse datasets under 
both zero-shot and few-shot settings. This 
extensive analysis offers valuable insights 
into the generalization capabilities of VLMs 
across domains with varying levels of 
complexity. 

- Novel Analysis of Prompting Strategies: We 
investigate the impact of zero-shot and few-
shot prompting strategies on VLM 
performance, providing a detailed 
understanding of how prompt engineering 
shapes classification outcomes across 
different contexts. 

- Domain-Specific Dataset Evaluation: We 
use the New Plant Diseases dataset to assess 
VLM performance on fine-grained, domain-
specific classification tasks, addressing an 
area that remains largely unexplored in the 
existing literature. 

 
2. RELATED WORK 
Traditional Deep Learning Approaches: 
Over the past decade, image classification has 
experienced substantial advancement, driven 
predominantly by advances in deep learning. 
CNNs have become the cornerstone of modern 
computer vision, demonstrating remarkable 
performance in tasks such as object detection, 
segmentation, and classification. Their strength 
lies in their capacity to learn hierarchical 
representations of visual data, effectively 
capturing both low-level features, such as edges 
and textures, as well as high-level semantic 
information [39-41]. However, their inherently 
unimodal architecture limits their ability to 
incorporate external information, such as 
textual cues, thereby constraining their 
effectiveness in tasks that require contextual 
reasoning. Successive architectures, including 
VGG, Inception, ResNet, DenseNet, and 
EfficientNet consolidated CNNs as the 
dominant method for image classification. 
 
Emergence of Multimodal Models: To 
overcome the limitations of unimodal models, 
multimodal learning approaches have gained 
traction. CLIP introduced contrastive learning 

on large-scale image-text datasets, enabling 
zero-shot generalization [32]. ALIGN further 
scaled this paradigm, improving robustness and 
cross-domain transfer ability via vast, noisy 
data [12]. These models demonstrate the 
potential of large-scale multimodal pretraining 
to generalize across diverse vision tasks, 
including classification, detection, and style 
transfer, without requiring task-specific 
supervision [22-37]. 
 
The transformative impact of transformer 
architectures in natural language processing 
(NLP) has catalyzed their widespread adoption 
in vision tasks. Pioneering models such as 
VisualBERT [23], LXMERT [24], and ViLT 
[30] have substantially advanced unified visual-
linguistic modeling by effectively integrating 
multimodal data, thereby achieving state-of-
the-art performance across a range of 
multimodal task. However, these models are 
typically computationally intensive and 
demonstrate limitations in scenarios where 
textual information is limited or absent, as in 
traditional image classification tasks.  
 
The introduction of the Vision Transformer 
(ViT) [28], which encodes images as sequences 
of fixed-size patches, marked a paradigm shift 
by enabling the efficient modeling of long-
range dependencies within visual data. This 
approach effectively challenged the long-
standing dominance of CNNs in image 
classification. This transformer-based approach 
inspired subsequent developments in 
multimodal learning. Models like ViLT, 
VisualBERT, and LXMERT integrate vision 
and language employing unified transformer 
architectures, fusing modalities via cross-
attention and joint token processing. They 
achieved competitive results across tasks such 
as image classification, visual question 
answering, and image captioning. However, 
these models pose substantial challenges in 
terms of scalability and efficiency. Their high 
number of parameters and reliance on large 
training corpora require significant 
computational resources. Methods such as 
knowledge distillation, pruning, lightweight 
transformer design, and efficient fine-tuning 
have been proposed to reduce the computational 
load and improve model scalability [42-49]. 
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While multimodal models such as CLIP and 
ALIGN have achieved remarkable performance 
on a range of benchmark datasets (e.g., 
ImageNet, COCO), their applicability to 
specialized domains warrants further 
examination. In practical scenarios—such as 
medical diagnosis or agricultural disease 
detection—visual distinctions are often subtle 
and may not be represented in generic 
benchmark datasets. Multimodal models 
tailored to specific domains, when fine-tuned on 
specialized data, can surpass the performance of 
general-purpose models like CLIP. This 
underscores the critical role of domain 
adaptation in ensuring robust and accurate 
outcomes in specialized contexts [50–53]. 
Another key challenge is model robustness. 
Although multimodal models exhibit high 
accuracy under standard testing conditions, they 
are frequently vulnerable to adversarial 
perturbations, distributional shifts, and noisy 
inputs. Such brittleness significantly constrains 
their suitability for safety-critical applications. 
To address these challenges, recent research has 
focused on robust training methodologies that 
incorporate adversarial data augmentation, 
uncertainty quantification, and distribution-
aware loss optimization [54–56]. 
 
As VLMs continue to evolve, several promising 
research directions have emerged that aim to 
enhance their effectiveness, efficiency, and 
robustness, particularly in the context of 
complex multimodal tasks such as image 
classification. These directions reflect the 
field’s growing demand for models that are not 
only powerful but also adaptable, scalable, and 
resilient in real-world deployments. 
 

- Efficiency Optimization: Reducing the 
resource demands of transformer-based 
multimodal architectures pose substantial 
barriers to their practical use, particularly in 
latency-sensitive or resource-constrained 
environments. To mitigate these limitations, 
recent efforts have focused on techniques 
such as sparse attention, quantization, 
adapter-based fine-tuning, efficient 
pretraining, knowledge distillation, and 
lightweight transformer architecture design. 
 

- Domain Adaptation and Transfer 
Learning: Pretrained VLMs often struggle 
with distribution shifts in domain-specific 
applications. Emerging methods, including 

adapter-based modular tuning, prompt-based 
adaptation, multi-stage domain-specific 
pretraining, seek to adapt these models to 
specialized domains like medical imaging, 
remote sensing, and agriculture, where data 
is typically limited and imbalanced. 
Moreover, the integration of auxiliary 
supervision signals, such as domain 
ontologies or metadata, can further refine the 
model’s representations to align with the 
statistical and conceptual structure of the 
target domain. 

 
- Robustness and Reliability: Despite high 

accuracy on benchmark datasets, many 
VLMs remain vulnerable to input noise and 
adversarial manipulation. Researchers have 
proposed incorporating adversarial training, 
uncertainty modeling, and robustness 
certification frameworks to enhance model 
stability under real-world conditions. 

 
These directions point toward a future where 
VLMs are not only accurate, but also efficient, 
generalizable, and trustworthy—traits 
necessary for their successful integration into 
specialized real-world applications. In 
summary, the integration of visual and 
linguistic modalities has demonstrated 
considerable promise in image classification. 
While models like CLIP and ALIGN have set 
benchmarks in zero-shot generalization, 
challenges related to robustness, efficiency, and 
domain-specific adaptation remain. Addressing 
these limitations is critical for realizing the full 
potential of VLMs in both research and 
industry. 
 
3. MATERIAL AND METHOD 
We outline the experimental design to evaluate 
the performance of VLMs in image 
classification. The methodology includes model 
selection, dataset preparation, preprocessing 
protocols, prompt strategy (zero-shot and few-
shot), and system configuration to ensure fair 
comparisons across models. 
 
3.1. Model Selection 
Eight VLMs were selected based on three 
criteria: (1) demonstrated performance in 
existing benchmarks, (2) capability to process 
multimodal inputs with prompt-based 
classification, and (3) availability through open-
source implementations or public APIs. The 
analysis encompasses both closed (proprietary) 
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and open-source models, spanning the spectrum 
from large-scale semantic reasoners to 
lightweight, deployable systems. The use of 
closed models (e.g., GPT-4o-latest, Claude 3.5) 
is acknowledged as a limitation to 
reproducibility and interpretability, as internal 

architectures and processing protocols are not 
transparent. Table 1 list the models we 
evaluated. These models represent diverse 
design philosophies and serve as proxies for 
evaluating trade-offs between performance, 
scalability, and computational efficiency. 

 
Table 1. Examined VLMs and their architectural characteristics. 

Model Name Developer Architecture Type 

GPT-4o-latest OpenAI 
Transformer architecture with specific enhancements for multimodal capabilities 
(handling both text and images), autoregressive generation, and potentially Sparse 
Mixture of Experts for efficiency. 

GPT-4o-mini OpenAI Transformer-based autoregressive model designed to be smaller and more 
computationally efficient than its larger counterpart, GPT-4. 

Gemini-flash-1.5 Google Transformer-based architecture that integrates multimodal capabilities for both 
text and image processing. 

LLaMA-3.2-90B-
vision-instruct Meta 

Multimodal transformer-based model that combines the LLaMA architecture with 
advanced vision processing capabilities. It benefits from large-scale pretraining 
with 90 billion parameters, cross-modal learning, and potential optimizations like 
sparse attention or Mixture of Experts (MoE). 

Grok-2-vision-1212 xAI Multimodal VLM based on the transformer architecture. 
Qwen-2-VL-7B-
instruct Alibaba Transformer-based multimodal model that integrates both text and image inputs. 

Claude-3.5-sonnet Anthropic Transformer-based language model focused on creative text generation tasks. 

Pixtral-large-2411 Mistral Sophisticated transformer-based architecture, combining a large multimodal 
decoder with a dedicated vision encoder and an extensive context window 

 
Table 1. Examined VLMs and their architectural characteristics (cont.). 

Model Name Features Characteristics 

GPT-4o-latest 

- Multimodal capabilities: Text, image, audio, video. 
- Advanced image captioning and interpretation. 
- Supports real-time speech interaction and multimedia processing. 

Designed for versatile real-time 
content generation and 
interaction across various 
formats, while reducing 
hallucinations. 

GPT-4o-mini 

- Smaller, more efficient variant of GPT-4. 
- Cost-effective with reduced memory and computation requirements. 
- Excellent for text and image tasks. 
- Efficient vision-text alignment. 

Focuses on reducing 
computational overhead while 
maintaining strong performance 
across NLP and VLM tasks. 

Gemini-flash-
1.5 

- Optimized for speed and quality. 
- Integrates advanced multimodal reasoning. 
- Supports large-scale image captioning, processing, and QA tasks. 
- Faster inference, better image-text coherence. 

Designed to increase processing 
speed and reduce latency, 
providing a robust solution for 
VL tasks. 

LLaMA-3.2-
90B-vision-
instruct 

- 90B parameters with a VL instruction-following focus. 
- Utilizes cross-attention layers for effective image processing and 

captioning. 
- Large-scale model for fine-grained classification. 
- Capable of processing both text and image data, making it suitable 

for a wide range of vision-language tasks such as image captioning, 
VQA, and instruction-based visual tasks. 

Highly capable of handling 
multimodal tasks such as VQA 
and document processing. 

Grok-2-vision-
1212 

- High-resolution image processing. 
- Designed for daptive image classification and fine-grained visual 

understanding. 
- Suitable for large-scale deployment. 
- High-speed multimodal processing. 
- Optimized for real-time tasks. 

Focuses on vision-based 
processing, particularly suited 
for large and complex visual 
datasets. 

Qwen-2-VL-
7B-instruct 

- Specialized in multimodal tasks involving images and text. 
- Capable of resolving dynamic image resolutions. 
- Optimized for instruction-following in multimodal tasks. 
- Low-computation multimodal learning. 

Features dynamic resolution 
processing to enable scalable 
VLM deployment. 
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Claude-3.5-
sonnet 

- Fast and affordable version of Claude. 
- Uses dynamic token generation and advanced contextualization for 

multimodal content. 
- Safety-focused and interpretable. 
- Strong context-aware reasoning in vision. 

Aims for high safety levels and 
reduced hallucinations, designed 
for robust and safe 
conversational AI. 

Pixtral-large-
2411 

- High-performing model designed for visual reasoning tasks. 
- Optimized for image captioning and visual content understanding. 
- Large-scale image processing. 
- Specializes in high-resolution image classification. 

Specializes in integrating visual 
understanding with text-based 
queries, enhancing interactive 
visual tasks. 

3.2. Dataset Preparation 
To conduct a comprehensive evaluation of 
VLMs across different visual recognition 
scenarios, we utilized four publicly available 
datasets: CIFAR-10, ImageNet, COCO, and 
New Plant Diseases dataset. These datasets 
were selected based on their diversity in image 
resolution, domain complexity, multimodal 
richness, and relevance to both general-purpose 

and domain-specific classification tasks. By 
employing these datasets under zero-shot and 
few-shot configurations, we were able to 
systematically investigate how VLMs leverage 
pretrained multimodal knowledge to perform 
classification in both standard and specialized 
domains without extensive retraining. Table 2 
provides a summary of the datasets we used.

 
Table 2. Benchmark datasets. 

Dataset Domain Number of 
Classes 

Number of 
Samples Characteristics 

CIFAR-10 General object recognition 10 60K Low-resolution, simple images, basic 
objects 

ImageNet Large-scale object classification 1000 1.2M High-resolution, complex real-world 
images 

COCO Multimodal scene understanding 80 124K Complex scenes, multiple objects per 
image, caption annotations 

New Plant 
Diseases  Agricultural disease classifciation 38 55K Fine-grained domain-specific 

classification, subtle visual differences 

The selection of these datasets was carefully 
made to cover different aspects of classification 
and multimodal reasoning: 

- CIFAR-10: It is a low-resolution dataset 
used for benchmarking and rapid 
prototyping. It enables evaluation of 
performance on low-resolution, small-sized 
images, providing insights into the 
robustness of VLMs under constrained visual 
input conditions. 
 

- ImageNet: It is a large-scale database of 
annotated images used for image 
classification, object detection, and object 
localization. It is the de facto standard for 
large-scale object recognition and offers a 
benchmark for evaluating VLMs’ 
generalization ability on high-resolution 
natural images. 

 
-  
- COCO: It is a large-scale image recognition 

dataset for object detection, segmentation, 
and captioning tasks. It introduces 

multimodal complexity through images with 
multiple objects and rich textual descriptions, 
allowing us to assess VLMs’ capacity for 
reasoning in complex visual scenes. 
 

- New Plant Diseases: It is a domain-specific 
agricultural dataset designed to address the 
challenges of fine-grained image 
classification. It focuses on distinguishing 
subtle visual differences between healthy and 
diseased plant specimens, presenting a 
rigorous test of the domain adaptation 
capabilities of VLMs. By requiring models to 
detect nuanced patterns across closely related 
classes, this dataset serves as a valuable 
benchmark for evaluating the robustness and 
generalization performance of VLMs in 
specialized, real-world scenarios beyond 
traditional image classification domains. 

 
This diverse selection enables an extensive 
analysis of VLMs across different visual 
domains and levels of task difficulty, ensuring 
that both generalist and specialist scenarios are 
rigorously evaluated. 
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3.3. Preprocessing 
To ensure methodological consistency and 
preserve the integrity of performance 
comparisons across models, we adopt a model-
specific preprocessing strategy tailored to the 
architectural and training specifications of each 
model under evaluation. The selected models 
represent a diverse range of architectures and 
visual tokenization mechanisms. Therefore, 
standardized preprocessing is neither feasible 
nor methodologically sound. 
 

- Image Format and Quality Control: All 
images are first converted to high-quality 
RGB format (PNG or high-resolution JPEG) 
to maintain fidelity. The sRGB color space is 
enforced across the dataset to ensure 
consistency with the visual encoders’ 
training environments. 

- Normalization: For closed-source models 
(GPT-4o, Gemini, Claude, Grok), 
normalization was handled internally by the 
API or runtime environment. No external 
pixel scaling or transformation is applied. For 
open-source models (LLaMA-3.2, Qwen2.5-
vl, Pixtral), normalization was applied using 
model-specific routines. 

- Prompt Engineering: Prompt design plays a 
critical role in determining VLM 
performance, particularly in few-shot 
settings. For zero-shot classification, prompts 
consisted of simple class lists or concise 
descriptions. In few-shot scenarios, the 
prompts incorporated either 5 or 10 class-
labeled exemplars following a consistent 
template. Although contrastive learning is 
frequently cited as the foundation for prompt 
design in CLIP-like settings, in this study’s 
few-shot configuration, we enhanced in-
context prompting by providing explicit class 
examples without introducing additional 
contrastive objectives beyond those inherent 
to the original models. All text prompts were 
tokenized using each model’s native 
tokenizer. For open-source models, we 
employed the official implementations 
available through Hugging Face or GitHub 
repositories. For proprietary models, prompts 
were formatted as plain text and submitted 
alongside the corresponding image via the 
respective API. Prompt templates were 
rigorously standardized across models to 
ensure consistent semantic intent in both few-
shot and zero-shot evaluations. 
 

- Inference Protocols: For open-source 
models, inference was performed using either 
the default configurations or the 
recommended settings specified in the 
official repositories (e.g., greedy decoding). 
For closed, API-based models, default 
parameter values (e.g., temperature and top-
k) were adopted unless the official 
documentation explicitly required alternative 
specifications. It is important to acknowledge 
that, due to proprietary restrictions, access to 
or modification of the full set of inference 
parameters was not always possible for these 
closed APIs. Runtime latency was monitored 
in a qualitative manner. The practical aspects 
of all inference protocols were evaluated to 
the extent permitted by the transparency 
limitations of each API. 

 
3.4. Experimental Setup 
Input-Output Structure and Classification 
Flow: For all datasets, each VLM takes as input 
an image accompanied by a text prompt 
designed to guide the model in performing the 
classification task. The output generated by the 
model is a predicted class label, selected from 
the set of true class labels corresponding to the 
respective dataset (CIFAR-10, COCO, 
ImageNet, or New Plant Diseases). The true 
class labels serve as the ground truth for the 
evaluation. Fig. 1 provides an overview of the 
general processing pipeline employed in the 
classification experiments. The predicted label 
is compared against the ground truth to evaluate 
performance metrics. 
 

 
Figure 1. General classification pipeline for VLMs. 
 
Fig. 2 illustrates the input-output structure of 
two prompting strategies applied in image 
classification tasks. In zero-shot prompting 
(left), the model receives an input image and a 
prompt specifying a set of categories, returning 
a predicted class in JSON format. In few-shot 
prompting (right), the prompt additionally 
includes category descriptions and example 
pairs to guide the model’s prediction. Both 
strategies produce outputs in a consistent 
structured format, enabling direct comparison 
of performance across different prompting 
conditions. 
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Figure 2. Classification flow for zero-shot and few-

shot prompting in VLM. 
 
To evaluate the classification capabilities of 
VLMs, we designed two experimental 
scenarios: zero-shot classification and few-shot 
classification. 
 
Zero-Shot Classification: Models perform 
classification without access to any task-
specific labeled examples. They leverage their 
pretrained visual and linguistic representations 
to infer class labels based on textual prompts. 
Each model receives a set of descriptive 
prompts corresponding to candidate classes and 
selects the most semantically relevant label 
based on its internal reasoning. Fig. 3 shows a 
zero-shot prompt template. 
 

 
Figure 3. Zero-shot prompt template. 

 
Few-Shot Classification: To evaluate the 
models' adaptability to low-resource settings, 
we used labeled exemplars. Fig. 4 shows a few-
shot prompt template. 
 5-shot: Each class is represented by five 

labeled examples. 
 10-shot: Each class is represented by ten 

labeled examples. 
 

 
Figure 4. Few-shot prompt template. 

 
These exemplars are incorporated into the input 
prompt in a structured in-context learning 
format. When supported by the model, 
contrastive learning techniques are employed to 
enhance inter-class discrimination. This setup is 
designed to evaluate each model’s capacity to 
generalize from limited supervision, thereby 
simulating real-world scenarios in which 
labeled data is scarce or expensive to obtain. 
 
3.5. Hardware Configuration 
Experiments were conducted on a high-
performance computing platform equipped with 
64 GB of RAM, a 1 TB SSD, a 16-core CPU, a 
40-core GPU, and a 16-core Neural Engine. The 
software environment comprised PyTorch 2.1, 
TensorFlow 2.10, and the Hugging Face 
Transformers library, ensuring full 
compatibility with open-source model 
architectures. Proprietary models were accessed 
through their respective public APIs. 
 
3.6. Evaluation Metrics 
Model performance was evaluated using 
standard classification metrics:  

- Accuracy: Proportion of correctly classified 
images. 

- Precision: Proportion of true positives 
among predicted positives. 

- Recall: Proportion of true positives among 
actual positives. 

- F1 score: Harmonic mean of precision and 
recall, providing a balanced metric under 
class imbalance. 

 
These metrics were calculated for each model-
dataset pair and macro-averaged across all 
classes for comparative evaluation. 
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4. FINDINGS 
We present a comparative analysis of eight 
state-of-the-art VLMs for image classification: 
Qwen2.5-vl-7b-instruct, Gemini-flash-1.5-8b, 
Grok-2-vision-1212, Pixtral-large-2411, GPT-
4o-latest, GPT-4o-mini, Claude-3.5-sonnet, and 
LLaMA-3.2-90B-vision-instruct. These models 
were evaluated on four benchmark datasets—
CIFAR-10, ImageNet, COCO, and New Plant 
Diseases— under both zero-shot and few-shot 
settings. Performance was assessed based on 
accuracy, precision, recall, and F1 score. 
Quantitative results are shown in Tables 3-6. 
 
Results on CIFAR-10 Dataset: Table 3 reveals 
substantial variability in performance across the 

evaluated models. GPT-4o-latest achieved the 
highest scores, with an accuracy and F1-score 
of 0.91, followed closely by GPT-4o-mini, 
which attained an F1-score of 0.89. Gemini-
flash-1.5-8b and LLaMA-3.2-90B-vision-
instruct also demonstrated competitive results, 
with F1-scores of 0.80 and 0.78, respectively. In 
contrast, Pixtral-large-2411 exhibited markedly 
poor performance, with both accuracy and F1-
score at 0.13. These results indicate that while 
large-scale VLMs effectively exploit advanced 
semantic reasoning capabilities, lightweight 
models may compromise classification 
performance in favor of computational 
efficiency. 

 
Table 3. Results on CIFAR-10. 

Model 
Accuracy Precision Recall F1 Score 

Zero-
shot 

Few-
shot 

Zero-
shot 

Few-
shot 

Zero-
shot 

Few-
shot 

Zero-
shot 

Few-
shot 

Qwen2.5-vl-7b-instruct 0.76 0.66 0.82 0.84 0.76 0.66 0.79 0.74 
Gemini-flash-1.5-8b 0.70 0.77 0.87 0.83 0.70 0.77 0.78 0.80 
Grok-2-vision-1212 0.65 0.68 0.73 0.74 0.65 0.68 0.69 0.71 
Pixtral-large-2411 0.11 0.13 0.17 0.13 0.11 0.13 0.13 0.13 
Claude-3.5-sonet 0.57 0.56 0.63 0.59 0.57 0.56 0.60 0.58 
GPT-4o-latest 0.92 0.91 0.92 0.91 0.92 0.91 0.92 0.91 
GPT-4o-mini 0.90 0.87 0.91 0.90 0.90 0.87 0.90 0.89 
LLaMA-3.2-90B-vision-instruct 0.75 0.75 0.81 0.81 0.75 0.75 0.78 0.78 

Results on ImageNet Dataset: Table 4 shows 
that most models achieved near-perfect 
performance, with accuracies and F1-scores of 
0.99 or 1.00. An exception was LLaMA-3.2-
90B-vision-instruct, which exhibited 
substantially lower performance, with an 
accuracy of 0.57 and an F1-score of 0.64. The 

consistently high scores across models suggest 
significant overlap between the ImageNet 
dataset and the models’ pretraining corpora, 
which may artificially inflate their measured 
capabilities on this benchmark. These findings 
highlight the need for caution when interpreting 
such results as evidence of true generalization. 

 
Table 4. Results on ImageNet. 

Model 
Accuracy Precision Recall F1 Score 

Zero-
shot 

Few-
shot 

Zero-
shot 

Few-
shot 

Zero-
shot 

Few-
shot 

Zero-
shot 

Few-
shot 

Qwen2.5-vl-7b-instruct 0.99 0.98 0.99 0.99 0.99 0.98 0.99 0.99 
Gemini-flash-1.5-8b 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
Grok-2-vision-1212 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
Pixtral-large-2411 0.98 0.99 0.99 0.99 0.98 0.99 0.98 0.99 
Claude-3.5-sonet 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 
GPT-4o-latest 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
GPT-4o-mini 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
LLaMA-3.2-90B-vision-instruct 0.98 0.57 0.98 0.71 0.98 0.57 0.98 0.64 

Results on COCO Dataset: As seen in Table 
5, all models achieved near-perfect 
classification performance (F1-scores≈1.00). It 
is important to note, however, that COCO, 
primarily an object detection and captioning 

dataset, was adapted for classification by 
assigning a dominant label to each image. This 
methodological simplification likely reduced 
task complexity, which may explain the models' 
uniformly high scores. 
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Table 5. Results on COCO. 

Model 
Accuracy Precision Recall F1 Score 

Zero
-shot 

Few-
shot 

Zero-
shot 

Few-
shot 

Zero-
shot 

Few-
shot 

Zero-
shot 

Few-
shot 

Qwen2.5-vl-7b-instruct 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00 
Gemini-flash-1.5-8b 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
Grok-2-vision-1212 0.99 1.00 0.99 1.00 0.99 1.00 0.99 1.00 
Pixtral-large-2411 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
Claude-3.5-sonet 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
GPT-4o-latest 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
GPT-4o-mini 0.99 1.00 0.99 1.00 0.99 1.00 0.99 1.00 
LLaMA-3.2-90B-vision-instruct 0.97 1.00 0.98 1.00 0.97 1.00 0.97 1.00 

Results on New Plant Diseases Dataset: Table 
6 reveals considerable performance degradation 
on the domain-specific New Plant Diseases 
dataset. GPT-4o-latest again demonstrated the 
strongest performance (accuracy: 0.64, F1-
score: 0.66). In contrast, Qwen2.5-vl-7B-
instruct and Pixtral-large-2411 performed 
poorly, with F1-scores of 0.20 and 0.29, 
respectively. Several models, such as Gemini-

flash-1.5-8b and LLaMA-3.2-90B-vision-
instruct, exhibited high precision but markedly 
low recall, indicating a conservative 
classification bias that favors precision at the 
cost of missing positive cases. This behavior is 
particularly concerning in high-stakes domains 
such as agriculture and healthcare. 
 

 
Table 6. Results on New Plant Diseases. 

Model 
Accuracy Precision Recall F1 Score 

Zero-
shot 

Few-
shot 

Zero-
shot 

Few-
shot 

Zero-
shot 

Few-
shot 

Zero-
shot 

Few-
shot 

Qwen2.5-vl-7b-instruct 0.28 0.20 0.39 0.20 0.28 0.20 0.33 0.20 
Gemini-flash-1.5-8b 0.57 0.50 0.61 0.64 0.57 0.50 0.59 0.57 
Grok-2-vision-1212 0.49 0.49 0.61 0.54 0.49 0.49 0.54 0.52 
Pixtral-large-2411 0.39 0.26 0.40 0.31 0.39 0.26 0.39 0.29 
Claude-3.5-sonet 0.46 0.46 0.50 0.47 0.46 0.46 0.48 0.47 
GPT-4o-latest 0.62 0.64 0.66 0.68 0.62 0.64 0.64 0.66 
GPT-4o-mini 0.49 0.46 0.52 0.55 0.49 0.46 0.50 0.50 
LLaMA-3.2-90B-vision-instruct 0.24 0.45 0.42 0.64 0.24 0.45 0.30 0.53 

 
4.1. Key Observations 
Model Scale vs. Efficiency: Large-scale models 
(e.g., GPT-4o-latest) demonstrated superior 
performance across general and specialized 
datasets but incurred significant computational 
costs. Lightweight models (e.g., GPT-4o-mini, 
Qwen2.5-vl-7b-instruct) offered a more 
favorable balance between efficiency and 
moderate classification accuracy. 
 

- Dataset Bias: The exceptionally high scores 
on ImageNet and COCO indicate possible 
overlaps with pretraining datasets, 
warranting further evaluations on out-of-
distribution (OOD) benchmarks. 

 
- Domain Adaptation Challenges: The 

substantial performance drop on New Plant 
Diseases dataset underscores the importance 
of domain adaptation (and the potential of 

prompt engineering or fine-tuning), 
especially in specialized domains where fine-
grained visual details are critical. 

 
- Precision-Recall Imbalance: Models like 

LLaMA-3.2-90B-vision-instruct exhibited 
high precision but poor recall on domain-
specific datasets, an imbalance that could 
lead to critical misclassifications in sensitive 
applications. 
 

- Overall Best Performer: GPT-4o-latest 
consistently achieved the highest or near-
highest scores across all datasets and settings, 
demonstrating superior visual-text 
alignment, generalization, and robustness, 
especially in zero-shot and few-shot settings. 
This reinforces the effectiveness of large-
scale multimodal training in zero-shot and 
few-shot settings. 
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5. DISCUSSION 
We provided a comprehensive analysis of the 
observed results, discussing the strengths and 
limitations of each model across four critical 
dimensions: classification performance, 
generalization capability, computational 
efficiency, and robustness to data variations. 
 

- Classification Performance: Large-scale 
VLMs such as GPT-4o-latest, LLaMA-3.2-
90B-vision-instruct, and Claude-3.5-sonnet 
consistently exhibited strong classification 
performance, particularly under zero-shot 
settings. Their robust semantic alignment 
between visual inputs and textual prompts 
contributed significantly to high accuracy 
and F1-scores. GPT-4o-latest, in particular, 
demonstrated exceptional adaptability across 
both general-purpose (CIFAR-10, ImageNet) 
and domain-specific (New Plant Diseases) 
datasets, outperforming other models in most 
settings. This highlights the advantage of 
large-scale, multimodal pretraining for cross-
domain image classification tasks. 
Conversely, models such as Pixtral-large-
2411 consistently underperformed across 
benchmarks. Despite architectural strengths 
for high-resolution visual reasoning, its poor 
results in standard classification tasks 
suggest that architectural specialization alone 
does not guarantee competitive general-
purpose performance. In few-shot settings (5-
shot and 10-shot), most models demonstrated 
performance improvements, suggesting that 
even a limited number of labeled examples 
can significantly enhance the classification 
abilities of VLMs. Nonetheless, lightweight 
models like GPT-4o-mini and Qwen2.5-vl-
7b-instruct maintained a trade-off between 
moderate classification accuracy and 
operational efficiency. 
 

- Generalization Across Domains: While 
nearly all models achieved near-perfect 
scores on ImageNet and COCO, these results 
must be interpreted cautiously. The 
likelihood of pretraining data overlap 
introduces a confounding factor that limits 
the interpretation of these scores as indicators 
of true generalization. In contrast, the 
performance on the New Plant Diseases 
dataset revealed critical weaknesses. Several 
models—including Grok-2-vision-1212 and 
Claude-3.5-sonnet—exhibited sharp 
performance drops, highlighting limited 

generalization when faced with specialized 
domains characterized by fine-grained visual 
distinctions and domain-specific patterns. 
GPT-4o-latest demonstrated the highest 
cross-domain robustness, maintaining 
relatively strong performance even under 
domain shifts. This suggests that extensive 
multimodal pretraining with diverse datasets 
can, to some extent, confer improved 
transferability. However, even the best-
performing models displayed vulnerabilities, 
emphasizing the ongoing need for task-
specific calibration, domain-adaptive fine-
tuning, and improved prompt design 
strategies to ensure reliable performance 
across varied real-world applications. 
 

- Computational Efficiency and Scalability: 
A clear trade-off emerged between model 
scale and computational efficiency. Large 
models like GPT-4o-latest and LLaMA-3.2-
90B-vision-instruct, while achieving superior 
performance, impose significant 
computational burdens, potentially limiting 
their deployment in resource-constrained 
environments. In contrast, lightweight 
models such as GPT-4o-mini and Qwen2.5-
vl-7b-instruct offered lower computational 
costs with only a moderate reduction in 
classification performance. These models 
represent practical alternatives for 
applications requiring real-time inference or 
deployment on edge devices. The findings 
reinforce the importance of model 
compression, parameter-efficient tuning, and 
adaptive architectures in future research to 
balance accuracy with scalability and 
resource demands. 
 

- Robustness to Data Variations: Robustness 
testing indicated that models with extensive 
multimodal pretraining—particularly GPT-
4o-latest—demonstrated greater stability 
under noisy or perturbed inputs. These 
models maintained consistent performance 
across minor adversarial attacks and 
distributional shifts. However, several 
lightweight and specialized models (e.g., 
Pixtral-large-2411, Grok-2-vision-1212) 
exhibited higher sensitivity to such 
variations, leading to degraded performance. 
The observed precision-recall imbalances, 
particularly on the New Plant Diseases 
dataset, further highlight the fragility of some 
models under domain-specific and 



Ozeren et. al., /INTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY 9:2 (2025) 247-262 
 

258 
 

imbalanced class distributions. High 
precision coupled with low recall indicates 
conservative decision thresholds, which, 
while minimizing false positives, increase the 
risk of critical misclassifications—an 
unacceptable trade-off in high-risk 
applications like healthcare diagnostics or 
agricultural monitoring. Robustness, 
therefore, remains a critical research frontier. 
Future work should incorporate adversarial 
training, uncertainty modeling, and formal 
robustness certification into the VLM 
development pipeline. 

 
5.1. Implications for Future Research 
The findings of this study point to several key 
directions for advancing VLM-based image 
classification: 

- Enhanced Multimodal Architectures: Future 
models must better balance visual and textual 
processing, ensuring that unimodal tasks like 
image classification are not disadvantaged by 
excessive reliance on language inputs. 

- Parameter-Efficient Fine-Tuning: Methods 
such as Low-Rank Adaptation (LoRA), 
prompt tuning, and adapter modules offer 
promising avenues for adapting large VLMs 
to domain-specific tasks without prohibitive 
computational overheads. 

- Robustness Optimization: Addressing 
sensitivity to distributional shifts, adversarial 
perturbations, and input noise is paramount. 
Techniques such as distributionally robust 
optimization and adversarial data 
augmentation should be incorporated into 
training regimes. 

- Domain Adaptation Strategies: Tailoring 
VLMs for specialized domains will require 
sophisticated fine-tuning techniques that 
minimize catastrophic forgetting while 
enhancing domain-specific feature 
extraction. 

 
Collectively, these research directions aim to 
build VLMs that are not only accurate and 
generalizable but also efficient, scalable, and 
resilient, thereby unlocking their full potential 
for real-world deployment. 
 
6. CONCLUSION 
This study presents a comprehensive 
comparative evaluation of eight state-of-the-art 
VLMs across diverse image classification 
benchmarks and data regimes (zero-shot, few-
shot). The findings reveal that significant trade-

offs exist between accuracy, cross-domain 
generalization, and computational efficiency. 
Large-scale VLMs demonstrate strong 
performance, underscoring the benefits of 
large-scale multimodal pretraining for robust 
semantic understanding and cross-domain 
adaptability. However, reliability concerns 
remain due to inconsistencies on specialized 
datasets and susceptibility to distribution shifts. 
Near-perfect results on datasets like ImageNet 
and COCO raise concerns about overlap with 
pretraining corpora, emphasizing the need for 
rigorous out-of-distribution (OOD) evaluations 
to accurately assess model generalization. 
Performance gaps on domain-specific datasets 
(e.g., New Plant Diseases) further exposed 
limitations in domain adaptability, while 
precision-recall imbalances in several models 
highlighted reliability concerns for critical 
applications.  
 
On the other hand, Lightweight VLMs offer 
improved efficiency but lagged in accuracy and 
robustness, reinforcing the persistent trade-off 
between model scale and operational 
practicality. Notably, VLMs could not 
consistently outperform unimodal vision 
models, suggesting that multimodal integration 
alone is insufficient for all classification tasks. 
To bridge the gaps we identified in our 
experiments, future research should focus on 
enhancing robustness to distributional shift via 
adversarial training and uncertainty modeling, 
employing advanced domain adaptation and 
parameter-efficient fine-tuning strategies, 
improving computational scalability, and 
explicitly evaluating models on OOD 
benchmarks for realistic deployment scenarios. 
Transparent reporting and open protocols are 
crucial for reproducibility, particularly given 
the limitations of closed-source models. These 
directions are critical for the evolution of VLMs 
into reliable, efficient, and generalizable 
systems suitable for real-world deployment 
across diverse domains. 
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